ModernLib.Net

()

ModernLib.Net / / / () - (. 10)
:
:

 

 


Богатые углеродом сплавы (свыше 2% по массе) - чугуны, выплавляют в доменных печах из обогащенных железных руд (см. Доменное производство ). Сталь различных марок (содержание углерода менее 2% по массе) выплавляют из чугуна в мартеновских и электрических печах и конвертерах путём окисления (выжигания) излишнего углерода, удаления вредных примесей (главным образом S, Р, О) и добавления легирующих элементов (см. Мартеновская печь, Конвертер). Высоколегированные стали (с большим содержанием никеля, хрома, вольфрама и др. элементов) выплавляют в электрических дуговых и индукционных печах. Для производства сталей и сплавов Ж. особо ответственного назначения служат новые процессы - вакуумный, электрошлаковый переплав, плазменная и электронно-лучевая плавка и др. Разрабатываются способы выплавки стали в непрерывно действующих агрегатах, обеспечивающих высокое качество металла и автоматизацию процесса.

  На основе Ж. создаются материалы, способные выдерживать воздействие высоких и низких температур, вакуума и высоких давлений, агрессивных сред, больших переменных напряжений, ядерных излучений и т. п. Производство Ж. и его сплавов постоянно растет. В 1971 в СССР выплавлено 89,3 млн. тчугуна и 121 млн. тстали.

  Л. А. Шварцман, Л. В. Ванюкова.

 Железо как художественный материал использовалось с древности в Египте (подставка для головы из гробницы Тутанхамона около Фив, середина 14 в. до н. э., Музей Ашмола, Оксфорд), Месопотамии (кинжалы, найденные около Кархемиша, 500 до н. э., Британский музей, Лондон), Индии (железная колонна в Дели, 415). Со времён средневековья сохранились многочисленные высокохудожественные изделия из Ж. в странах Европы (Англии, Франции, Италии, России и др.) - кованые ограды, дверные петли, настенные кронштейны, флюгера, оковки сундуков, светцы. Кованые сквозные изделия из прутьев и изделия из просечного листового Ж. (часто со слюдяной подкладкой) отличаются плоскостными формами, чётким линейно-графическим силуэтом и эффектно просматриваются на свето-воздушном фоне. В 20 в. Ж. используется для изготовления решёток, оград, ажурных интерьерных перегородок, подсвечников, монументов.

  Т. Л.

 Железо в организме. Ж. присутствует в организмах всех животных и в растениях (в среднем около 0,02%); оно необходимо главным образом для кислородного обмена и окислительных процессов. Существуют организмы (т. н. концентраторы), способные накапливать его в больших количествах (например, железобактерии-до 17-20% Ж.). Почти всё Ж. в организмах животных и растений связано с белками. Недостаток Ж. вызывает задержку роста и явления хлороза растений,связанные с пониженным образованием хлорофилла.Вредное влияние на развитие растений оказывает и избыток Ж., вызывая, например, стерильность цветков риса и хлороз. В щелочных почвах образуются недоступные для усвоения корнями растений соединения Ж., и растения не получают его в достаточном количестве; в кислых почвах Ж. переходит в растворимые соединения в избыточном количестве. При недостатке или избытке в почвах усвояемых соединений Ж. заболевания растений могут наблюдаться на значительных территориях (см. Биогеохимические провинции ).

  В организм животных и человека Ж. поступает с пищей (наиболее богаты им печень, мясо, яйца, бобовые, хлеб, крупы, шпинат, свёкла). В норме человек получает с рационом 60-110 мгЖ., что значительно превышает его суточную потребность. Всасывание поступившего с пищей Ж. происходит в верхнем отделе тонких кишок, откуда оно в связанной с белками форме поступает в кровь и разносится с кровью к различным органам и тканям, где депонируется в виде Ж.- белкового комплекса - ферритина. Основное депо Ж. в организме - печень и селезёнка. За счёт Ж. ферритина происходит синтез всех железосодержащих соединений организма: в костном мозге синтезируется дыхательный пигмент гемоглобин,в мышцах - миоглобин,в различных тканях цитохромы и др. железосодержащие ферменты. Выделяется Ж. из организма главным образом через стенку толстых кишок (у человека около 6-10 мгв сутки) и в незначительной степени почками. Потребность организма в Ж. меняется с возрастом и физическим состоянием. На 1 кг веса необходимо детям - 0,6, взрослым - 0,1 и беременным - 0,3 мгЖ. в сутки. У животных потребность в Ж. ориентировочно составляет (на 1 кгсухого вещества рациона): для дойных коров - не менее 50 мг,для молодняка - 30-50 мг,для поросят - до 200 мг,для супоросных свиней - 60 мг.

  В. В. Ковальский.

 В медицине лекарственные препараты Ж. (восстановленное Ж., лактат Ж., глицерофосфат Ж., сульфат 2-валентного Ж., таблетки Бло, раствор яблочнокислого Ж., ферамид, гемостимулин и др.) используют при лечении заболеваний, сопровождающихся недостатком Ж. в организме (железодефицитная анемия), а также как общеукрепляющие средства (после перенесённых инфекционных заболеваний и др.). Изотопы Ж. ( 52Fe, 55Fe и 59Fe) применяют как индикаторы при медико-биологических исследованиях и диагностике заболеваний крови (анемии, лейкозы, полицитемия и др.).

  Лит.:Общая металлургия, М., 1967; Некрасов Б. В., Основы общей химии, т. 3, М., 1970; Реми Г., Курс неорганической химии, пер. с нем., т. 2, М., 1966; Краткая химическая энциклопедия, т. 2, М., 1963; Левинсон Н. Р., [Изделия из цветного и чёрного металла], в кн.: Русское декоративное искусство, т. 1-3, М., 1962-65; Вернадский В. И., Биогеохимические очерки. 1922-1932, М. - Л., 1940; Граник С., Обмен железа у животных и растений, в сборнике: Микроэлементы, пер. с англ., М., 1962; Диксон М., Уэбб Ф., ферменты, пер. с англ., М., 1966; Neogi P., Iron in ancient India, Calcutta, 1914; Friend J. N., Iron in antiquity, L.,1926; Frank E. B., Old French ironwork, Camb. (Mass.), 1950; Lister R., Decorative wrought ironwork in Great Britain, L., 1960.

Дверная ручка и дверная петля-жиковина. 17 в.

Шкатулка из Великого Устюга. 18 в. Русский музей. Ленинград.

Ворота ограды церкви Вознесения в Коломенском (ныне в черте Москвы). 17 в.

Канделябр из Каталонии. 15 в. Музей Кау Феррат. Барселона.

Флюгер с Владимирской башни Китай-города в Москве. Конец 17 в. Исторический музей. Москва.

Решётка ограды дома Челлеси в Ареццо. 17 в.

Цубы (пластины, отделяющие рукоятку меча от лезвия). 14-16 вв. Национальный музей. Токио.

Решетка ограды церкви Никиты Мученика в Москве. 18 в.

Л. П. Катаев, В. П. Смирнов. Памятник пяти большевикам, расстрелянным в 1918 белогвардейцами, на Острове Залита (Псковское озеро).1967.

Железо самородное

Желе'зо саморо'дное,по условиям нахождения различаются теллурическое, или земное железо (никель-железо), и метеоритное (космическое) Ж. с., всегда никелистое (камасит и тэнит). Теллурическое железо - редкий минерал, представляющий собой модификацию a-железа; обладает структурой объёмноцентрированного куба, кристаллизуется в кубической системе. Встречается в виде отдельных чешуек, зёрен, проволочных форм или губчатых масс и скоплений, достигающих веса нескольких т. Химический состав в основном ограничивается Fe и Ni, дающими твёрдые растворы с разрывом смесимости; различают т. н. ферриты с содержанием Ni до 3% и самородное никель-железо (аваруит, катаринит, октиббегит, джозефинит и др. разновидности) с содержанием Ni от 30 до 80%. Твёрдость по минералогической шкале от 4 до 5 (у Ni-железа); плотность ферритов 7300-7800 кг/м 3;у Ni-железа 7800-8200 кг/м 3. Цвет и блеск, как у металлического железа; у разновидностей Ni-железа цвет серебряно-белый. Сильно магнитно. В земной коре образуется и сохраняется редко. Известно в виде зёрен, губчатых скоплений в базальтовых породах (о. Диско, близ Гренландии; Кассель, ФРГ, и др.). Редко встречается в перидотитах и серпентинитах и очень редко в гранитах. Встречается в платиноносных россыпях, а также образуется в сидеритовых осадках, в каменных углях и в болотных железных рудах. Очень неустойчиво и легко переходит в гидроокиси железа. Метеоритное Ж. с. образуется в процессах формирования космических тел и попадает на Землю в виде метеоритов .

  Лит.:Минералы. Справочник, т.1, М., 1960.

 Г. П. Барсанов.

Железобактерии

Железобакте'рии,бактерии, способные окислять закисные соединения железа в окисные и использовать освобождающуюся при этом энергию на усвоение углерода из углекислого газа или карбонатов (см. Хемосинтез ). Окисление протекает следующим образом:

  4Fe (HCO 3) 2+ 6H 2O + O 2= 4Fe (OH) 3+ 4H 2CO 3+ 4CO 2.

  При этой реакции энергии выделяется немного, поэтому Ж. окисляют большое количество закисного железа. Из Ж. наиболее изучена в физиологическом и биохимическом отношении неспороносная подвижная палочка Thiobacillus ferrooxidans, окисляющая и серу. К Ж. относятся также некоторые нитчатые бактерии из рода Leptothrix, с толстыми ржавого цвета капсулами (влагалищами), содержащими гидрат окиси железа; Gallionella, состоящая из спирально закрученных в виде пучков тончайших (0,01 мкм) нитей, образующих стебелёк, на поверхности которого откладывается гидрат окиси железа. Ж. обитают в воде пресных и солёных водоёмов, играют большую роль в круговороте железа в природе. На дне водоёмов образуют тёмно-коричневые дискообразной формы конкреции, состоящие из железа и марганца.

  А. А. Имшенецкий.

Железобетон

Железобето'н,сочетание бетона и стальной арматуры, монолитно соединённых и совместно работающих в конструкции. Термин «Ж.» нередко употребляется как собирательное название железобетонных конструкций и изделий . Идея сочетания в Ж. двух крайне различающихся своими свойствами материалов основана на том, что прочность бетона при растяжении значительно (в 10-20 раз) меньше, чем при сжатии, поэтому в железобетонной конструкции он предназначается для восприятия сжимающих усилий; сталь же, обладающая высоким временным сопротивлением при растяжении и вводимая в бетон в виде арматуры (см. Арматурная сталь ), используется главным образом для восприятия растягивающих усилий. Взаимодействие столь различных материалов весьма эффективно: бетон при твердении прочно сцепляется со стальной арматурой и надёжно защищает её от коррозии, т. к. в процессе гидратации цемента образуется щелочная среда; монолитность бетона и арматуры обеспечивается также относительной близостью их коэффициентов линейного расширения (для бетона от 7,5•10 -6до 12•10 -6, для стальной арматуры 12·10 -6); в пределах изменения температуры от -40 до 60°С основные физико-механические характеристики бетона и арматуры практически не изменяются, что позволяет применять Ж. во всех климатических зонах.

  Основа взаимодействия бетона и арматуры - наличие сцепления между ними. Значение сцепления или сопротивления сдвигу арматуры в бетоне зависит от следующих факторов: механического зацепления в бетоне специальных выступов или неровностей арматуры, сил трения от обжатия арматуры бетоном в результате его усадки (уменьшения в объёме при твердении на воздухе) и сил молекулярного взаимодействия (склеивания) арматуры с бетоном; определяющим является фактор механического зацепления. Применение арматуры периодического профиля (см. Арматура железобетонных конструкций ), сварных каркасов и сеток, устройство крюков и анкеров увеличивают сцепление арматуры с бетоном и улучшают их совместную работу.

  Нарушение структуры и заметное снижение прочности бетона наступает при температуре свыше 60°С; при кратковременном воздействии температуры в 200°С прочность бетона снижается на 30%, а при длительном - на 40%. температура в 500-600°С является для обычного бетона критической, при которой он разрушается в результате обезвоживания и разрыва скелета цементного камня. Поэтому обычный Ж. рекомендуется применять при температуре не выше 200°С. В тепловых агрегатах, работающих при температурах до 1700°С, используется жаростойкий бетон . Для предохранения арматуры от коррозии и быстрого нагревания (например, при пожаре), а также надёжного её сцепления с бетоном в железобетонных конструкциях предусматривается устройство защитного слоя бетона толщиной от 10 до 30 мм; в агрессивной среде толщина защитного слоя увеличивается.

  Большое значение для Ж. имеют усадка и ползучесть бетона. В результате сцепления арматура препятствует свободной усадке бетона, что приводит к возникновению начальных напряжений растяжения в бетоне и сжимающих напряжений в арматуре. Ползучесть бетона вызывает перераспределение усилий в статически неопределимых системах , увеличение прогибов в изгибаемых элементах, перераспределение напряжении между бетоном и арматурой в сжатых элементах и т. д. Эти свойства бетона учитываются при проектировании железобетонных конструкций. Усадка и низкая предельная растяжимость бетона (0,15 ммна 1 м) приводят к неизбежному появлению трещин в растянутой зоне конструкций при эксплуатационных нагрузках. Практика показывает, что при нормальных условиях эксплуатации трещины шириной раскрытия до 0,3 ммне снижают несущей способности и долговечности Ж. Однако низкая трещиностойкость ограничивает возможности дальнейшего совершенствования Ж. и, в частности, использования для арматуры более экономичных высокопрочных сталей. Избежать образования трещин в Ж. можно методом предварительного напряжения, при котором бетон в растянутых зонах конструкции подвергается искусственному обжатию (см. Предварительно напряжённые конструкции ) за счёт предварительного (механического или электротермического) растяжения арматуры. Дальнейшим развитием предварительно напряжённого Ж. являются самонапряжённые железобетонные конструкции, в которых обжатие бетона и растяжение арматуры достигаются в результате расширения бетона (изготовленного на т. н. напрягающем цементе) при определенной температурно-влажностной обработке. Благодаря своим высоким технико-экономическим показателям (выгодное использование высокопрочных материалов, отсутствие трещин, сокращение расхода арматуры и др.) предварительно напряжённый Ж. успешно применяется в несущих конструкциях зданий и инженерных сооружений. Существенный недостаток Ж. - большая объёмная масса - в значительной мере устраняется при использовании лёгких бетонов (на искусственных и природных пористых заполнителях) и ячеистых бетонов .

  Широкое распространение Ж. в современном строительстве обусловлено его большими техническими и экономическими преимуществами по сравнению с др. материалами. Сооружения из Ж. огнестойки и долговечны, не требуют специальных защитных мер от разрушающих атмосферных воздействий; прочность бетона со временем увеличивается, а арматура не поддаётся коррозии, будучи защищенной окружающим её бетоном. Ж. обладает высокой несущей способностью, хорошо воспринимает статические и динамические (в т. ч. сейсмические) нагрузки. Из Ж. относительно легко создавать сооружения и конструкции самых разнообразных форм, достигающих большой архитектурной выразительности. Основной объём Ж. составляют повсеместно распространённые материалы - щебень, гравий, песок. Применение сборного Ж. позволяет значительно повысить уровень индустриализации строительства; конструкции изготовляются заранее на хорошо оснащенных заводах, а на строительных площадках выполняется только монтаж готовых элементов механизированными средствами. Тем самым обеспечиваются высокие темпы возведения зданий и сооружений, а также экономия денежных и трудовых затрат.

  Принято считать, что начало применения Ж. связано с именем парижского садовника Ж. Монье, получившего ряд патентов на изобретения по Ж. во Франции и в др. странах; первый его патент на цветочную кадку из проволочной сетки, покрытой цементным раствором, относится к 1867. Фактически конструкции из бетона со стальной арматурой возводились и раньше. Заметную роль в строительной технике России, Западной Европы и Америки Ж. начал играть лишь в конце 19 в. Большая заслуга в развитии Ж. в России принадлежит профессору Н. А. Белелюбскому, под руководством которого был возведён ряд сооружений и проведены испытания различных железобетонных конструкций. В начале 20 в. вопросы технологии бетона, бетонных и железобетонных работ, проектирования сооружений с применением Ж. разрабатывали видные русские учёные - профессора И. Г. Малюга, Н. А. Житкевич, С. И. Дружинин, Н. К. Лахтин. Появились оригинальные конструкции, предложенные инженерами Н. М. Абрамовым, А. Ф. Лолейтом и др. Первым крупным сооружением, выполненным из бетона и Ж. в Советском Союзе, была Волховская ГЭС, явившаяся большой практической школой для советских специалистов по Ж. В последующие годы Ж. применялся во всё возрастающих размерах.


  • :
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28