ModernLib.Net

()

ModernLib.Net / / / () - (. 288)
:
:

 

 


  Пока нет также убедительной теории возникновения звёзд и галактик (пограничная проблема К. и космогонии ). Эта проблема по меньшей мере столь же трудна, как и др. фундаментальные проблемы возникновения в современной науке (возникновения планет, возникновения жизни). Существует и ряд др. нерешённых проблем К.

  Лит.:Зельдович Я. Б., Новиков И. Д., Релятивистская астрофизика, М., 1967; Наблюдательные основы космологии. Сб., М., 1965; 3ельманов А. Л., Космология, в кн.: Физический энциклопедический словарь, т. 2, М., 1962; Бесконечность и Вселенная, Сб., М., 1969; Peebles, P. J. E., Physical Cosmology, Princeton, 1972.

  Г. И. Наан.

Рис. 2 к ст. Космологические парадоксы.

Рис. 1 к ст. Космологические парадоксы.

Космонавт

Космона'вт(от космос и греч. nбutes - мореплаватель), астронавт, человек, проводящий испытания и эксплуатацию космической техники в космическом полёте; профессия, появившаяся в результате проникновения в космос человека (1961). Первых кандидатов в космонавты отбирали из числа военных лётчиков (СССР), лётчиков-испытателей (США), т. к. необходимые качества (высокое лётное мастерство, способность мгновенно принимать решения, хорошая переносимость шумов, вибраций, ускорений и сочетание этих факторов, опыт проведения наблюдений и регистрации их результатов и т. д.) наиболее полно сочетаются в этих профессиях. Позднее, как в СССР, так и в США, в экипажи космических кораблей стали включать инженеров и учёных с необходимыми специальными знаниями. Подготовка К. в Советском Союзе началась в 1960, в США для полётов на космических кораблях «Меркурий» - в 1959, «Джемини» и «Аполлон» - в1962. На 1 сентября 1973 лица, совершившие полёты в космос в качестве пилотов или членов экипажей: Ю. А. Гагарин (1961), Г. С. Титов (1961), А. Г. Николаев (1962, 1970), П. P. Попович (1962), В. Ф. Быковский (1963), В. В. Терешкова (Николаева-Терешкова) (1963), В. М. Комаров (1964, 1967), К. П. Феоктистов (1964), Б. Б. Егоров (1964), П. И. Беляев (1965), А. А. Леонов (1965), Г. Т. Береговой (1968), В. А. Шаталов (1969 - 2 раза, 1971), А. С. Елисеев (1969 - 2 раза, 1971), Е. В. Хрунов (1969), Б. В. Волынов (1969), Г. С. Шонин (1969), В. Н. Кубасов (1969), А. В. Филипченко (1969), В. Н. Волков (1969, 1971), В. В. Горбатко (1969), В. И. Севастьянов (1970), Н. Н. Рукавишников (1971), Г. Т. Добровольский (1971), В. И. Пацаев (1971) - СССР; А. Шепард (1961, 1971), В. Гриссом (1961, 1965), Дж. Гленн (1962), М. С. Карпентер (1962), У. Ширра (1962, 1965, 1968), Г. Купер (1963, 1965), Дж. Янг (1965, 1966, 1969, 1972), Дж. Макдивитт (1965, 1969), Э. Уайт (1965), Ч. Конрад (1965, 1966, 1969, 1973), Ф. Борман (1965, 1968), Дж. Ловелл (1965, 1966, 1968, 1970), Т. Стаффорд (1965, 1966, 1969), Н. Армстронг (1966, 1969), Д. Скотт (1966, 1969, 1971), Ю. Сернан (1966, 1969, 1972), М. Коллинз (1966, 1969), Р. Гордон (1966, 1969), Э. Олдрин (1966, 1969), У. Каннингем (1968), Д. Эйзел (1968), У. Андерс (1968), Р. Швейкарт (1969), А. Бин (1969, 1973), Дж. Суиджерт (1970), Ф. Хейс (1970), Э. Митчелл (1971), С. Руса (1971), А. Уорден (1971), Дж. Ирвин (1971), Т. Маттингли (1972), Ч. Дьюк (1972), Р. Эванс (1972), Х. Шмитт (1972), Дж. Кервин (1973), П. Вейц (1973), О. Гэрриот (1973), Дж. Лусма (1973) - США. Биографические сведения о К. см. в статьях о них.

  Г. А. Назаров.

Космонавтика

Космона'втика(от космос и греч .nautikе' искусство мореплавания, кораблевождение), полеты в космическом пространстве; совокупность отраслей науки и техники, обеспечивающих освоение космоса и внеземных объектов для нужд человечества с использованием разного рода космических летательных аппаратов включает проблемы: теории космических полетов - расчеты траектории и др.; научно-технические - конструирование космических ракет, двигателей, бортовых систем управления, пусковых сооружении, автоматических станций и пилотируемых кораблей, научных приборов, наземных систем управления полетами, служб траекторных измерении, телеметрии, организация и снабжение орбитальных станции и прочие; медико-биологические - создание бортовых систем жизнеобеспечения,компенсация неблагоприятных явлении в человеческом организме, связанных с перегрузкой, невесомостью,радиацией и др.; юридическо-международно-правовое регулирование вопросов использования космического пространства и планет и т. п.

  Историческая справка.В своих мечтах, воплощённых в сказках, легендах, фантастических романах, человечество уже давно стремилось в космос, об этом свидетельствуют и многочисленные (как правило, неосуществимые) изобретения прошлого. Рассказы о полёте в небо уже встречаются в ассиро-вавилонском эпосе, в древнекитайских и иранских легендах. В древнеиндийской поэме «Махабхарата» содержатся наставления для полёта на Луну. Широко известен греческий миф о полёте к Солнцу Икара на крыльях, скрепленных воском. Полёт к Луне на крыльях описал Лукиан Самосатский (2 в. н. э.).

  Теоретическое обоснование возможности полётов в космическом пространстве впервые было дано русским учёным К. Э. Циолковским в конце 19 в. В своём труде «Исследование мировых пространств реактивными приборами» (1903) и дальнейших работах Циолковский показал реальность технического осуществления космических полётов и дал принципиальное решение ряда основных проблем К. Помимо трудов Циолковского, вопросам К. были посвящены работы И. В. Мещерского (с 1897), Ю. В. Кондратюка (1919-29), Ф. А. Цандера (1924-32), Н. А. Рынина (1928-32) и др. русских учёных. За рубежом ранние труды по К. были опубликованы Р. Эно-Пельтри (Франция, 1913), Р. Годдардом (США, 1919), Г. Обертом (Германия, 1923). В 20-х гг. 20 в. были основаны первые общества К.: в СССР (1924), Австрии (1926), Германии (1927), Великобритании и США (1930). Целью этих обществ была пропаганда идей К. и содействие решению практических проблем в этой области. В СССР работы в области ракетной техники начаты в 1921; в это время была организована Газодинамическая лаборатория (ГДЛ). С 1928 под руководством Н. И. Тихомирова (основателя ГДЛ) проводились лётные испытания ракет на бездымном шашечном порохе. С 1929 в ГДЛ В. П. Глушко начал разработку ракет с электрическими (ЭРД) и жидкостными (ЖРД) ракетными двигателями. Первые испытания ЭРД проведены в 1929, ЖРД - в 1931. В 1932 в Москве была создана производственная Группа изучения реактивного движения (ГИРД), осуществившая под руководством С. П. Королева в 1933 первые пуски советских жидкостных ракет конструкции М. К. Тихонравова и Ф. А. Цандера. В конце 1933 на базе ГДЛ и ГИРД был основан Реактивный научно-исследовательский институт (РНИИ). Эти три организации внесли основополагающий вклад в развитие советского ракетостроения. Выросшее из ГДЛ опытно-конструкторское бюро (ГДЛ - ОКБ) по разработке ЖРД совместно с др. ОКБ, институтами и заводами обеспечили дальнейшее развитие ракетной и космической техники в СССР.

  В США экспериментальные работы с ЖРД были начаты Р. Годдардом в 1921, а пуски жидкостных ракет производились с 1926. В Германии стендовые испытания двигателей этого класса начаты Г. Обертом в 1929, а летные испытания жидкостных ракет - И. Винклером в 1931. Во время 2-й мировой войны 1939-1945 Германия использовала жидкостные ракеты с дальностью полёта 250-300 км(ракета V-2 конструкции В. фон Брауна ) Потенциальные возможности нового оружия побудили многие страны форсировать работы по ракетной технике после войны, в результате чего были созданы межконтинентальные и др. баллистические ракеты, снабженные ядерными боеголовками. Эти работы косвенным образом способствовали созданию необходимой технической базы К.

  Космическая эра.Начало космической эры - 4 октября 1957, дата запуска в СССР первого искусственного спутника Земли (ИСЗ). Вторая важнейшая дата космической эры -12 апреля 1961 - день первого космического полета Ю. А. Гагарина,начало эпохи непосредственного проникновения человека в космос. Третье историческое событие К. - первая лунная экспедиция 16-24 июля1969, выполненная Н. Армстронгом,Э. Олдрином и М. Коллинзом (США).

  Космические аппараты созданы и используются в ряде стран: в СССР с 1957, в США с 1958, во Франции с 1965, в Японии и КНР с 1970, в Великобритании с 1971. О масштабах работ, ведущихся по К., можно судить по количеству, например, советских искусственных спутников Земли, Солнца, Луны и Марса, число которых на 1 июля 1973 составляло 742 при массе 2233 т,или 4388 твместе с конечной ступенью ракет-носителей; 2-я космическая скорость сообщена 41 объекту массой 110 т,а вместе с конечной ступенью ракеты 167 т.Аналогичный масштаб приобрели работы по К. в США. На 1 мая 1973 космические полёты совершили 25 советских космонавтов на 18 кораблях и орбитальной станции «Салют», 38 американских космонавтов на 27 орбитальных кораблях; число ИСЗ, выведенных на орбиты др. странами: 7 - Франция, 4 - Япония, 2 - КНР, 1 - Великобритания.

  Основоположником практической К. является С. П. Королев. К 1957 под его руководством был создан ракетно-космический комплекс, позволивший запустить первый искусственный спутник Земли, а затем был осуществлен вывод на околоземные орбиты ряда автоматически управляемых космических аппаратов; к 1961 был отработан и запущен космический корабль «Восток», на котором совершил первый полёт Ю. А. Гагарин. Королев руководил разработкой автоматических межпланетных станций для исследования Луны (вплоть до «Луны-9», совершившей первую мягкую посадку на Луну), первых экземпляров космических аппаратов «Зонд» и «Венера», космического корабля «Восход» (первый многоместный корабль, из которого совершен первый выход человека в космическое пространство) и т. д. Не ограничивая свою деятельность созданием ракет-носителей и космических аппаратов, Королев осуществлял общее техническое руководство работами по обеспечению первых космических программ. Важный вклад в развитие советской ракетно-космическое техники сделан также конструкторскими бюро, возглавляемыми М. К. Янгелем, Г. Н. Бабакиным, А. М. Исаевым, С. А. Косбергом и др. Под руководством В. П. Глушко (основатель и руководитель ГДЛ - ОКБ) разработаны мощные ЖРД, установленные на всех советских ракетах-носителях, летавших в космос (1957-73).

  Современная теория космических полётов основана на небесной механике и теории управления движением летательных аппаратов. В отличие от классической небесной механики, новое направление называется астродинамикой.К. потребовала разработки оптимальных траекторий космических летательных аппаратов (выбор времени старта и вида траектории, исходя из требования минимальных затрат топлива ракеты-носителя) с учётом эволюции этих траекторий под действием возмущающих сил (особенно гравитационных полей, эффекта аэродинамического торможения от взаимодействия космического аппарата с разреженными верхними слоями атмосферы для искусственных спутников планет и под действием солнечного давления для межпланетных перелётов). Требование оптимальности приводит иногда к достаточно сложным траекториям - с длительными перерывами в работе ракетных двигателей носителя (например, при старте к Луне, Марсу и Венере осуществляется вывод космического аппарата на траекторию ИСЗ и лишь затем к планете) и с использованием гравитационного поля небесных тел (например, при полёте к Луне с целью изгиба траектории, необходимого для возвращения к Земле без запуска ракетного двигателя).

  Важный раздел астродинамики - теория коррекций траекторий полёта. Отклонение фактической траектории от расчётной связано с двумя факторами: искажением траектории возмущающими силами, которые невозможно учесть заранее (например, торможение ИСЗ атмосферой, плотность её изменяется нерегулярно), и неизбежными при технической реализации малыми ошибками в скорости и направлении полета космического аппарата в момент выключения двигателей носителя (эффект ошибок постепенно нарастает при межпланетных полётах). Коррекция заключается в кратковременном включении ракетного двигателя для исправления траектории. В теории коррекции рассматриваются вопросы оптимальности коррекционного маневра (наивыгоднейшее число, расположение точек коррекций на траектории и т. п.). Для выполнения коррекций и манёвров необходимо знание фактической траектории полёта космического аппарата. Если определение фактической орбиты производится на борту летящего аппарата, то оно является составной частью автономной навигации и состоит из измерения углов между звёздами и планетами, расстояний до планет, времени захода и восхода Солнца и звёзд относительно края планет и т. п. и обработки измеренных данных по методам небесной механики на бортовой вычислительной машине.

  Создание ракетно-космических комплексов - сложная научно-техническая проблема, Большие ракеты-носители достигают стартовой массы до 3000 ти имеют длину свыше 100 м.Для размещения в них необходимых запасов топлива (90% полной массы) конструкция ракет должна быть чрезвычайно лёгкой, что достигается рациональными конструктивными решениями и разумным снижением требований к запасам прочности и жёсткости. В полёте, по мере расходования топлива, опорожнённые части баков становятся излишними, их дальнейший разгон требует неоправданного расхода топлива, и поэтому оказывается целесообразным создавать многоступенчатые конструкции носителей (обычно от 2 до 4 ступеней); ступени ракеты отбрасываются последовательно, по мере опорожнения баков, Современная ракета-носитель представляет собой сложный комплекс устройств, из которых наиболее важны двигательная установка и система управления. Обычно применяют химические жидкостные ракетные двигатели, реже на твёрдом топливе; двигатели, основанные на потреблении ядерной энергии, находятся (1973) ещё в стадии экспериментальных исследований, однако, несомненно, что использование в будущих космических экспедициях ядерной энергетики вполне реально. Пилотируемые полёты к Марсу с высадкой человека на его поверхность и др. аналогичные космические программы требуют огромных энергетических затрат, которые возможно реализовать лишь при использовании ядерных источников энергии совместно с химическими. Мощность двигательных установок ракет-носителей измеряется десятками млн. квт.Разработка мощных и экономных ракетных ЖРД для носителей направлена на выбор энергетически оптимальных топлив и обеспечение достаточно полного сжигания их в камере сгорания при высоких давлениях и температурах. При этом приходится решать трудные задачи охлаждения работающего двигателя, создавать устойчивость процесса горения в нём топлива и многое др.

  Двигательные установки носителей, как правило, состоят из нескольких двигателей, синхронизация работы которых ведётся системой управления. Системы управления движением обычно автономные, т. е. работающие без вмешательства наземных пунктов. Они состоят из гироскопических и др. датчиков первичной информации, измеряющих мгновенное угловое положение носителя и действующие на него ускорения. Вычислительная машина определяет по этой информации фактическую траекторию и ведёт управление таким образом, чтобы к моменту выключения ракетных двигателей получить нужную комбинацию координат ракеты и её вектора скорости. Управление угловым положением носителя усложняется малой жёсткостью его конструкции и большой долей жидких масс в нём. Поэтому оно ведётся с учётом изгибных колебаний корпуса и колебательного движения жидких масс в баках.

  Готовность ракеты-носителя к пуску проверяют на технической позиции космодрома в монтажно-испытательном корпусе, затем она транспортируется на стартовую площадку, где устанавливается на пусковую систему, проходит предстартовые испытания, заправку баков топливом и производится её пуск. Окончанием выведения космического аппарата на орбиту считается превышение первой космической скорости (около 7,91 км/сек) для ИСЗ и достижение скорости порядка второй космической (11,19 км/сек) для аппаратов, летящих к Луне, Марсу или Венере (для полёта к дальним планетам или Солнцу необходимо развить скорость, заметно превышающую вторую космическую). При этом ракета-носитель отделяется от космического летательного аппарата, продолжающего дальнейший орбитальный полёт, происходящий главным образом по инерции, согласно законам небесной механики. Выводимые на орбиты космические летательные аппараты можно разбить на 2 группы: для полёта вблизи Земли (ИСЗ) и в дальний космос, например к Луне или планетам. Эти аппараты могут содержать более или менее мощные ракетные ступени, если предполагается заметным образом изменять скорость полёта - для торможения при подлёте к планете назначения, если необходимо перейти на орбиту искусственного спутника планеты, для мягкой посадки на планету, лишённую атмосферы, для взлёта с неё и для разгона космического аппарата до скорости, обеспечивающей возвращение к Земле. В будущем для разгона космического летательного аппарата от первой космической скорости до более высоких предполагается использование экономичных электрических ракетных двигателей.


  • :
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314