ModernLib.Net

ModernLib.Net / / - (. 51)
:
:

 

 


Их спектральные характеристики показаны на рис. 113. Фотокатоды для длин волн, превышающих 12 500 Е, отсутствуют. Из-за малой работы выхода фотокатод эмитирует не только фотоэлектроны, но и термоэлектроны, т.е. такие, которые из-за тепловых движений приобрели энергию, превышающую работу выхода, и смогли покинуть фотокатод. Они образуют термоэлектронный темновой ток, который мешает измерению слабых фототоков. Простые фотоэлементы с внешним фотоэффектом применяются сейчас сравнительно редко. На смену им пришли более сложные фотоэлектрические приемники фотоумножители (ФЭУ). В этих приборах используется явление вторичной электронной эмиссии: электрон, обладающий достаточной энергией и разогнанный электрическим полем, попав на поверхность с малой работой выхода, может выбить несколько электронов. Таким образом, с помощью вторичной электронной эмиссии можно получить усиление фототока. Между фотокатодом (F) и анодом (A) в ФЭУ (рис. 114) имеется некоторое количество вторичноэлектронных эмиттеров - динодов (Д1 , Д2 и т.д.). Форма и расположение всех

электронов ФЭУ, а также приложенные к ним напряжения таковы, что фотоэлектрон, вырвавшийся из фотокатода, попадает на первый динод и выбивает из него несколько электронов, которые затем попадают на второй динод и выбивают соответственно еще большее количество электронов и т.д. В результате каждый фотоэлектрон приводит к образованию лавины вторичных электронов (до 108-109) на аноде. После фотоумножителя ставится либо прибор, измеряющий средний анодный ток, либо прибор, считающий отдельные импульсы, из которых состоит анодный ток. Поскольку каждый импульс соответствует отдельному фотоэлектрону, последний способ называется методом счета электронов. Так же как и в фотоэлементах, в фотоумножителях имеется фон темнового тока, мешающий измерениям слабых световых потоков.

Фотометрические приборы, в которых в качестве приемника света используется фотоэлемент или фотоумножитель, называются электрофотометрами. На рис. 115 приведена упрощенная схема звездного электрофотометра - прибора для фотоэлектрического измерения звездных величин: а - диафрагма, которая находится в фокусе телескопа; б - выдвижной окуляр с призмой для наведения на звезду; в радиоактивный люминофор, который служит для контроля постоянства чувствительности; с - светофильтр; л - линза поля, которая проектирует на фотокатод изображение объектива телескопа; Ф - фотоумножитель; Б1 - блок питания фотоумножителя; У - усилитель; Б2 - блок питания усилителя; Э - самопишущий электроизмерительный прибор, регистрирующий показания на движущейся бумажной ленте. Наблюдатель в процессе измерений несколько раз вводит звезду в диафрагму и выводит ее. Когда звезды нет, прибор записывает отсчет от фона неба, обусловленного свечением верхней атмосферы. Этот отсчет пропорционален площади диафрагмы, поэтому диафрагму стараются брать поменьше. Когда звезда находится в диафрагме, прибор записывает суммарный отсчет от фона и звезды и при обработке наблюдатель берет разность обоих отсчетов. Сравнивая отсчеты n1 и n2 от разных звезд, можно определить разность звездных величин, и по известной звездной величине m1 одной звезды вычислить звездную величину m2 другой звезды. Чтобы исключить влияние атмосферы, надо либо сравнивать звезды, находящиеся на одном зенитном расстоянии, либо определить из специальных наблюдений коэффициент прозрачности атмосферы. Если звезды не очень слабые, то с помощью звездного электрофотометра можно получить точность 0m,005-0m,01. Пользуясь светофильтрами, можно электрофотометром определить цветовые характеристики звезд, а если ввести в оптический путь поляризационный анализатор, то можно измерять с высокой точностью степень поляризации света звезд. В последнее время в астрономических наблюдениях все шире применяются преобразователи изображения - электоонно-оптические преобразователи (ЭОП) и телевизионные системы. Электронно-оптический преобразователь (рис. 116) состоит из фотокатода Ф, электронной линзы Л и экрана Э, люминесцирующего под действием электронов.

Электронная линза представляет собой положительно заряженный электрод, который разгоняет электроны до сравнительно большой энергии и заставляет их двигаться по строго определенным траекториям, так что фотоэлектрон, выбитый из какой-либо точки катода, попадает в только ей соответствующую точку экрана, и на экране образуется изображение такое же, как на фотокатоде, только более яркое. Благодаря большому квантовому выходу фотокатодов, ЭОП позволяет в принципе регистрировать изображения с более короткими экспозициями, чем обычная фотография. Особенно большой выигрыш в экспозиции дают ЭОП с кислородно-цезиевыми катодами (из-за низкой чувствительности эмульсий в инфракрасной области спектра). Телевизионные системы с чувствительными телевизионными трубками в принципе также позволяют регистрировать очень слабые изображения, причем может быть получено большое усиление контраста. Однако такие системы более сложны, и в астрономическую практику внедряются медленно. В инфракрасной области спектра (l > 1 мк) для регистрации излучения используются главным образом фотосопротивления - пленочные слои или кристаллы определенных полупроводниковых веществ, концентрация или подвижность носителей заряда в которых возрастает при облучении. Это явление называется фотопроводимостью и может быть использовано для регистрации излучения вплоть до миллиметрового диапазона. Красная граница спектральной характеристики фотосопротивления определяется конкретной природой материала. Фотосопротивления, чувствительные в инфракрасной области спектра, как правило, требуют охлаждения до низкой температуры. Высокая чувствительность в инфракрасной области может быть получена также с помощью некоторых типов болометров, охлаждаемых жидким гелием. Болометры принадлежат к классу тепловых приемников, действие которых основано на увеличении температуры при поглощении излучения. В болометрах используется зависимость электрического сопротивления от температуры. К классу тепловых приемников относятся также термопары, в которых используется термоэлектрический эффект, и оптико-акустические преобразователи (ОАП), в которых излучение поглощается в некотором газовом объеме, нагревает его и расширяет. Термопары и ОАП работают без охлаждения и годятся только для измерения сравнительно больших потоков излучения. Все тепловые приемники имеют перед фотоэлектрическими то преимущество, что их чувствительность в принципе не зависит от длины волны, т.е. они не селективны. В приборах, установленных на искусственных спутниках, для регистрации рентгеновского излучения используются счетчики Гейгера, сцинтилляционные счетчики и фотоумножители с особыми фотокатодами. Счетчики Гейгера представляют собой колбу с двумя электродами, наполненную некоторым газом, ионизующимся под действием рентгеновского излучения, и имеющую прозрачное для него окно. Рентгеновский квант, пройдя через газ, образует пару ион - электрон, они ускоряются в электрическом поле между электродами, сталкиваются с нейтральными молекулами, ионизуют их, и в результате образуется лавина ионов и электронов, которая регистрируется в виде импульса тока. Каждый импульс соответствует одному кванту. Сцинтилляционный счетчик состоит из сцинтиллятора - пластины вещества, которое дает световую вспышку при попадании рентгеновского кванта, - и фотоумножителя, который эту вспышку регистрирует. Разработаны фотоумножители, катоды которых непосредственно воспринимают рентгеновские кванты. В этом случае сцинтиллятор не нужен. Сцинтилляционные счетчики специальных типов используются и для обнаружения гамма-квантов при энергиях меньше 30 Мэв. При энергиях более 30 Мэв гамма-кванты образуют при взаимодействии с веществом электронно-позитронные пары, которые могут регистрироваться ионизационными камерами и ядерными эмульсиями. Если энергия кванта больше 1000 Мэв, то образованная им электронно-позитронная пара вызывает достаточно яркую вспышку при движении в атмосфере, которая может быть обнаружена специально сконструированным наземным телескопом. Эта вспышка объясняется оптическим эффектом, открытым акад. П.А. Черенковым: электрон или позитрон, имеющий скорость большую, чем скорость распространения света в некоторой среде (она всегда меньше, чем скорость света в пустоте), излучает световую энергию. Это излучение сконцентрировано в довольно узком угле, и, наблюдая его, можно определить направление прихода пары и породившего ее кванта.

§ 114. Спектральные приборы

В главе VII было показано, как, изучая спектры небесных светил, можно получить сведения об их химическом составе, температуре, давлении, вращении и т.д. Ниже мы рассмотрим основные типы спектральных приборов, применяемых в астрономии. Впервые спектры звезд и планет начал наблюдать в прошлом веке итальянский астроном Секки. После его работ спектральным анализом занялись многие другие астрономы. Вначале использовался визуальный спектроскоп, потом спектры стали фотографировать, а сейчас применяется также и фотоэлектрическая запись спектра. Спектральные приборы с фотографической регистрацией спектра обычно называют спектрографами, а с фотоэлектрической - спектрометрами.

На рисунке 117 дана оптическая схема призменного спектрографа. Перед призмой находятся щель и объектив, которые образуют коллиматор. Коллиматор посылает на призму параллельный пучок лучей. Коэффициент преломления материала призмы зависит от длины волны. Поэтому после призмы параллельные пучки, соответствующие различным длинам волн, расходятся под разными углами, и второй объектив (камера) дает в фокальной плоскости спектр, который фотографируется. Если в фокальной плоскости камеры поставить вторую щель, то спектрограф превратится в монохроматор. Перемещая вторую щель по спектру или поворачивая призму, можно выделять отдельные более или менее узкие участки спектра. Если теперь за выходной щелью монохроматора поместить фотоэлектрический приемник, то получится спектрометр. В настоящее время наряду с призменными спектрографами и спектрометрами широко применяются дифракционные. В этих приборах вместо призмы диспергирующим (т.е. разлагающим на спектр) элементом является дифракционная решетка. Наиболее часто используются отражательные дифракционные решетки. Отражательная решетка представляет собой алюминированное зеркало, на котором нанесены параллельные штрихи. Расстояние между штрихами и их глубина сравнимы с длиной волны. Например, дифракционные решетки, работающие в видимой области спектра, часто делаются с расстоянием между штрихами 1,66 мк (600 штрихов на 1 мм). Штрихи должны быть прямыми и параллельными друг другу по всей поверхности решетки, и расстояние между ними должно сохраняться постоянным с очень высокой точностью. Изготовление дифракционных решеток поэтому является наиболее трудным из оптических производств. Получая спектр с помощью призмы, мы пользуемся явлением преломления света на границе двух сред. Действие дифракционной решетки основано на явлениях другого типа - дифракции и интерференции света. Не объясняя в деталях принцип работы дифракционной решетки (он изучается в курсе физики), мы заметим лишь, что она дает, в отличие от призмы, не один, а несколько спектров. Это приводит к определенным потерям света по сравнению с призмой. В результате применение дифракционных решеток в астрономии долгое время ограничивалось исследованиями Солнца. Указанный недостаток был устранен американским оптиком Вудом. Он предложил придавать штрихам решетки определенный профиль, такой, что большая часть энергии концентрируется в одном спектре, в то время как остальные оказываются сильно ослабленными. Такие решетки называются направленными или эшелеттами. Основной характеристикой спектрального прибора является спектральная разрешающая сила где Dl - минимальный промежуток между двумя близкими линиями, при котором они регистрируются как раздельные. Чем больше разрешающая сила, тем более детально может быть исследован спектр и тем больше информации о свойствах излучающего объекта может быть в результате получено. Спектральные аппараты с направленными дифракционными решетками, при прочих равных условиях, могут обеспечить более высокую разрешающую силу, чем призменные. Другой важной характеристикой спектральных аппаратов является угловая дисперсия

(8.11)

где Da - угол между параллельными пучками, прошедшими диспергирующий элемент и различающимися по длине волны на Dl . Величина

(8.12)

где f - фокусное расстояние камеры, называется линейной дисперсией, которая выражает масштаб спектра в фокальной плоскости камеры и обозначается либо в миллиметрах на ангстрем, либо (для малых дисперсий) в ангстремах на миллиметр Так, дисперсия спектрографа 250 Е/мм, означает, что один миллиметр на спектрограмме соответствует интервалу длин волн Dl = 250 Е. Особенности оптической схемы и конструкции астрономических спектральных приборов сильно зависят от конкретного характера задач, для которых они предназначены. Спектрографы, построенные для получения звездных спектров (звездные спектрографы), заметно отличаются от небулярных, с которыми исследуются спектры туманностей. Солнечные спектрографы тоже имеют свои особенности. Мы не будем обсуждать здесь этих различий подробно, отметим лишь, что реальная разрешающая сила астрономических приборов зависит от свойств объекта. Если объект слабый, т.е. от него приходит слишком мало света, то его спектр нельзя исследовать очень детально, так как с увеличением разрешающей силы количество энергии, приходящейся на каждый разрешаемый элемент спектра, уменьшается. Поэтому самую высокую разрешающую силу имеют, естественно, солнечные спектральные приборы. У больших солнечных спектрографов она достигает 106. Линейная дисперсия этих приборов достигает 10 мм/Е (0,1 Е/мм). При исследовании наиболее слабых объектов приходится ограничиваться разрешающей силой порядка 100 или даже 10 и дисперсиями ~1000 Е/мм. Например, спектры слабых звезд получаются с помощью объективной призмы, которая является. простейшим астрономическим спектральным прибором. Объективная призма ставится прямо перед объективом телескопа, и в результате изображения звезд растягиваются в спектр. Камерой служит сам телескоп, а коллиматор не нужен, поскольку свет от звезды приходит в виде параллельного пучка. Такая конструкция делает минимальными потери света из-за поглощения в приборе. На рис. 118 приведена фотография звездного поля, полученная с объективной призмой.

Грубое представление о спектральном составе излучения можно получить с помощью светофильтров. В фотографической и визуальной областях спектра часто применяют светофильтры из окрашенного стекла. На рис. 119 приведены кривые, показывающие зависимость пропускания от длины волны для некоторых светофильтров, комбинируя которые с тем или иным приемником, можно выделить участки не уже нескольких сотен ангстрем. В светофильтрах из окрашенного стекла используется зависимость поглощения (абсорбции) света от длины волны. Светофильтры этого типа называются абсорбционными. Известны светофильтры, в которых выделение узкого участка спектра основано на интерференции света. Они называются интерференционными и могут быть сделаны довольно узкополосными, позволяющими выделить участки спектра шириной в несколько десятков ангстрем. Еще более узкие участки спектра (шириной около 1 Е) позволяют выделять интерференционно-поляризационные светофильтры. С помощью узкополосных светофильтров можно получить изображение объекта в каком-либо интересном участке спектра например, сфотографировать солнечную хромосферу в лучах Нa , (красная линия в бальмеровской серии спектра водорода), солнечную корону в зеленой и красной линиях, газовые туманности в эмиссионных линиях.

Для солнечных исследований разработаны приборы, которые позволяют получить монохроматическое изображение в любой длине волны. Это - спектрогелиограф и спектрогелиоскоп. Спектрогелиограф представляет собой монохроматор, за выходной щелью которого находится фотографическая кассета. Кассета движется с постоянной скоростью в направлении, перпендикулярном к выходной щели, и с такой же скоростью в плоскости выходной щели перемещается изображение Солнца. Легко понять что в этом случае на фотографической пластинке получится изображение Солнца в заданной длине волны, называемое спектрогелиограммой. В спектрогелиоскопе, перед выходной щелью и после выходной щели устанавливаются вращающиеся призмы с квадратным сечением. В результате вращения первой призмы некоторый участок солнечного изображения периодически перемещается в плоскости входной щели. Вращение обеих призм согласовано, и если оно происходит достаточно быстро то, наблюдая в зрительную трубу вторую щель, мы увидим мо-нохроматическое изображение Солнца.


  • :
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56