ModernLib.Net

()

ModernLib.Net / / / () - (. 214)
:
:

 

 


В 30-е гг. в НИИ и на заводах (особенно в Киеве под рук. Е. О. Патона) начались работы, в результате которых был создан способ автоматической сварки открытой дугой, а затем (начало 40-х гг.) способ автоматической сварки под флюсом с использованием оригинальной отечеств. аппаратуры. Эти методы позволили ликвидировать тяжёлый ручной труд, перевести сварку на индустриальную основу.

  В период Великой Отечеств. войны 1941-45 сварочная техника использовалась в производстве танков, снарядов к ракетным установкам БМ-13 («Катюша») и др. вооружения. При изготовлении сварных бронекорпусов применялось оборудование для автоматической сварки под флюсом с постоянной скоростью подачи электродной проволоки (по принципу саморегулирования длины дуги, открытому В. И. Дятловым). В 1942 по дну Ладожского озера был проложен сварной трубопровод для доставки топлива в осажденный Ленинград. Разработаны методы подводной сварки и резки (К. К. Хренов и др.), используемые при ремонте поврежденных кораблей. Не прекращалась и научно-исследовательская работа: В. П. Никитин предложил сварку жидким присадочным металлом, Б. Е. Патон и И. К. Олейник - шланговую сварку под флюсом. Проводились исследования по точечной сварке металла больших толщин (А. С. Гельман), по металлургическим и металловедческим процессам при сварке (К. В. Любавский, А. М. Макара) и др.

  В послевоенные годы развитие сварочной техники велось по трём направлениям: расширение механизации и автоматизации; изыскание новых способов нагрева металла; изучение и совершенствование металлургических процессов. В конце 50-х гг. в промышленности используют автоматическую сварку под слоем флюса, электрошлаковую сварку, газоэлектрические способы сварки, механизированную наплавку металлов. С помощью автоматической сварки перешли к поточному крупносекционному методу постройки судов, создали на её базе производство газо- и нефтепроводных труб большого диаметра, решили проблему цельносварного мостостроения. Электрошлаковая сварка, разработанная в институте электросварки им. Е. О. Патона, позволила преобразовать технологию и организацию производства массивных крупногабаритных изделий - прокатного оборудования, мощных прессов, валов гидротурбин, доменных комплексов и т. п. Сварку использовали при строительстве таких уникальных сооружений, как крупнейший в Европе цельносварной мост через Днепр в Киеве (1953), каркасы московских высотных зданий (начало 50-х гг.), атомные ледоколы «Ленин» (1959) и «Арктика» (1974). В 60 - начале 70-х гг. с помощью сварки построены мощные гидрогенераторы и гидропрессы, магистральные газо- и нефтепроводы, АЭС, цельносварные танкеры большого водоизмещения. Сварку используют в тяжёлом, энергетическом и  транспортном машиностроении, электронной, полупроводниковой технике и в др. отраслях. Для повышения уровня сварочной техники созданы показательные заводы, цехи и участки сварных конструкций.

  В 70-х гг. научно-исследовательская работа в области сварки сосредоточена на решении следующих проблем: работоспособность сварных соединений, расчёт сварочных напряжений и деформаций (Николаев и др.); развитие теории источников тепла при сварке (Б. Е. Патон, Рыкалин, Хренов и др.); разработка физико-химических и металлургических основ сварки (Б. И. Медовар, В. В. Фролов, Любавский, М. Х. Шоршоров и др.); технология сварки, совершенствование сварочных материалов (А. И. Акулов, Г. Д. Никифоров и др.). Разработаны принципиально новые эффективные методы - диффузионная сварка в вакууме, в защитных и инертных газах, сварка трением, электроннолучевая и лазерная сварка, сварка дуговой плазмой и др. Сварку осуществляют в любых пространственных положениях, на суше, под водой. На космическом корабле «Союз-6» впервые в мире проводились опыты по сварке в космосе (1969, В. Н. Кубасов, Г. С. Шонин). институтом электросварки им. Е. О. Патона (СССР) и Центральным институтом сварки (ГДР). Созданы установки для электроннолучевой сварки изделий автомобильной промышленности (1974). Н. -и. работы по сварке ведутся в ЦНИИТМАШе, институте электросварки им. Е. О. Патона, МВТУ им. Баумана, Всесоюзном НИИ электросварочного оборудования, институте металлургии им. Байкова, ВНИИавтогенмаше, Московском авиационно-технологическом институте (МАТИ), Ленинградский политехническом институте, Московском энергетическом институте, в других НИИ и на кафедрах вузов. См. также , , , .

 Механическая обработка. Первые теоретические исследования процесса резания металлов были проведены в России в 1868-69 И. А. Тиме. Основы науки о резании металлов были заложены русскими учёными К. А. Зворыкиным, А. А. Бриксом, А. В. Гадолиным и др. Широкие научные исследования в области резания металлов развернулись после Октябрьской революции 1917 благодаря быстрому развитию социалистической индустрии, в частности станкостроения, инструментальной промышленности, металлообработки. Начало исследованиям в области процесса резания положили работы А. Н. Челюсткина, обосновавшего формулу для силы резания (1922-26). Базой для научно-исследовательских работ в области резания металлов, разработки новых станков и инструментов, подготовки научных кадров стал созданный в 20-х гг. трест Оргаметалл. В начале 30-х гг. в Экспериментальном НИИ металлорежущих станков (ЭНИМС), Московском станкоинструментальном институте (СТАНКИН) и конструкторских бюро многих заводов развернулись научные и проектные работы по основным проблемам станкостроения: созданию отдельных типов станков и их типажа в целом, увеличению быстроходности и мощности станков, изысканию совершенных конструкций деталей и механизмов, применению автоматического управления, повышению износостойкости и долговечности станков. К этой работе были привлечены учёные и специалисты (А. С. Бриткин, Г. М. Головин, В. И. Дикущин, Д. Н. Решетов, Г. А. Шаумян и др.). В 1934 в ЭНИМСе был создан первый в Европе агрегатный многошпиндельный станок.

  В 30-е гг. проводились интенсивные исследовательские работы в области создания новых инструментов и материалов для них. После выпуска первого отечественного прессованного твёрдого сплава «победит» (1929) в лабораториях вузов и заводов, в созданных в начале 30-х гг. Всесоюзном научно-исследовательском инструментальном институте (ВНИИ), Всесоюзном НИИ абразивов и шлифования (ВНИИАШ), СТАНКИНе велись исследования с целью широкого внедрения в производство твердосплавного инструмента, создания новых твёрдых сплавов и др. инструментальных материалов (минералокерамики), позволяющих повысить режимы резания. В разработке основ конструирования и расчёта режущего инструмента участвовали Г. И. Грановский, В. М. Матюшкин, И. И. Семенченко и др.

  К началу 30-х гг. относятся первые после Октябрьской революции научные работы в области технологии машиностроения (А. П. Соколовский), продолженные затем Б. С. Балакшиным (точность регулирования размеров в процессе обработки), Н. А. Бородачёвым (теория точности), К. В. Вотиновым (проблемы жёсткости станков), О. М. Кованом (теория припусков), А. Б. Яхиным (теория баз) и др. Эти работы сыграли большую роль в решении многих технических проблем, связанных с механической обработкой материалов.

  Важное значение для развития науки о резании металлов и создания советской школы резания имел период 1935-41, когда стахановское движение передовиков производства опрокинуло нормативы, тормозившие дальнейшее развитие техники, в том числе и в области резания металлов. Декабрьский (1935) пленум ЦК ВКП(б) предложил пересмотреть технические руководящие материалы, на которых базировались нормативы. С этой целью была создана Комиссия по резанию металлов для объединения всех научных исследований в стране в этой области. В работе Комиссии участвовали не только учёные (И. М. Беспрозванный, В. А. Кривоухов, Е. П. Надеинская, А. В. Панкин и др.), но и заводские коллективы, инженеры, мастера и рабочие. Было проведено по единой методике свыше 120 000 экспериментов по исследованию процесса резания, установлены силовые и стойкостные зависимости для всех видов металлорежущего инструмента и по всем основным металлам, применяемым в машиностроении, созданы инженерные методы расчёта геометрии режущей части инструмента и оптимальных режимов обработки различных материалов. В разработке физических основ процесса резания важную роль сыграли работы учёных в области смежных наук (В. Д. Кузнецов, П. А. Ребиндер и др.).

  Перед Великой Отечеств. войной 1941-1945 станкостроение выпускало станки многих типов (в т. ч. агрегатные и специальные) с высокой степенью автоматизации, чему способствовали научно-исследовательские работы, выполненные в АН СССР, отраслевых институтах и специализированных лабораториях. Первые проекты автоматических линий из агрегатных станков были разработаны в ЭНИМСе ещё в 1936. В годы войны станки-автоматы, автоматические и полуавтоматические линии сыграли важную роль в массовом производстве вооружения при нехватке рабочей силы (только одна полуавтоматическая линия для расточки и сверления отверстий в корпусных деталях танка Т-34 заменила 19 тяжёлых расточных и радиально-сверлильных станков и высвободила 36 квалифицированных рабочих). В это же время значительно увеличился типаж станков (лишь одно конструкторское бюро под руководством Г. И. Неклюдова разработало около 190 типов оригинальных станков для производства миномётного вооружения).

  В первые послевоенные годы научно-исследовательские и проектные институты работали над проблемами скоростного резания. Одно из основных условий перехода на повышенные скорости обработки - автоматизация управления станками путём электрификации и гидрофикации привода. В 1946 в ЭНИМСе был разработан бесступенчатый ионный электропривод станков с электронным управлением, сконструированы (Н. А. Волчек, Ю. Б. Эрпшер) для автотракторной промышленности автоматические линии из 14, 45 и 25 агрегатных станков, основанные на принципе сквозного (поточного) прохода деталей, транспортируемых с помощью гидропривода. В создании станков-автоматов и автоматических линий участвовали также ВНИИ, ВНИИАШ и др. научно-исследовательские институты. Основы теории проектирования станков-автоматов разработаны Г. А. Шаумяном (1948). Впервые в мировой практике был спроектирован и построен в 1949 (начал работать в 1950) комплексно-автоматизированный завод поршней.

  В 50-70-х гг., выполняя задачи по улучшению отраслевой структуры промышленности и техническому перевооружению народного хозяйства, отраслевые НИИ и конструкторские бюро уделяли особое внимание проектированию и отработке конструкций прецизионных станков, тяжёлых и уникальных станков, станков для электрофизической и электрохимической обработки (ультразвуковой, электроэрозионной, лазерной, плазменной и др.), многооперационных станков с автоматической сменой инструментов, станков с числовым программным управлением (ЧПУ). Для заводов, выпускающих универсальные станки, к 1965 была разработана единая унифицированная серия моделей и их модификаций. Разработкой методов расчёта и конструирования станков занимались Н. С. Ачеркан, В. С. Васильев, В. И. Дикушин, В. Ф. Кудинов, вопросами технологии - А. С. Проников, проблемами износостойкости станков - Д. Н. Решетов.

  Освоение выпуска новых машин и оборудования, связанное с применением жаропрочных, нержавеющих, эрозионностойких, тугоплавких и др. труднообрабатываемых материалов, потребовало разработки новых инструментальных материалов, изменения конструкций режущего инструмента, иного подхода к выбору рациональных условий обработки резанием. В конце 50 - начале 70-х гг. на основе работ института физики высоких давлений АН СССР (А. Ф. Верещагин) и института сверхтвёрдых материалов АН УССР (В. Н. Бакуль) созданы сверхтвёрдые инструментальные материалы - синтетические алмазы, эльбор, гексанит и др. СССР занимает ведущее место в мире по производству сверхтвёрдых материалов. Так, предназначенный для обработки высокотвёрдых сложнолегированных сплавов эльбор (его производство впервые освоено ленинградским абразивным заводом «Ильич») экспортируется во многие страны. В создании новых инструментов и материалов большое значение имели работы Г. Н. Сахарова, В. Н. Слесарева, Н. Е. Филоненко-Бородича, Д. Ф. Шпотаковского и др. Теорию обработки металлов резанием обогатили труды Н. Н. Зорева, М. В. Касьяна, Т. Н. Лоладзе и др. Важную роль в развитии прогрессивных методов механической обработки металлов сыграли рабочие-новаторы: Г. С. Борткевич, С. И. Бушуев, П. Б. Быков, В. А. Карасёв, В. А. Колосов, В. К. Семинский и мн. др.

  В области технологии машиностроения в 50-70-х гг. проведены многочисленные научные исследования и решены проблемы адаптивного управления станками (Б. С. Балакшин), групповой обработки (С. П. Митрофанов), контактной жёсткости (Э. В. Рыжов), определения влияния различных факторов на точность обработки и качество поверхности (П. Е. Дьяченко). В разработке проблем технологии машиностроения участвовали также М. Е. Егоров, В. С. Корсаков и др. Советским учёным (И. В. Кудрявцеву, Е. Г. Коновалову, С. В. Серенсену и др.) принадлежит приоритет в разработке основ упрочняющей технологии, при которой в процессе механической обработки улучшаются свойства материалов в направлении, обеспечивающем повышенную эксплуатационную надёжность и долговечность изделий.

  В 10-й пятилетке (1976-80) отраслевые научно-исследовательские, проектные и технологические институты, конструкторские бюро заводов работают над созданием автоматического оборудования с малогабаритными электронными системами числового программного управления (ЧПУ) и контроля, улучшением структуры выпускаемого металлообрабатывающего оборудования (станки с ЧПУ, тяжёлые, уникальные и высокоточные станки, специальные станки и автоматические линии, в том числе переналаживаемые комплексные линии, комплекты высокопроизводит. оборудования с управлением от ЭВМ), созданием нового  металлообрабатывающего инструмента из природных и синтетических алмазов, минералокерамических и др. сверхтвёрдых материалов, абразивных материалов высокой стойкости. В этих работах участвуют ЭНИМС и его филиалы (в Армянской ССР и Литовской ССР), ВНИИ, ВНИИалмаз, Украинский НИИ станков и инструментов, технологический институт Оргстанкинпром, другие институты и широкая сеть конструкторских бюро во многих союзных республиках.

  Между странами - членами СЭВ заключены соглашения о совместной разработке основных научно-технических проблем в области металлообработки: создании и усовершенствовании станков с ЧПУ, создании единого программного языка, методов испытаний станков, норм точности, унификации систем и элементов управления и т. д. При этом достигается более высокий уровень концентрации научно-исследовательского потенциала в социалистических странах.

  См. также , , , , , .

  А. А. Пархоменко, О. А. Владимиров, Л. И. Леей, Д. Л. Юдин.

  Периодические издания: «Машиноведение» (с 1965), «Вестник машиностроения» (с 1921), «Известия АН СССР. Механика твёрдого тела» (с 1966), «Стандарты и качество» (с 1927), «Машиностроитель» (с 1931),«Приборостроение»(с 1956), «Измерительная техника» (с 1939), «Металловедение и термическая обработка металлов» (с 1955), «Сталь» (с 1941), «Литейное производство» (с 1930), «Сварочное производство» (с 1930), «Автоматическая сварка» (с 1948), «Кузнечно-штамповочное производство» (с 1959), «Станки и инструмент» (с 1930) и другие отраслевые журналы.

  Металлургическая наука, техника и технология

 Русские учёные внесли большой вклад в науку о металлах, в развитие техники и технологии их производства. В 1763 М. В. Ломоносов опубликовал «Первые основания металлургии или рудных дел», в которых рассмотрел ряд проблем, связанных с добычей руд и получением металлов. В 60-х гг. И. И. Ползунов построил первую доменную воздуходувку, приводимую в движение силой пара. В. В. Петров, открывший в 1802 явление электрической дуги, указал на возможность её применения для электроплавки и восстановления металлов из окислов. Труды

П. Г. Соболевского по получению ковкой платины и изготовлению из неё изделий (1826) положили начало порошковой металлургии. П. П. Аносов разработал новые способы выплавки стали высокого качества, положил начало металлургии легированных сталей, впервые применил микроскоп для исследования структуры металла (1831). Классические работы Д. К. Чернова в области кристаллизации стального слитка, фазовых превращений в стали, строения металлов и сплавов послужили фундаментом для создания современного металловедения и термической обработки металлов. Наследие Чернова творчески развивали А. А. Байков, А. А. Ржешотарский, Н. С. Курнаков и др. Крупный вклад в теорию и практику доменного процесса внесли М. А. Павлов и М. К. Курако. Одну из первых в Европе мартеновских печей построил в 1870 А. А. Износков; Д. К. Чернов (1872) и К. П. Поленов (1875-76) предложили т. н. русское бессемерование - разновидность бессемеровского процесса, обеспечивающую переработку малокремнистых чугунов. Братья А. М. и Ю. М. Горяиновы разработали и внедрили технологию мартеновской плавки на жидком чугуне (1894).


  • :
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268