ModernLib.Net / / -
(. 17)
:
|
|
:
|
|
-
(2,00 )
- fb2
(311 )
- doc
(1 )
- txt
(1 )
- html
(1 )
- :
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56
|
|
Но здесь большую роль может играть наблюдательная селекция, так как вероятность разрушения метеорита при лобовой встрече с Землей (обратное движение) гораздо больше, чем при вторжении догоняющего тела.
Когда метеоритное тело входит в плотные слои атмосферы, его поверхность настолько нагревается, что вещество поверхностного слоя начинает плавиться и испаряться. Воздушные струи сдувают с поверхности железных метеоритов крупные капли расплавленного вещества, причем следы этого сдувания остаются в виде характерных выемок (рис. 189). Каменные метеориты часто дробятся, и тогда на поверхность Земли низвергается целый дождь обломков самых разнообразных размеров. Железные метеориты прочнее, но и они иногда разрушаются на отдельные куски. Один из крупнейших железных метеоритов, Сихотэ-Алинский, упавший 12 февраля 1947 г., был найден в виде большого количества отдельных осколков (см. рис. 189). Общий вес собранных осколков достиг 23 т, причем, конечно, были найдены не все осколки. Наибольший из известных метеоритов, Гоба (Юго-Западная Африка), представляет собой глыбу весом в 60 т (рис. 190).
Большие метеориты, ударяясь о Землю, зарываются на значительную глубину. Однако космическая скорость обычно гасится в атмосфере на некоторой высоте и, затормозившись, метеорит падает по законам свободного падения. Что произойдет, если с Землей столкнется еще большая масса, например 105-108 т? Такой гигантский метеорит прошел бы сквозь атмосферу практически беспрепятственно, при его падении возник бы сильнейший взрыв и образовалась бы воронка (кратер). Если такие катастрофические явления когда-либо происходили, то мы должны находить метеоритные кратеры на земной поверхности. Подобные кратеры действительно существуют. Крупнейший из них - Аризонский кратер (рис. 191), воронка которого имеет диаметр 1200 м и глубину около 200 м. Его возраст по приблизительной оценке составляет около 5000 лет. Недавно был открыт еще целый ряд более древних и разрушенных метеоритных кратеров. Химический состав метеоритов хорошо исследован. Железные метеориты содержат в среднем 91% железа, 8,5% никеля и 0,6% кобальта; каменные метеориты - 36% кислорода, 26% железа, 18% кремния и 14% магния. Каменные метеориты по содержанию кислорода и кремния близки к земной коре, но металлов в них гораздо больше. Содержание радиоактивных элементов в метеоритах меньше, чем в земной коре, причем в железных меньше, чем в каменных. Химические соединения, присутствующие в метеоритах, и их кристаллическая структура по-казывают, что метеоритное вещество сформировалось в условиях высоких давлений, и температур. Это означает, что метеориты входили когда-то в состав крупных тел, имевших большие размеры. По относительному содержанию радиоактивных элементов и продуктов их распада можно определить возраст метеоритов. Для разных образцов он получается различным и колеблется обычно в пределах от нескольких сотен миллионов до нескольких миллиардов лет.
§ 144. Зодиакальный свет и противосияние
Весной и осенью, в месяцы, когда в южных широтах Земли эклиптика после захода Солнца или перед его восходом очень высоко поднимается над горизонтом, в безлунную ночь можно наблюдать зодиакальный свет. Он представляет собой светлый треугольник, вытянутый вдоль эклиптики и расширяющийся в сторону Солнца (рис. 192). Яркость его постепенно падает с увеличением расстояния от Солнца (элонгации). При элонгации в 90-100° зодиакальный свет почти невозможно различить, и только при очень темном небе удается иногда заметить зодиакальную полосу - небольшое увеличение яркости неба вдоль эклиптики. При элонгации в 180°, в области неба, противоположной Солнцу ("антисолнечная" область), яркость зодиакальной полосы несколько возрастает, и здесь можно заметить небольшое туманное пятно диаметром около десяти градусов. Оно называется противосиянием.
Зодиакальный свет и противосияние представляют собой эффект рассеяния солнечного излучения межпланетной пылевой материей, подавляющее большинство частиц которой имеет размеры в несколько микрон. Возможно, что эти пылевые частицы возникают в результате разрушения астероидов и комет и постепенного дробления их остатков. Межпланетная пыль образует облако, уплощенное к эклиптике. Некоторые исследователи предполагали еще недавно, что в межпланетном пространстве, кроме пылевой материи, имеется ионизованный газ с концентрацией ионов около 103 см -3 . В этом случае зодиакальный свет можно было бы частично объяснить рассеянием на электронах (как в солнечной короне). При рассеянии на электронах должна быть сильная поляризация, и зодиакальный свет действительно поляризован. Однако прямые эксперименты, проведенные с помощью ионных ловушек, установленных на советских космических ракетах, показали, что концентрация ионизованного газа в межпланетном пространстве не может превышать 100 см -3 по крайней мере в отсутствие сильных корпускулярных потоков. По-видимому, в обычных условиях рассеяние на электронах не дает заметного вклада в зодиакальный свет, и наблюдаемая поляризация возникает при рассеянии на межпланетных пылинках. Отмечалось, однако, что яркость зодиакального света иногда увеличивается после сильных солнечных вспышек. Это увеличение может быть связано с рассеянием солнечного излучения на электронах корпускулярных потоков.
1. НОРМАЛЬНЫЕ ЗВЕЗДЫ
Звезды - наиболее распространенные объекты во Вселенной. Более 98% массы космического вещества сосредоточено в этих газовых шарах; остальная часть его рассеяна в межзвездном пространстве. С эволюцией звезд связано образование многих химических элементов. Поэтому звезды представляют интерес не только как космические объекты, являющиеся важным элементом структуры Вселенной, но и как тела, эволюция которых - важное звено в эволюции материи. Основные свойства звезды определяются прежде всего ее массой, светимостью и радиусом. С точки зрения наблюдений первоочередная задача состоит в определении этих величин и в выяснении индивидуальных особенностей отдельных звезд, а также различных групп звезд. Методы теоретической астрофизики позволяют найти физические условия в атмосферах и недрах звезд и проследить их эволюцию. Звезды отличаются весьма большим разнообразием. Однако среди них можно выделить отдельные группы звезд, обладающих общими свойствами. Такое разделение необходимо для изучения всего множества существующих звезд. Особенно интересны те из подобных групп, члены которых, например, отличаются нестационарностью или совершают пульсации, взрываются и т.д. Как правило, наличие таких особенностей позволяет сделать важные выводы не только о природе отдельных звезд, но и в ряде случаев о более общих закономерностях Вселенной. Звезды, не обладающие указанными особыми свойствами, называются нормальными. Естественно начать изучение звезд именно с них.
§ 145. Спектры нормальных звезд и спектральная классификация
Изучение нормальных звезд позволяет найти физически обоснованные принципы классификации всех звезд. Уже при первом знакомстве со звездным небом обращает на себя внимание различие звезд по цвету. Гораздо сильнее это различие выявляется при рассмотрении спектров. Как правило, звезды имеют непрерывный спектр, на который накладываются спектральные линии, чаще всего поглощения. В спектрах некоторых звезд наблюдаются яркие (эмиссионные) линии. Важнейшие различия спектров звезд заключаются в количестве и интенсивности наблюдаемых спектральных линий, а также в распределении энергии в непрерывном спектре. Спектральная классификация начала разрабатываться еще до того, как было объяснено возникновение звездных спектров. При этом сразу же стало ясно, что важнейшие их особенности связаны с различием физических свойств звезд. Спектры большинства звезд эмпирически удалось расположить в виде последовательности, вдоль которой линии одних химических элементов постепенно ослабевают, а других - усиливаются. Сходные между собой спектры объединяются в спектральные классы. Тонкие различия между ними позволяют выделить подклассы. Дальнейшие исследования показали, что звезды, принадлежащие различным спектральным классам, отличаются своими температурами. Интенсивности некоторых спектральных линий в спектрах звезд настолько чувствительны к температуре, что, грубо говоря, ее можно оценить "на глаз" по одному только внешнему виду спектрограммы, не производя специальных фотометрических измерений. Количественным критерием принадлежности звезды к тому или иному спектральному классу или подклассу является отношение интенсивностей определенных спектральных линий. Этот принцип спектральной классификации впервые был удачно применен в начале этого столетия на Гарвардской обсерватории. Гарвардская классификация звезд легла в основу современной спектральной классификации. В Гарвардской классификации спектральные типы (классы) обозначены буквами латинского алфавита: О, В, A, F, G, К и М. Поскольку в эпоху разработки этой классификации связь между видом спектра и температурой не была еще известна, то после установления соответствующей зависимости пришлось изменить порядок спектральных классов, который первоначально совпадал с алфавитным расположением букв. Перейдем к описанию спектральных классов, примеры которых приведены на рис. 193. Спектры большинства звезд характеризуются наличием линий поглощения. Класс О. О высокой температуре звезд этого класса можно судить по большой интенсивности ультрафиолетовой области непрерывного спектра, вследствие чего свет этих звезд кажется голубоватым. Наиболее интенсивны линии ионизованного гелия и многократно ионизованных некоторых других элементов (углерода, кремния, азота, кислорода). Наблюдаются слабые линии нейтрального гелия и водорода. Класс В. Линии нейтрального гелия достигают наибольшей интенсивности. Хороню видны линии водорода и некоторых ионизованных элементов. Цвет голубовато-белый. Типичная звезда - a Девы (Спика).
Класс А. Линии водорода достигают наибольшей интенсивности. Хорошо видны линии ионизованного кальция, наблюдаются слабые линии других металлов. Цвет звезд белый. Типичные звезды: a Лиры (Вега) и a Большого Пса (Сириус). Класс F. Линии водорода становятся слабее. Усиливаются линии ионизованных металлов (особенно кальция, железа, титана). Цвет слегка желтоватый. Типичная звезда - a Малого Пса (Процион). Класс G. Водородные линии не выделяются среди многочисленных линий металлов. Очень интенсивны линии ионизованного кальция. Цвет звезды желтый. Типичный пример - Солнце. Класс К. Линии водорода не заметны среди очень интенсивных линий металлов. Фиолетовый конец непрерывного спектра заметно ослаблен, что свидетельствует о сильном уменьшении температуры по сравнению с ранними классами (О, В, А). Цвет звезды красноватый, как, например, у a Волопаса (Арктур) и a Тельца (Альдебаран). Класс М. Красные звезды. Линии металлов ослабевают. Спектр пересечен полосами поглощения молекул окиси титана и других молекулярных соединений. Типичная звезда - a Ориона (Бетельгейзе). Кроме этих основных классов существуют дополнительные, являющиеся ответвлениями от классов G и К и представляющие собой звезды с аномальным химическим составом, отличающимся от химического состава большинства других звезд. Первое ответвление происходит от класса G и содержит "углеродные" звезды: Класс С, отличающийся от классов К и М наличием линий поглощения атомов и полос поглощения молекул углерода. Второе ответвление происходит от класса К и содержит "циркониевые" звезды: Класс S. Звезды этого класса отличаются от звезд класса М тем, что вместо полос окиси титана TiO присутствуют полосы окиси циркония (ZrO). Таким образом, все перечисленные спектральные классы схематически можно расположить следующим образом:
C
|
O-B-A-F-G-K-M.
|
S
Внутри каждого спектрального класса можно установить плавную последовательность подклассов, переходящих из одного в другой. Каждый класс (кроме класса О) делится на 10 подклассов, обозначаемых цифрами от 0 до 9, которые ставятся после обозначения спектрального класса, например, В8, А0, G5. Спектральный класс О подразделяется на подклассы от O5 до O9,5. После таких обозначений ставятся дополнительные значки, если спектр звезды обладает теми или иными особенностями. Если в нем присутствуют эмиссионные линии, то это обозначается буквой е. Так, В5е означает звезду класса В5 с эмиссионными линиями в спектре. Звезды-сверхгиганты часто отличаются глубокими узкими линиями; это отмечается буквой с (с - характеристика перед названием класса: cF0). Другие особенности в спектре звезды, не типичные для данного спектрального класса, отмечаются буквой р (peculiar) - пекулярные, т.е. особенные спектры. Буква р ставится после названия класса (А5р).
§ 146. Основы колориметрии
Наиболее полной информацией об излучении звезды является распределение энергии в ее спектре, выраженное в абсолютных энергетических единицах, как это удается получить для Солнца (см. § 118). Однако достаточно точные спектрофотометрические измерения можно осуществить лишь для сравнительно небольшого числа звезд, поток излучения от которых наибольший. В тех случаях, когда это удается сделать, оказывается, что звезды излучают не по закону Планка, причем нередко отличие сильнее, чем в случае Солнца. Для слабых звезд, излучение которых удается зарегистрировать лишь в широком участке спектра, единственным источником информации остается поток излучения, определяющий их звездные величины. Некоторое представление о распределении энергии в спектре звезд можно получить, если измерять поток их излучения в различных частях спектра, пользуясь светофильтрами. Так получаются различные системы звездных величин, понятие о которых было введено в § 103. Звездные величины, полученные в результате применения визуальных фотометров или путем глазомерных оценок, называются визуальными. До изобретения фотографин и применения ее в астрономии визуальные методы определения звездных величин были единственным способом фотометрии звезд. Сейчас этот метод играет меньшую роль, хотя его и применяют при исследовании переменных звезд. Звездные величины, которые получаются методом фотометрических измерений изображений звезд, полученных на несенсибилизированной фотоэмульсии, называются фотографическими звездными величинами. Звездные величины, которые получаются методом фотометрических измерений изображений звезд, полученных на ортохроматических или изоортохроматических эмульсиях со специальным желтым светофильтром, называются фотовизуальными. Поскольку спектральная чувствительность сенсибилизированной фотоэмульсии в сочетании с определенным желтым светофильтром может быть сделана близкой к спектральной чувствительности глаза, эта комбинация используется для того, чтобы получающаяся в результате система звездных величин была близка к результатам глазомерных определений. Наиболее точные современные определения потока излучения от звезд получаются фотоэлектрическими или фотографическими методами с применением специально подобранных светофильтров в новой международной системе U, В, V, что соответствует измерению потока в трех участках спектра: ультрафиолетовой (U), синей (В) и желтой (визуальной - V). Существуют и другие многоцветные фотометрические системы, включающие, например, измерения в красной или инфракрасной областях спектра. Для определения звездных величин/в данной системе (при соответствующей комбинации светофильтра и приемника излучения) сравниваются световые потоки от исследуемых звезд и от звезд сравнения, принятых в качестве стандартов. Помимо этого необходимо еще исследовать саму систему, т.е. лабораторным путем найти ту область спектра, которая фактически используется в рассматриваемой системе. Результаты звездной фотометрии, полученные в различных фотометрических системах, с успехом могут быть использованы наряду со спектральной классификацией для определения температур звезд. Это основано на том факте, что положение максимума на кривой распределения энергии в спектре звезды, т.е. фактически ее цвет, зависит от температуры. Как правило, закон Планка неприменим к излучению звезд. Поэтому соответствующая зависимость далеко не такая простая, как закон Вина (7.21), и ее можно найти только путем специальных исследовании. выполняемых отдельно для звезд различных типов. Обычно рассматривают не длину волны максимума излучения, а некоторую объективную характеристику цвета звезды, называемую показателем цвета, и устанавливают эмпирическую зависимость ее от эффективной температуры, характеризующей, как мы помним, суммарную энергию излучения звезды. Судить о цвете можно, сравнивая потоки излучения в различных областях спектра. Поэтому показатель цвета определяется как разность между звездными величинами, измеренными в двух каких-либо фотометрических системах, например, фотографической и фотовизуальной. В этом случае показатель цвета (соlor index) равен
: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56
|
|