ModernLib.Net

ModernLib.Net / / - (. 44)
:
:

 

 


Схема призменной астролябии дана на рис. 77. Свет от звезды падает на верхнюю грань равносторонней треугольной призмы и на ртутный горизонт (поверхность ртути в плоском сосуде). Пройдя через верхнюю грань призмы и отразившись от ее нижней грани, лучи света от звезды попадают на объектив и, пройдя его и отразившись от двух зеркал, дают в фокальной плоскости объектива изображение звезды, движущееся вверх при увеличении высоты звезды. Лучи, отраженные от ртутного горизонта, падают на нижнюю грань призмы и, пройдя ее и отразившись от ее верхней грани, попадают в объектив и дают в его фокальной плоскости второе изображение звезды, движущееся вниз при увеличении высоты звезды. Наблюдение на призменной астролябии заключается в отметке момента, когда эти изображения совпадут. Это случится при достижении звездой альмукантарата h0 . Отмеченный момент времени и известная высота h0 позволяют вычислить географическую широту места наблюдения и точное местное время. Для увеличения точности наблюдений астролябия имеет специальную призму (призму Волластона), перемещая которую с помощью микрометрического винта, можно удерживать оба изображения звезды на постоянном расстоянии друг от друга. По записанным моментам от контактов барабана момент прохождения звездой альмукантарата h0 получается точнее. Для наблюдений в различных азимутах астролябия может вращаться около вертикальной оси. Фотографическая зенитная труба (ФЗТ) используется также для определения географической широты места наблюдения и точного времени. Устройство ФЗТ и наблюдения на ней принципиально отличаются от устройства и наблюдений на ранее описанных инструментах. Фотографическая зенитная труба состоит из неподвижной вертикальной трубы (рис. 78), оптическая ось которой располагается строго вертикально, и ртутного горизонта, помещенного под объективом, на расстоянии, несколько большем половины его фокусного расстояния.

Тогда лучи звезд, находящихся близко к зениту, пройдя объектив и отразившись от поверхности ртути, идут вверх и образуют изображения звезд немного ниже объектива. В этом месте, перпендикулярно к оптической оси, помещается фотопластинка, которая плавно передвигается часовым механизмом перпендикулярно к плоскости небесного меридиана. Наблюдения на ФЗТ состоят в том, что незадолго до кульминации избранной звезды открывают фотопластинку и, то двигая ее часовым механизмом со скоростью изображения звезды, то останавливая на некоторое время, получают несколько изображений звезды до меридиана (рис. 79, а, точки 1, 2, 3). Около момента кульминации объектив вместе с пластинкой поворачивают вокруг вертикальной оси точно на 180° и получают несколько изображений звезды после прохождения меридиана (рис. 79, б, точки 4, 5, 6).

Из измерений расстояний между рядами а и б и между изображениями звезды, и по отметкам времени, которые автоматически впечатываются на эту же пластинку, вычисляется время кульминации звезды и ее зенитное расстояние в этот момент. По этим данным, зная склонение и прямое восхождение звезды, определяют географическую широту места наблюдения и точное время.

§ 101. Задачи и основные разделы астрофизики

Цель астрофизики - изучение физической природы и эволюции отдельных космических объектов, включая и всю Вселенную. Таким образом, астрофизика решает наиболее общие задачи астрономии в целом. За последние десятилетия она стала ведущим разделом астрономии. Это не означает, что роль таких классических разделов как небесная механика, астрометрия и т.п. - уменьшилась. Наоборот, количество и значимость работ в традиционных областях астрономии в настоящее время также растет, но в астрофизике этот рост происходит быстрее. В целом астрономия развивается гармонически как единая наука, и направление исследований в различных ее разделах учитывает взаимные их интересы, в том числе и астрофизики. Так, например, развитие космических исследований частично способствовало возникновению нового раздела небесной механики - астродинамики. Построение космологических моделей Вселенной предъявляет особые требования к классическим задачам астрометрии и т.д. Как известно, за свою многовековую историю астрономия претерпела несколько революций, полностью изменивших ее характер. Одним из результатов этого процесса явилось возникновение и бурное развитие астрофизики. Особенно этому способствовало применение телескопа с начала XVII в., открытие спектрального анализа и изобретение фотографии в XIX в., возникновение фотоэлектрии, радиоастрономии и внеатмосферных методов исследования в XX в. Все это необычайно расширило возможности наблюдательной, или практической астрофизики, и привело к тому, что в середине XX в. астрономия стала всеволновой, т.е. получила возможность извлекать информацию практически из любого диапазона спектра электромагнитного излучения. Параллельно с развитием методов практической астрофизики, благодаря прогрессу в физике и особенно созданию теории излучения и строения атома, развилась теоретическая астрофизика. Ее цель - интерпретация результатов наблюдений, постановка новых задач исследований, а также обоснование методов практической астрофизики. Оба основные раздела астрофизики в свою очередь подразделяются на более частные. Разделение теоретической астрофизики, как правило, производится по объектам исследования: физика звезд, Солнца, планет, туманностей, космических лучей, космология и т.д. Разделы практической астрофизики обычно отражают те или иные применяемые методы: астрофотометрия, астроспектроскопия, астрофотография, колориметрия и т.д. Разделы астрофизики, основанные на применении принципиально новых методов, составившие эпоху в астрономии, и, как правило, включающие соответствующие разделы теоретической астрофизики, получили такие названия, как радиоастрономия, баллонная астрономия, внеатмосферная астрономия (космические исследования), рентгеновская астрономия, гамма-астрономия, нейтринная астрономия. Прежде чем перейти к описанию результатов астрофизических исследований, необходимо усвоить ряд основных определений и понятий. Этому и посвящена настоящая глава.

§ 102. Электромагнитное излучение, исследуемое в астрофизике

Как известно, видимый свет является частным видом электромагнитного излучения, которое испускается не непрерывно, а отдельными порциями (квантами), характеризующимися величиной своей энергии. Совокупность всех видов излучения называется спектром электромагнитного излучения. За единицу измерения энергии квантов обычно принимают электрон-вольт (эв). Это энергия, которую приобретает свободный электрон (т.е. электрический заряд е = 4,8Ч10-10 СГСЭ), ускоренный электрическим полем с разностью потенциалов в 1 вольт (в) = СГСЭ. Поэтому

Кванты видимого света обладают энергиями в 2-3 эв и занимают лишь небольшую область электромагнитного спектра, исследуемого в астрофизике, который простирается от значений энергии порядка Мэв (мега-, т.е. миллион электрон-вольт) для гамма-лучей до одной миллионной электрон-вольта (10-6 эв) для метровых радиоволн. Между этими крайними видами электромагнитного излучения последовательно располагаются рентгеновские, ультрафиолетовые, визуальные (видимые) и инфракрасные лучи (табл. 1). Электромагнитное излучение обладает волновыми свойствами, проявляющимися в таких явлениях, как интерференция и дифракция. Поэтому, как и всякое колебание, его можно характеризовать длиной волны l и частотой n , произведение которых равно скорости распространения колебаний:

c = l n .(7.1)

У всех электромагнитных волн скорость распространения в вакууме одинакова и составляет 299 792 км/сек, или приближенно, с = 3,00 Ч1010 см/сек. Энергия квантов в пропорциональна частоте n электромагнитных колебаний (т.е. обратно пропорциональна длине волны l ) . Коэффициентом пропорциональности является постоянная Планка h = 6,625 Ч 10 -27 эргЧсек, так что

(7.2)

Кванту с энергией в 1 эв соответствует длина волны l1 = 12 400 Е = 1,24 мк и частота n1 = 2,42 Ч 1014 гц . Области видимых лучей соответствует интервал длин волн примерно от 3900 Е (фиолетовая граница видимого спектра) до 7600 Е (красная граница). Между ними располагаются все цвета видимого спектра: фиолетовый (3900-4500 Е), синий (4500-4800 Е), голубой (4800-5100 Е), зеленый (5100-5700 Е), желтый (5700-850 Е), оранжевый (5850-6200 Е) и красный (6200-7600 Е). Указанные границы условны, и в действительности цвета излучения плавно переходят друг в друга. Излучение в видимой области спектра играет особенно большую роль в астрономии, так как оно сравнительно хорошо пропускается земной атмосферой. В остальных участках спектра поглощение сказывается значительно сильнее, так что космическое излучение проникает только до некоторого уровня земной атмосферы, изображенного на рис. 84. Сильнее всего атмосфера поглощает коротковолновую область спектра, где находятся ультрафиолетовые, рентгеновские и гамма-лучи. Все они, кроме близкого ультрафиолета (3100-3900 Е), доступны наблюдениям только с ракет и искусственных спутников, оснащенных специальной аппаратурой. В сторону длинных волн от видимой области спектра расположены инфракрасные лучи и радиоволны. Большая часть инфракрасных лучей, начиная примерно с длины волны в 1 микрон (мк), поглощается молекулами воздуха, главным образом молекулами водяных паров и углекислого газа. Наблюдениям с Земли доступно излучение только в некоторых, сравнительно узких окнах видимости между полосами молекулярного поглощения. Остальные участки спектра становятся доступными наблюдениям со сравнительно небольших высот и могут изучаться с аэростатов и шаров-зондов или (частично) на некоторых высокогорных обсерваториях.

Земная атмосфера прозрачна для радиоволн в диапазоне примерно от 1 см до 20 м. Волны короче 1 см, за исключением узких областей около 1 мм, 4,5 мм и 8 мм, полностью поглощаются нижними слоями земной атмосферы, а волны длиннее нескольких десятков метров отражаются и поглощаются самыми верхними ее слоями ионосферой.

§ 103. Понятие об астрофотометрии

Количество световой энергии, излучаемой телом, является одной из существенных его характеристик. Имеется два основных способа измерения этой величины: либо непосредственное определение количества световой энергии, дошедшей от данного тела до измерительного прибора, либо сравнение излучения исследуемого объекта с излучением какого-нибудь другого, излучательная способность которого известна. Источники света даже одинаковой мощности могут сильно различаться по спектральному составу своего излучения. Так, например, Солнце больше всего излучает желто-зеленые лучи, в то время как некоторые звезды испускают преимущественно голубые и синие лучи. С другой стороны, имеются объекты (например, так называемые радиогалактики), которые в диапазоне радиоволн излучают в несколько раз сильнее, чем во всех остальных областях спектра. Отсюда видно, что сравнивать излучение двух объектов имеет смысл только в одной и той же спектральной области. Светочувствительный прибор (приемник излучения), как правило, неодинаково реагирует на лучи различных длин волн. Поэтому результаты измерения количества света зависят от того, к каким лучам чувствительнее всего данный прибор, т.е. от его спектральной чувствительности. Обычно можно указать длины волн, ограничивающие интервал спектра, на который реагирует данный прибор (область спектральной чувствительности). Ширина этого интервала называется полосой пропускания данного приемника. Мощность световой энергии обычно характеризуют потоком излучения (световым потоком), являющимся основным понятием фотометрии. Потоком излучения называется количество лучистой энергии, проходящей за единицу времени через данную площадку (например, входное отверстие телескопа). Световой поток, падающий на площадку в 1 см2 некоторой поверхности, называют освещенностью этой поверхности. Если световой поток F равномерно освещает площадь S, то освещенность

(7.3)

В астрофизике понятие освещенности является очень важным, так как фактически только эта величина может быть измерена из наблюдений. Действительно, светочувствительный прибор реагирует на количество световой энергии, предварительно прошедшей через его входное отверстие (например, световое окно фотоэлемента), площадь которого известна и постоянна для данного инструмента. Поэтому отсчеты прибора пропорциональны освещенности, создаваемой исследуемым объектом в месте наблюдения, если влияние всех остальных источников излучения исключено. Как известно, освещенность обратно пропорциональна квадрату расстояния от источника и пропорциональна косинусу угла падения лучей. Однако при использовании этого закона в астрофизике необходимо учитывать оптические свойства среды, заполняющей пространство между излучаемым телом и наблюдателем. Например, свет звезд несколько поглощается в газово-пылевой среде, заполняющей межзвездное пространство, и в земной атмосфере. Вся энергия, проходящая в единицу времени через замкнутую поверхность, окружающую данный источник излучения, называется его светимостью. Поток излучения (а также освещенность) могут характеризовать излучение во всем спектре (полный или интегральный поток) или в каком-то определенном его участке. Если этот участок очень узок, то излучение, а вместе с ним и поток, называют монохроматическим. В последнем случае мощность излучения должна быть отнесена к единичному интервалу частот (1 гц) или длин волн (1 см). Таким образом, размерность интегральной освещенности - эрг/см2Ч сек или вт/м2, а монохроматической - эрг/см3Ч сек и эрг/см2, или вт/м2Ч гц соответственно в шкалах длин волн и частот. Излучение светящейся поверхности в данном направлении характеризуется яркостью. Яркостью называется поток излучения, который проходит через перпендикулярную к данному направлению единичную площадку, соприкасающуюся с излучающей поверхностью, и заключен внутри единичного телесного угла в том же направлении. Это определение можно распространить на поле излучения в любой точке пространства. Тогда вместо термина яркость иногда употребляют термин интенсивность.

Если элемент светящейся поверхности S (рис. 85) излучает поток F внутри конуса К, с телесным углом W, ось которого L составляет угол j с нормалью n к S, то такой же поток пройдет и через перпендикулярную к лучу зрения площадку s = S cos j , и яркость

(7.4)

Существует важное соотношение между освещенностью, создаваемой некоторой светящейся поверхностью в данном месте, ее размерами и яркостью. Предположим, что мы наблюдаем объект S, который находится на расстоянии r и проектируется на небесную сферу в площадку s (рис. 86). Пусть яркость его равна В. Согласно определению яркости это означает, что световой поток внутри конуса с телесным углом W = 1, создаваемый 1 см2 поверхности сг в направлении нормали, численно равен В. Поток Ф внутри того же конуса от всего объекта получится умножением яркости В на площадь проекции s , т.е. Ф = Вs . В месте наблюдения весь этот поток Вs распределится по поверхности S = Wг2, и так как телесный угол W = 1 стерадиану, то S = r2. Поэтому наблюдаемая освещенность

(7.5)

Но т.е. телесному углу, под которым на небе виден объект. Поэтому

Е = Bw .(7.6)

Следовательно, максимальная освещенность, создаваемая некоторым объектом в месте наблюдения, равна его средней яркости, умноженной на телесный угол, под которым он виден на небе. Этот вывод дает простой метод определения яркости протяженных объектов с помощью телескопа и установленного в его фокусе приемника излучения, так как телесный угол со равен площади s изображения объекта, получающегося в фокальной плоскости телескопа, деленной на квадрат его фокусного расстояния F (т.е. ), а освещенность Е измеряется потоком излучения, прошедшим через объектив, деленным на площадь отверстия телескопа. Многие светила (например, звезды) так далеки от нас, что даже в самые крупные инструменты невозможно определить их угловые размеры. Такие объекты называются точечными. Пока их угловые размеры не определены какими-нибудь специальными методами, освещенность, которую они создают на Земле, является для нас единственной величиной, характеризующей мощность их излучения. Для точечных объектов, например, звезд, угловые размеры которых не удается измерить непосредственным путем, нельзя также определить и яркость. Можно наблюдать лишь поток излучения от них или создаваемую ими освещенность. В астрономии эту освещенность принято измерять в специальной логарифмической шкале - звездных величинах (этот термин никак не характеризует размеров звезд!). За интервал в 1 звездную величину (обозначается 1m) принято отношение освещенностей в 2,512... раза. Это число выбрано для удобства так, чтобы его десятичный логарифм в точности равнялся 0,4, а интервал в 5m соответствовал бы отношению в 100 раз. Условились, что звезды, освещенности от которых меньше, имеют большую звездную величину. Таким образом, освещенности от объектов .. -Зm, -2m, -1m 0m, 1m, 2m, Зm, ... образуют бесконечную убывающую геометрическую прогрессию со знаменателем 2,512.


  • :
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56