Если даже предположить, что программа такого рода будет выполнена, и все известные массы частиц и константы связи выстроятся из фундаментальной тройки, то останется и такой вопрос: как объяснить тройку, или, по-другому, откуда берется планковский набор {lP, tP, mP}?
Подходя к делу прагматично, можно вообще не считать актуальной проблемой получение спектра масс элементарных частиц и тем более установление природы планковского набора. В конце концов, современный уровень физики просто не позволяет заглянуть достаточно глубоко - в свое время и набор частот в атомных спектрах представлялся загадкой...
Есть и иной путь - поискать какую-то совсем оригинальную схему объяснения, не исключая даже сильных отклонений от существующей физической традиции. Под традицией понимается своеобразная атомистическая идеология, сложившаяся в первые десятилетия нашего века под впечатлением грандиозных успехов атомной и молекулярной физики. Есть определенный структурный уровень материи - окружающее нас вещество. Его свойства во всех фазах (газовой, жидкой и твердой) хорошо объясняются моделью атомно-молекулярного строения. Но сами параметры атомов и молекул - массы, размеры, характерные частоты - до поры входили в теорию просто как необъяснимые константы. Квантовая теория превосходно объяснила эти параметры на более глубоком структурном уровне, создав модели строения атомов и молекул. На сегодняшний день атомно-молекулярная картина целиком выводима из свойств элементарных частиц, то есть основана на еще более глубоком структурном уровне материи. Ну, и так далее - прорвемся мы когда-нибудь к следующему уровню и на этой основе построим полную теорию элементарных частиц, и их массы, конечно же, исчезнут из минимального набора констант...
Вполне вероятно, что так и будет, но есть ли уверенность, что материя достроена по строго матрешечному принципу?
Оригинальная точка зрения, не разделяющая эту уверенность, стала развиваться в 60-е годы. Речь идет о так называемом методе бутстрэпа, или самозашнуровки*. Этот подход выставил в качестве схемы объяснения такую идею: все параметры минимального набора образуют единственную самосогласованную систему в том смысле, что любой из них имеет наблюдаемое значение, поскольку все остальные имеют тоже наблюдаемые значения. Иными словами, масса протона составляет 1,67.10-24 г потому, что масса электрона 9,11.10-28 г, масса Солнца 1,99.1033 г, а скорость света 3.1010 см/с и т.д. И если немного изменить массу протона (или Солнца или ?-мезона), "поедут" все остальные фундаментальные константы и параметры, теоретические оценки во всех областях разойдутся с наблюдениями.
*По-английски бутстрэп - шнуровка обуви (bootstrap)
Разумеется, здесь приведена экстремистская формулировка бутстрэпа как принципа организации Вселенной. Из нее следует, что мы живем - в лучшем или не в лучшем, - но в единственно возможном мире. Решить проблему в такой формулировке трудно, если вообще возможно.
То, что масса обычных звезд зависит от массы протона,- следствие обычной астрофизической модели, не требующее чего-то в духе бутстрэпа. Связь между величинами масс протона и электрона вообще не ясна. В теории адронов бутстрэп продемонстрировал ряд наглядных связей между массами, но распространить эти идеи на лептоны (в частности, на электрон) не удалось.
Если бы дело ограничилось явным вычислением связей такого рода или гипотезами о возможных связях, то, по сути, бутстрэп следовало бы считать принципом взаимосогласованности различных срезов действительности.
Но у него есть и особая, так сказать, зона применения. Увидеть ее проще всего, обратив внимание на так называемые "магические соотношения". Одно из них мы упоминали в предыдущем разделе - радиус наблюдаемого участка Вселенной того же порядка, что и радиус гравитационного атома, образованного парой обычных элементарных частиц (R ~ c/H ~ h 2/Gm3 *). Современная теория элементарных частиц и теория гравитации это соотношение не выводят, возможно, потому, что они не объединены. Вот здесь-то бутстрэп и пытается сыграть роль заместителя единой теории. Можно, например, показать, что возраст типичной звезды на главной последовательности диаграммы Герцшпрунга-Рэссела по порядку величины близок к t ~ h 2/Gmp3c ~ tP (mP/mp)3 , то есть рассмотренное "магическое соотношение" как бы отражает экспериментально наблюдаемый факт обилия звезд главной последовательности в нашу эпоху. Появляется своеобразная зарубка на оси времени (t ~ 1017 - 1018 с), соответствующая космологической эпохе обилия обычных звезд. Это нечто вроде зарубок, соответствующих эпохам адронного синтеза (t ~ 10-5 c) или атомного синтеза (t ~ 105 - 106 лет). Но есть и интересная разница - ведь в "магическое соотношение" входят параметры нашей эпохи, в частности, наблюдаемое значение функции Хаббла. Требуя, чтобы возраст наблюдаемой Вселенной был того же порядка, что и возраст звезд главной последовательности (хотя бы столь большим, чтобы эти звезды могли достаточно далеко зайти в своей эволюции), мы вроде бы объясняем "магическое соотношение" - только какой ценой? По существу, мы навязываем Вселенной наличие звезд типа Солнца, а тем самым - косвенно - и собственное существование.
*Для численной оценки лучше всего подходит ?-мезон, но взять протон (mp/m? ~ 7) - тоже не ошибка. Ведь такую величину, как возраст Вселенной (~ 1/H) или ее радиус, мы оцениваем очень грубо - по порядку величины.
Американский физик Роберт Дикке решил, что эту операцию неплохо бы проделать и в явной форме. Так родилось интереснейшее направление бутстрэпной идеологии - так называемый антропологический принцип*.
*Дискуссия о связи идей бутстрэпа и антропологического (или, как иногда говорят, антропного) принципа увела бы нас слишком далеко. При желании можно считать, что это независимые подходы. Всеобщий бутстрэп предполагает отсутствие каких-либо фундаментальных элементов Вселенной все элементы равно важны в своей взаимообусловленности. Антропологический принцип подчеркивает, что вся информация об этих элементах фиксируется не вообще в космическом пространстве, а наблюдателем и поневоле имеет антропоцентрическую форму.
Суть его сводится к тому, что любые следствия любой теории не должны противоречить факту существования наблюдателя, мыслимого в образе человека. Возможен и более эффектный вариант - сильный антропологический принцип, согласно которому параметры Вселенной должны иметь значения, допускающие эволюционную ветвь человеческого типа.
Внешне такая точка зрения кажется чем-то, резко противоречащим всей линии развития общенаучных взглядов - от Кузанца и Коперника до наших дней. Действительно, практически все крупнейшие шаги в астрономии связаны с ликвидацией "центризмов". Ничем не выделены в смысле своего положения Земля, Солнце, Галактика, у человека нет космографических преимуществ в исследовании самых крупных космических масштабов. Как вы помните, обсуждался даже Абсолютный Космологический Принцип, запрещающий наблюдателю иметь не только пространственные, но и временные преимущества. Его рассматривали в качестве предельно полной децентрализации Вселенной в духе идей Кузанца...
Предельное равноправие различных планет, звезд и галактик в роли возможных наблюдательных площадок весьма успешно послужило развитию научного мировоззрения. Но абсолютизация даже такой хорошей вещи, как равноправие, легко приводит к абсурду - обычно с того момента, когда начинают игнорироваться существенные отличительные черты. Особенно это сказывается в анализе эволюционизирующих систем.
Посмотрим на дело вот с какой стороны. Картина Вселенной создается не каким-то внешним по отношению к ней существом, издали созерцающим абсолютную истину. Люди и социальные организмы - тоже подсистемы Вселенной со своими сложными особенностями восприятия. Биологические и социальные организмы видят окружающий мир в меру сложности своей организации. Но одновременно они меняют свою сложность в процессе эволюции. Поэтому не так уж удивительно требование, чтобы общая эволюционная модель - от космологии до социогенеза - обладала такими параметрами, которые допускают существование создателей этой модели.
Еще в первой четверти 20 века физики полагали, что прибор не играет принципиальной роли в познании свойств того или иного объекта. Считалось едва ли не само собой разумеющимся, что точность определения, скажем, координат и скоростей частиц может безгранично нарастать - хватало бы технической смекалки. Квантовая механика преподала превосходный урок на тему этой "безграничности". Оказалось, что поскольку при наблюдении любой объект должен подвергаться внешнему воздействию (на него должен попасть хоть один фотон, иначе как наблюдать?), нет - принципиально нет! возможности одновременно измерять точные значения координаты и импульса и некоторых других пар сопряженных характеристик.
Но схема опыта должна включать не только связь прибор-объект, есть еще связь прибор-субъект. Не исключено, что антропологический принцип пытается уловить именно последнюю связь, подчеркивая, что наблюдатель принципиально может регистрировать прибором лишь те явления, параметры которых не противоречат условию естественного развития этого наблюдателя как подсистемы изучаемой им Вселенной или более того - прямо следуют из аксиомы наличия нашей эволюционной ветви. Не исключено также, что пока этот принцип выражен недостаточно четко и в будущем ему придадут более ясную, например, теоретико-информационную формулировку.
Однако важно, что и теперь анализ в духе антропологического принципа приносит немало интересного. Кстати, знаменитое противоречие между первыми оценками функции Хаббла и геологическими данными можно трактовать как прямое предсказание в рамках этого принципа - возраст Вселенной в любом случае больше возраста Земли (то есть больше 4,6 млрд. лет), иначе в столь краткосрочной Вселенной просто не успели бы развиться планеты с астрономами и геологами.
Но это довольно очевидно. Менее очевидны и очень важны выводы, связанные с анализом минимального набора констант. Выясняется, что при некотором увеличении константы слабого взаимодействия могли бы блокироваться вспышки сверхновых звезд, обогащающие космос тяжелыми элементами,- соответственно, известные звезды второго поколения, их планеты и биосферы типа земной, где тяжелые элементы играют существенную роль, просто не появились бы. При небольшом уменьшении этой константы звезды не содержали бы ядер сложнее гелия, и это опять-таки не привело бы к жизни наблюдаемого типа.
К неприятностям приводят и небольшие вариации гравитационной постоянной - на главной последовательности не оказалось бы звезд типа Солнца. При большем значении возникает царство голубых звезд, при меньшем красных. То же самое, но в обратном порядке происходит при вариациях электрического заряда. Можно проследить и катастрофические последствия изменения других констант. В целом создается впечатление, что человек-наблюдатель может возникнуть лишь в такой Вселенной, чьи константы (минимальный набор) совпадают с наблюдаемыми, во всяком случае, заключены в очень узком "коридоре вариаций". Итак, наблюдатель воспринимает то, что допускается его биосоциальной структурой и допускает эволюционное происхождение этой структуры*. Добавление первой части очень важно - она фиксирует включенность наблюдателя в определенный уровень приборных ситуаций и соответствующих модельных представлений. Этот уровень тоже эволюционизирует вместе с наблюдателем.
*В такой общей формулировке принцип следовало бы, строго говоря, назвать антропогенным. Обращаясь к историческому материалу (в том числе изложенному в 1-й части книги), нетрудно убедиться, что антропогенный элемент присутствует во всех сколь-нибудь развитых космологических схемах древности. Древние ничего не знали о минимальном наборе констант, зажатых узким коридором допустимых значений, но неизменно сводили условия творения Вселенной к ситуации, где возникновение человека выглядит естественно в рамках их представлений.
Объективизация представлений текущего момента, не исчезает ли она? вот основная философская претензия к антропогенным идеям. Оказывается, нет, не исчезает, а может быть, только и появляется благодаря учету выделенной роли наблюдателя.
Суть объективности - не в признании какой-либо точки зрения единственно верной за счет искусственного подавления конкурирующих взглядов, а в выявлении взаимосвязи между различными точками зрения с последующим их синтезом.
Для пояснения стоит обратиться к аналогии из области физики. Ньютонова концепция абсолютного пространства казалась предельно объективированной в том плане, что для всех наблюдателей в этом пространстве часы идут совершенно одинаково. Теория относительности тоже постулирует равноправие всех инерциальных систем отсчета, но часы в них идут по-разному. Это вовсе не мешает созданию объективной картины любого движения, хотя она заведомо неодинаково выглядит из окна пригородного поезда и из иллюминатора фотонного звездолета, разогнанного почти до световой скорости.
Нечто аналогичное умению переходить в разные системы отсчета предлагает и антропогенный принцип. Я бы назвал это умение проецировать одну эволюционную ветвь на другую, имея в виду весь биосоциальный и социокультурный спектр Вселенной, допустимый законами ее эволюции.
Особая привлекательность такого подхода должна проявиться при анализе проблемы Контакта, а тем более при реальном вступлении в Контакт. Ведь мы можем столкнуться с чрезвычайно далеким от нашего собственного видением Вселенной, причем цивилизация, его имеющая, может во многих отношениях опережать нас по развитию, принадлежать даже иной биологической ветви, неизвестной на Земле. Воспринять их представления как нечто вполне естественное будет не так-то легко, потребуется обширная работа по построению методов перехода в их общую систему отсчета.
Отложив более подробную дискуссию на эту интригующую тему до следующей части, попробуем посмотреть на антропогенный принцип в несколько фантастической проекции.
Если фундаментальные и другие константы из минимального набора действительно выбирать из антропогенных соображений, то не следует ли отсюда, что появление человека - во всяком случае, разума нашего типа как-то запрограммировано во Вселенной? Не развиваются ли с самого начала некоторые параллельные нашему миры, где с определенными вероятностями реализуются иные наборы фундаментальных констант и, уж конечно, принципиально иные формы жизни и разума? И в какой степени мы могли бы подойти к их экспериментальному изучению - в принципе контактны ли они?
Все эти вопросы - призыв к неблизкому будущему. Поскольку балансировать на грани фантастики никому еще долго не удавалось, попробуем сознательно отступить в более реалистические области, чтобы ощутить под ногами желанную почву фактов.
ЧАСТЬ II: КОСМОЛОГИЧЕСКИЙ СЦЕНАРИЙ
ГЛАВА 9: ЦЕПОЧКА КОСМИЧЕСКИХ РЕАКТОРОВ
Но мирозданию недоставало человека;
Земля и вся природа скорбели одна,
оттого, что нет ее царя,
другая оттого, что нет ее супруга
Алоизиюс Бертран
КОСМОГОНИЧЕСКАЯ ФАЗА
Мы как-то незаметно углубились в сферы космической экзотики и покинули Вселенную на весьма любопытной стадии формирования макроскопических объектов - на рубеже космологических и космогонических проблем.
Что же происходит дальше? Как формируются крупные космические структуры - галактики и звезды? Почему в среде, состоящей из водорода, гелия, фотонов и нейтрино, возникают тяжелые элементы, сложные молекулы и, наконец, жизнь и мыслящие существа?
Когда мы говорили об однородности и изотропии ранней Вселенной, имелось в виду описание ее свойств в среднем, в масштабах существенно превышающих размеры возможных неоднородностей. Небольшие возмущения однородного фона Вселенной начинают развиваться очень рано, и именно эти возмущения впоследствии превращаются в гигантские обособленные скопления газа.
Многое в зарождении таких космических протоструктур пока непонятно и является предметом активных исследований. Но кое-что мы знаем.
Через миллион лет после Первовзрыва температура падает примерно до 3000 К, Вселенная становится прозрачной для фотонов и нейтрино*. Гравитационное излучение, если верить в его существование, выходит из игры гораздо раньше - вероятно, непосредственно вблизи Сингулярности. Массивные заряженные частицы - протоны и ядра гелия - нейтрализуются, связываясь с электронами в атомы, а у фотонов уже не хватает энергии на ионизацию. Вещество теперь становится слишком холодным, чтобы противодействовать силам тяготения, которые выступают на первый план не только в предельно больших, но и в относительно малых объемах. Гравитация, управляющая эволюцией Вселенной в целом, начинает проявлять себя более локальным образом, формируя относительно независимые острова обычного вещества, конденсация происходит во многих масштабах - ее последствия мы и наблюдаем в виде иерархии космических структур.
* Фактически для электронных нейтрино Вселенная становится прозрачна за первую треть секунды после Первовзрыва.
Очень большие протооблака фрагментируют на меньшие, и отсюда берут начало отдельные галактики. Протогалактическое водородно-гелиевое облако сжимается под действием сил тяготения, сохраняя первоначально почти сферическую форму. Одновременно оно распадается на отдельные сгущения, которые, в свою очередь, служат материалом для формирования шаровых звездных скоплений. Собственно в это же время начинается и процесс звездообразования - гравитация конденсирует материю в еще меньших масштабах отдельных протозвездных облаков.
Итак, часть газа в протогалактическом облаке конденсируется в зародыши шаровых скоплений, а другая часть продолжает сжиматься, все более сплющиваясь под действием вращения. Постепенно устанавливается своеобразное равновесие между тяготением и центробежными силами. Образующиеся на этом этапе зародыши будущих звезд и скоплений концентрируются ближе к экваториальной плоскости - это так называемая промежуточная составляющая галактики. Дальнейшая эволюция, по-видимому, существенно связана с магнитным полем - оно тормозит сжатие, и его силовые линии участвуют в формировании спиральных рукавов галактики. Конденсация свободного газа на этом этапе приводит к образованию галактического диска, точнее, так называемой плоской составляющей звездного населения.
В соответствии с этой картиной, звезды зарождаются как бы на трех стадиях. Самые старые должны находиться в шаровых скоплениях, располагающихся сферически симметрично вокруг центра галактики, а самые молодые - в плоской составляющей.
Несколько в стороне остается важнейший вопрос: что же происходит в центре галактики, как протекает там эволюция вещества? Очень вероятно, что в центре вещество концентрируется особым образом - не просто в плотные скопления звезд, а в какие-то сверхзвездные тела огромных масс и размеров. Эти тела могут, в свою очередь, довольно быстро коллапсировать в гигантские черные дыры. Существование таких центральногалактических супердыр - одна из распространенных гипотез, от ее проверки зависит очень многое. Во всяком случае, огромная излучательная активность галактических ядер и особенно квазаров неплохо объясняется эффективным механизмом захвата вещества супердырой. Другой вариант - очень высокая концентрация в центре Галактики более или менее обычных звезд и черных дыр, которые испытывают достаточно частые столкновения, иногда завершающиеся слиянием. Суммарно система концентрированного "звездного газа" может также обеспечить высокую светимость. Выбор между двумя вариантами затруднен из-за непрозрачности центральной области нашей Галактики. Только тщательный анализ всех участков спектра - в том числе гравитационного и нейтринного - позволит прояснить ситуацию.
Эволюция протозвездных облаков вдали от центра выглядит примерно так. Облако фрагментирует на группу газовых образований, каждое из которых можно рассматривать как протозвезду. Под действием тяготения вещество протозвезды сжимается, потенциальная энергия переходит в тепловую, и вещество постепенно разогревается. Видимо, на этой стадии вращающаяся протозвезда может выделить отдельные сгустки, которые вступают на путь более или менее обособленной эволюции, конденсируясь в планеты*.
*Масса этих обособленных конденсаций может быть достаточно велика, и тогда они превращаются в отдельные звезды. Вероятно, на этом пути и получаются тесные двойные системы.
Масса газа, участвующего в дальнейшем сжатии самой протозвезды, весьма различна, но вряд ли она превосходит 100 или 1000 М(. Разогрев вещества приводит к появлению слабой собственной светимости - протозвезда напоминает теперь "красный гигант". Когда же температура в ее недрах достигает некоторого критического значения, открываются каналы термоядерных реакций, в которых водород синтезируется в более тяжелые элементы. Сжатие приостанавливается - давление газа теперь достаточно велико, чтобы противодействовать гравитации. Протозвезда превращается в настоящую звезду*.
* По современной классификации, под звездой, как правило, понимают компактное и оптически непрозрачное тело, обладающее собственной светимостью L ~ (10-2 ? 104)L( и способное уравновесить действие гравитации за счет внутренних источников энергии. С этой точки зрения протозвезды, остывшие белые карлики (их иногда называют черными карликами), нейтронные звезды и черные дыры нельзя считать звездами. Разумеется, такое разделение (как и всякая классификация, основанная на разрезании эволюционных цепочек) весьма условно.
Длительность протозвездной фазы зависит от массы первичной конденсации и заключена в пределах от миллионов до сотен миллионов лет. Чем массивней протозвезда, тем быстрее она превращается в полноценную звезду.
Возникшая звезда попадает на главную последовательность диаграммы Герцшпрунга-Рессела и как бы путешествует вдоль нее. Длительность этого путешествия, то есть время жизни в собственно звездной фазе, существенно зависит от массы и начального химического состава. Самые массивные и яркие звезды могут очень быстро исчерпать запасы термоядерного горючего - за каких-то несколько миллионов лет. Маломассивные звезды (М ~ 0,5 ? 0,7 М() со светимостью L ~ 0,1 ? 0,3L( (спектральный класс К) могут пребывать на главной последовательности многие десятки миллиардов лет - дольше известных нам космологических сроков.
Когда водород в центральной области звезды выгорает, ее ядро, в котором накапливаются гелий и более тяжелые продукты термоядерного синтеза, начинает резко сжиматься - теперь уже практически нет давления, противодействующего гравитации. Плотность ядра значительно возрастает, а его поверхностный слой, где еще продолжаются термоядерные реакции, становится как бы печкой для подогрева газовой оболочки. Эта оболочка, разогреваясь, расширяется, и ее светимость заметно возрастает. Звезда становится красным гигантом и покидает главную последовательность.
В ядре звезды при температуре выше 100 млн. градусов создаются условия для синтеза углерода из трех ядер гелия. Вступление в углеродный цикл термояда приостанавливает сжатие, но всему приходит конец, в том числе и запасу гелия.
Если масса звезды не слишком велика (М ( 1,2. М(), ее дальнейшая судьба выглядит так. Прекращение термоядерного синтеза ведет к дальнейшему сжатию ядра, а оболочка, получившая мощный тепловой импульс, сбрасывается. Ее мы можем наблюдать в виде так называемой "планетарной туманности", светящейся за счет накачки мощным ультрафиолетовым излучением ядра. Оболочка будет расширяться и постепенно растворится в окружающем пространстве.
Ядро этой звезды сожмется чрезвычайно сильно - разрушатся атомы, ядра будут как бы вдавлены в электроны, откуда и возникнет огромная плотность, соответствующая упаковке "нуклона в электроне". Дальнейшее сжатие тормозится давлением электронного газа. Образуется белый карлик, который при массе порядка М(имеет радиус всего около 1000 км*. Постепенно остывая, он превращается в холодное сверхплотное тело (черный карлик). Такую судьбу должно иметь и наше Солнце. Примерно через 8 млрд. лет оно раздуется до масштабов красного гиганта и, сбросив оболочку, станет белым карликом. Многие звезды старших поколений в промежуточной и сферической составляющих Галактики, образовавшиеся на 5-10 млрд. лет раньше Солнца, уже проделали весь этот путь или заметную его часть. Как правило, срок их жизни на главной последовательности не превышает 10 млрд. лет. Поэтому в космосе должно находиться множество погасших карликов - памятников некогда ярким мирам.
* Объекты такого рода наблюдаются, например, объект L 930-80 С с массой М ? 2,82.1033 г, радиусом R ? 200 км и плотностью ( ? 8,5.107 г/см.
Если масса звездного ядра превышает 1,2. М(, судьба звезд оказывается несколько более впечатляющей.
Сброс оболочки сопряжен в этом случае с одним из самых мощных процессов во Вселенной - вспышкой Сверхновой. Пиковая светимость такого объекта того же порядка, что и светимость целых галактик. Вещество, выброшенное взрывом, расширяется в окружающее пространство со скоростями до 10 000 км/с, причем общее энерговыделение доходит до 1045 Дж. Видимо, столь мощный взрыв связан с протеканием в массивном звездном ядре реакции синтеза довольно сложных атомных ядер. При разогреве до миллиарда градусов начинается синтез кислорода, неона, натрия и более тяжелых элементов. Для этих реакций характерны высокая скорость и огромное энерговыделение - в 10-15 раз выше, чем при синтезе легчайших ядер. В результате химический состав такой звезды оказывается куда сложней, чем у менее массивных звезд. Можно сказать, что конечные стадии ее эволюции создают своеобразный термоядерный комбинат по производству тяжелых элементов. Действительно, при взрыве Сверхновой в пространство выбрасывается значительное количество элементов, которые не могут образоваться за счет чисто космологической эволюции - в эпоху ядерно-плотной Вселенной на это просто не хватает времени. Взрывы Сверхновых постоянно обогащают межзвездную газово-пылевую среду.
Благодаря относительно быстрой эволюции вдоль главной последовательности, от нескольких миллионов до нескольких миллиардов лет, самые древние массивные звезды давно успели пройти свой путь и значительно изменить химический состав Вселенной. Из выброшенного ими вещества стали формироваться звезды второго поколения, к которым относится и наше Солнце.
После завершения термоядерных циклов ядра массивных звезд сжимаются гораздо сильней, не задерживаясь на стадии белых карликов. Если их масса не превышает 2,5-3 М(, они завершают свою эволюцию в виде пульсаров нейтральных звезд с плотностью атомного ядра.
При большей массе эволюция звездного остатка должна неизбежно завершиться черной дырой - не известны силы, способные приостановить сжатие и в этой ситуации. Впрочем, если ядро звезды быстро вращается, возможен дополнительный сброс массы и остаток должен избежать чернодырного финиша. Первое поколение массивных звезд, образовавшихся на первом этапе космогонической фазы (13- 15 млрд. лет назад), в основном завершило свой путь, преобразовавшись в сгустки темной материи -нейтронные звезды и черные дыры, проявляющие себя в кратных системах, вблизи от более молодых и активных звезд. С другой стороны, очень правдоподобно, что вторичные конденсации охотно развиваются неподалеку от места взрыва Сверхновой, повышающего плотность вещества в своей окрестности. "Семейные ячейки" звезд, видимо, наблюдаются, но общая закономерность их образования до конца не ясна, не совсем понятны и правила химической наследственности, хотя роль изменения химического состава изучена очень неплохо.
Теперь обратимся к эволюции в масштабах околозвездного пространства проблемам планетарной космогонии.
Планетам не слишком повезло, астрофизики гораздо уверенней чувствуют себя, обсуждая происхождение звезд и галактик. Это и неудивительно природа предоставила нам обширнейшую коллекцию гигантских объектов на разных стадиях эволюции, но открыла для непосредственного изучения лишь одну планетную систему.
Современная точка зрения в основном соответствует классическим идеям Канта-Лапласа, но, разумеется, на гораздо более высоком уровне. Принимается во внимание неплохо исследованный химический состав, распределение момента количества движения и магнитное поле. Первичная туманность, из которой по мере сжатия формируются Солнце и планеты, обладает большим вращательным моментом. От туманности отделяются газово-пылевые диски, удаляемые от основной массы магнитным полем. Вращение основной массы несколько тормозится, а вещество дисков постепенно сгущается в планеты. Ситуация такова, что рождающаяся звезда как бы заранее сбрасывает большую часть своего момента будущим планетам - лишь бы правильно работало магнитное поле. В результате основными носителями момента становятся массивные и далекие от центра планеты. В Солнечной системе основная его часть заключена в движении Юпитера и Сатурна.
Видимо, нормальное поведение силовых линий магнитного поля имеет место у не слишком горячих и массивных звезд спектрального класса F5 и ниже. Судя по имеющимся оценкам, их собственное вращение сильно заторможено. Можно думать, что большинство из них обладает планетными системами - иначе куда бы делось 80-90 % такой фундаментальной сохраняющейся величины, как момент импульса? Разумеется, при этом предполагается, что протозвездные облака близкие по массе и составу эволюционизируют одинаково. Данные факты составляют наглядную основу нашей убежденности в множественности планетных миров.
Моделирование сложной задачи планетной космогонии успешно проводится с помощью ЭВМ, которые разыгрывают различные варианты гравитационной конденсации. В основном работа ведется с прицелом на параметры Солнечной системы. Среди решений, представляемых ЭВМ, возникают и такие распределения по массам и расстояниям до Солнца, которые хорошо соответствуют наблюдениям. Наряду с ними встречаются и совсем иные решения - это указывает на разнообразие конкретных вариантов планетной системы, реализующихся у звезд типа Солнца.
Например, протооблако может породить пятнадцатипланетную систему с более или менее равномерным распределением масс между планетами (от 0,06 М( до 32,7 М().