Однако в космологии весьма правдоподобна гипотеза о том, что планковская область наверняка является барьером, за которым представления о пространстве-времени и о поведении вещества должны меняться самым радикальным образом. В связи с этим похоже, что с физической точки зрения Сингулярность станет псевдопроблемой, которая в последовательной квантовой теории гравитации отпадет как бы сама собой.
Такая смелая проекция наших очень поверхностных знаний о планковской области основана вот на чем.
Переходя от более или менее понятной эпохи адронного синтеза к все более ранним временам, мы попадаем в неопределенное положение. Можно, разумеется, верить, что ничего особенного в эти более ранние эпохи не происходит - вся материя остается очень концентрированным и горячим кварк-лептон-фотонным газом. Можно ожидать, что в какие-то моменты важную роль сыграют неоткрытые пока элементарные частицы. Иными словами, от вещества, сжатого до фантастически высоких плотностей, можно ожидать некоторых сюрпризов. Не исключено, что в достаточно ранние моменты кварки и лептоны окажутся далеко не столь элементарными, как они сейчас выглядят на ускорителях.
Но можно верить и в более фундаментальные изменения - структуры пространства-времени в малом. Теоретики заранее разработали несколько красивых схем квантованного пространства, где существенную роль играет новая мировая константа - фундаментальная длина l0. На расстояниях l0 и меньших обычные геометрические представления теряют смысл. Не ясна только пока конкретная величина l0 - никаких ясных экспериментальных данных здесь пока не получено.
Единственное указание общетеоретического характера возвращает нас к планковскому масштабу. Очень трудно поверить, что в огромном интервале от уже исследованных расстояний до lP с пространством-временем ничего особенного не происходит, но не исключено, что поверить придется. По элементарным оценкам гравитационное взаимодействие между частицами на расстояниях порядка lP становится сильным, и рассматривать их движение на фоне пространства-времени с классической геометрией, скорее всего, бессмысленно.
Такого рода ситуация должна иметь место в эпоху t ~ tP, которой соответствуют ни на что привычное не похожие температура ТР ~ 1,4.1032 К и плотность материи ?P ~ 5,2.1093 г/см3. Двигаться к более ранним моментам и к самой Сингулярности мы уже не имеем права - не ясно даже, как определить ось времени при t< tP. Задачу о Вселенной на этом уровне необходимо ставить строго в рамках квантовой теории. И возможно, самое любопытное, что нельзя ставить эту задачу как одночастичную, ограничиваясь уникальной Вселенной. Данное требование естественно для релятивистской квантовой теории, где любые объекты рассматриваются во множественном числе, они размножаются и гибнут в актах взаимодействия. Здесь лежит дорога к пониманию рождения Вселенной в большом, если не бесконечном, наборе миров, каждый из которых реализуется с определенной вероятностью - в общем, к вещам весьма фантастическим...
По-настоящему добраться до планковской области очень и очень трудно, как и построить последовательную квантовую теорию гравитации, чему на протяжении нескольких десятилетий посвящены усилия многих физиков и математиков. Попытки в этом направлении весьма впечатляющи и в некоторых случаях ведут к интересным заключениям, но главное пока впереди.
Полезно остановиться на одном более наглядном сигнале из планковской области, связанном с проблемой интерпретации фундаментальных констант. Возвратимся к G. Мы видели, что гравитационной константе повезло меньше, чем с (скорости света), имеющей совершенно прямую и наглядную интерпретацию. Очень похоже, что такое везение не случайно, а вытекает из непосредственной принадлежности с к планковской системе единиц, где она играет роль фундаментальной скорости, ограничивающей любую скорость передачи информации.
Так вот, из G и с легко образовать новую константу:
LP = c5/2G ? 1,8 .1059 эрг/с = 1,8 .1052 Ватт,
имеющую вполне ясный смысл мощности или светимости, причем, по-видимому, предельной мощности, с помощью которой можно передать информационный сигнал*. Важно, что она естественно входит в планковскую систему (как фундаментальная мощность), но не содержит постоянной Планка, то есть может быть замечена в классической теории.
*Мощность можно оценивать с использованием единиц массы, вводя константу ?t МР = LP/с2 = c3/2G ? 2.1038 г/с.
Простой обзор светимостей звезд, галактик и квазаров говорит нам о том, что ни один из этих объектов и близко не подходит по светимости к пределу LP. Для типичной звезды Солнца L( ~ 3,8.1033 эрг/с характерная светимость галактик и квазаров не превышает 1043 - 1045 эрг/с. Суммарную светимость всех галактик можно оценить величиной 1055 - 1056 эрг/с, что все еще в тысячи раз меньше LP. Иными словами, ограничительная роль новой константы выполняется с большим запасом.
Источник, обладающий светимостью LP, способен был бы генерировать за год целую большую галактику (массой около 6,4.1045 г), а за космологический период 15 миллиардов лет массу порядка 1056 г, что заметно превышает оценку суммарной массы галактик во Вселенной.
Ограничительная функция LP хорошо видна при оценке работы некоторого источника. Он излучает в общем случае за счет выгорания собственной массы. В процессе излучения его масса и физический радиус, разумеется, убывают, однако радиус не должен убывать быстрее, чем со скоростью света. С другой стороны, для любого наблюдаемого объекта физический радиус не может стать меньше так называемого гравитационного (Rg= 2GM/c2), который тоже убывает с досветовой скоростью. Последнее утверждение эквивалентно тому, что для светимости любого источника должно выполняться соотношение*: L ( LP.
* Непосредственно следует из цепочки неравенств: с ( ?tR ( ?tRg = 2G?tM /c2 = 2GL/c4, откуда имеем: L ( LP.
Ограничения на светимость исчезают в пределе LP ( ?, то есть при переходе к нерелятивистской теории (с ( ?), или при выключении гравитации (G ( 0). He следует ли в связи с этим понимать тяготение как универсальный физический механизм ограничения мощности любых процессов?
Пока последовательного ответа на этот вопрос нет, не построен явный пример классической теории гравитации, которая исходила бы из ограничения L ( LP столь же естественным образом, как специальная теория относительности исходит из ограничения v ( с. Возможно, на пути к такой теории лежат какие-то неизвестные нам явления - все-таки пока мы наблюдаем очень малые по сравнению с LP светимости небесных тел. И это немного напоминает ситуацию перед созданием специальной теории относительности, когда в эксперименте наблюдались скорости объектов, существенно меньшие скорости света. Только открытие электронов, которые из-за очень малой массы легко поддаются ускорению до околосветовых скоростей, дало четкие экспериментальные указания на новые механические закономерности. Не предстоит ли классической теории тяготения пройти сквозь третье рождение в связи с исследованием объектов сопоставимых по светимости с LP?
Не исключен, конечно, и иной вариант, где роль фундаментальной светимости станет понятна лишь при учете квантовых явлений, то есть в рамках какой-то супертеории будущего, описывающей явления и в планковской области.
НА ПУТИ К СУПЕРКОСМОЛОГИИ
Завершая этот раздел, нельзя не остановиться на очень интересном прорыве к описанию самой ранней Вселенной, возникшей в последние два десятилетия. Этот прорыв сконцентрировал в себе практически все надежды предыдущих подходов к решению проблемы Сингулярности, а начинался он с, казалось бы, совершенно фантастической идеи ленинградского астрофизика Э. Б. Глинера, выдвинутой еще в конце 60-х годов.
Идея заключалась в том, что в некую эпоху вещество может находиться в своеобразном состоянии натяжения, которое характеризуется отрицательным давлением. И тогда, естественно, возникает стационарный режим расширения без всяких особых точек.
Итак, все дело в необычном состоянии вещества?
Это так, но не вполне, поскольку дальнейшие исследования выяснили, что речь идет скорее о состоянии вакуума, т. е. таком состоянии, где нет собственно вещества в виде элементарных частиц.
С точки зрения классической физики, пустой мир ничем не интересен, но квантовая физика подразумевает под вакуумом нечто весьма нетривиальное, обладающее энергией, способной проявляться вполне наблюдаемым образом. Квантовые закономерности позволяют частицам рождаться и тут же погибать, и в этом смысле пустое пространство оказывается как бы непрерывно бурлящим. На основе представлений постепенно сформировался весьма интересный сценарий Первовзрыва и того, что происходит непосредственно вслед за ним.
Исходное вакуумное состояние Вселенной обладает плотностью ?P. Предполагается, что при такой предельно высокой плотности действуют мощные силы отталкивания, т. е. в уравнениях Эйнштейна действительно нужно учитывать космологический член. Важно, однако, то, что он не вводится "искусственно", а возникает благодаря отрицательному давлению вакуума и, в конечном счете, выражается через постоянную плотность этого же вакуума (? = 8?G?вак /c2 ~ 1066 см-2, причем ? вакуума = ?P).
В результате действия сил отталкивания зародыш Вселенной стремительно расширяется, все расстояния растут экспоненциально (R = R0ехр((?/3)1/2 .ct )), плотность же экспоненциально падает (? ~ ?maxехр(-4(?/3)1/2 .ct ), и никакой Сингулярности в решениях не видно.
Такая стадия получила название "инфляционного режима". Уже через несколько планковских мгновений (t ~ (3 ? 5) tP) плотность становится пренебрежимо малой по сравнению с вакуумной (? " ?вак). Примерно через миллиард планковских мгновений (t~10-35 сек) вакуумное состояние распадается, порождая обычную материю с обычным положительным давлением, после чего отталкивание исчезает, и дальнейшее расширение происходит в соответствии с горячей фридмановской (стандартной) моделью.
Инфляционная стадия действительно крайне необычна и заметно выбивается за рамки известных физических явлений, и это не так уж удивительно - ведь действие происходит при плотностях, которые на 70-80 порядков превышают известные из лабораторных экспериментов. Однако исследования этой стадии оказались важны не только в том плане, что позволили обсуждать рождение наблюдаемой Вселенной из чего-то более приемлемого, чем Сингулярность. Они позволили всерьез поставить вопрос о множественном рождении вселенных, точнее, о принадлежности нашего мира некоему обширному набору непрерывно творящихся миров, как это сделал советский теоретик А. Д. Линде в 1986 году.
В инфляционной модели благодаря экспоненциальному росту всех расстояний сразу бросается в глаза огромная скорость разбегания любой пары точек. Эта скорость очень быстро превосходит световую, т. е. точки теряют причинную связь. Поэтому, если рассмотреть какую-то относительно малую область, все точки которой первоначально причинно связаны (т. е. между ними можно осуществить обмен световыми сигналами), то по мере разбегания точек она фактически превратится в несколько независимо эволюционизирующих областей. Например, при увеличении всех расстояний в 2 раза из-за 8-кратного увеличения объема возникает 8 областей с размерами порядка исходного. В каждой из них по-прежнему будет существовать причинная связь, но между ними уже невозможен обмен информацией, так как новые области будут удаляться друг от друга со сверхсветовыми скоростями. Еще 2-кратное увеличение всех расстояний, и перед нами уже 64 независимых области, и т. д. Такие области иногда называют мини-вселенными, имея в виду, что в процессе инфляционного раздувания появляется множество фактически невзаимодействующих обособленных миров, лишь один из которых эволюционизирует в нашу Вселенную.
Получается картина некоего вечно пенящегося "планковского котла" основной процесс, идущий в такой Супервселенной связан с непрерывным размножением планкеонов, мини-вселенных с планковской плотностью. Но в силу квантовых флуктуации ?вак (оцененных на основе квантовой теории случайных отклонений плотности вакуума от среднего значения) в отдельных областях инфляция приводит к такому падению плотности, которое обеспечивает специфический фазовый переход - вакуум теряет устойчивость, распадаясь на обычную материю, а раздувание сменяется фридмановским расширением. Благодаря одной из таких случайностей возникла и наша Вселенная...
Приятно в связи с такими представлениями помечтать о временах, когда в рамках опытов с планкеонами, сжимая вещество до близких к ?P величин, мы сможем создавать миры, подобные нашему или даже нечто более интересное. На самом деле реализация этой сверхфантастической мечты может быть связана с такими интересными объектами, как черные дыры - темой, весьма близко примыкающей к космологическим проблемам. К рассказу о черных дырах и других экзотических явлениях, так или иначе связанных с космологией, мы и переходим.
ЧАСТЬ II: КОСМОЛОГИЧЕСКИЙ СЦЕНАРИЙ
Глава 8: НЕЧТО НЕОБЫЧНОЕ
В старых небылицах рассказывается много ложного о драконах, Например, утверждается, что драконы имеют иной раз до семи голов. Этого никогда не бывает. Дракон может иметь только одну голову...
Станислав Лем
ЗНАМЕНИТЫЕ ЧЕРНЫЕ ДЫРЫ
В истории науки трудно найти объекты с такой судьбой, как у черных дыр. Предсказаны они были давно и в довольно общей форме, но потом более ста лет никто не обращал на них внимания.
В 1796 году в первом издании "Изложения системы мира" Лаплас, рассказывая о необычных для того времени звездных феноменах, в частности, о новых звездах, писал:
"Какие же поразительные перемены должны происходить на этих огромных телах, чтобы они могли наблюдаться из такой дали! Подумайте, насколько они должны превосходить все, что мы видим на поверхности Солнца, и как убедительно они доказывают, что природа не повсюду и не всегда остается одной и той же. Все подобные звезды, которые позже вновь становились невидимыми, за то же время, пока мы могли их наблюдать, оставались на том же самом месте; итак в пространстве существуют огромные тела, возможно, столь же многочисленные, как и звезды".
Далее следует прямое предсказание*: "Светящееся небесное тело, обладающее плотностью, равной плотности Земли, и диаметром, в 250 раз превосходящим диаметр Солнца, из-за силы своего притяжения не даст своему свету достигнуть нас. Таким образом, возможно, что самые большие светящиеся тела во Вселенной именно по причине своей величины остаются невидимыми". Иными словами, речь идет об объекте, для которого вторая космическая скорость превышает скорость света. Для гигантской лапласовской звезды, чей радиус (174 млн. км) на 16 % превышает средний радиус земной орбиты, а масса (1,22.1041 г) - в 61 миллион раз массу Солнца, действительно vотрыва ( с **.
* Вероятно, первое достаточно четкое предсказание черных дыр было сделано все-таки Джоном Майклом из Кембриджа еще в статье, направленной в 1783 г. в "Философские труды Лондонского Королевского Общества".
** Для оценки использовались современные данные о средней плотности Земли (((= 5,517 г/см3) и радиусе Солнца (R( = 6,96.105 км). Чтобы тело, запущенное с поверхности планеты или
звезды, могло уйти в космос, его полная энергия должна быть неотрицательна ( Е =mv2 - GmM/R ( 0), то есть скорость не должна быть меньше скорости отрыва (в земных условиях ее часто называют второй космической): vотрыва = v2GM/R = v8?(R2/3, где М - масса звезды, (( - ее средняя плотность, R - радиус. Если vотрыва = с, то плотность звезды связана с радиусом так называемым предельным соотношением Шварцшильда ( = 3c2/8?GR2.
Такая звезда не выпускает света, и издали ее невозможно увидеть. Любое тело, однажды попав на поверхность этой звезды, никогда бы оттуда не вырвалось. За эти ловушечные свойства звезды подобного типа впоследствии и были названы черными дырами - они все поглощают и ничего не выпускают.
Интересно, что Лаплас предсказал не просто особый класс космического населения, он рассматривал свои гиганты как конечную стадию эволюции новых звезд и был, в общем, недалек от истины. Но все-таки гипотеза о суперзвездах, заглатывающих собственный свет, поразила воображение и самого автора. В третьем (1808) и последующих трех изданиях "Изложения системы мира" он попросту исключает ее из текста.
И очередного теоретического открытия черных дыр приходится ожидать целых 140 лет!
Произошло это открытие в статье американских физиков Р. Оппенгеймера и Г. Снайдера "О безграничном гравитационном сжатии", опубликованной в 1939 году. Рассматривая конечную стадию эволюции очень массивной звезды, исчерпавшей источники термоядерной энергии, авторы показали, что под действием тяготения вещество звезды непрерывно и безостановочно сжимается. При этом для внешнего наблюдателя картина такова, что радиус звезды стремится к пределу, полностью определяемому ее массой. Этот предел совпадает с гравитационным
радиусом Rg = 2GM/c2 *. Коллапсирующая звезда за время порядка tg ~ Rg/c достигает размера Rg и практически перестает излучать. Это и есть черная дыра.
*Черные дыры - сугубо релятивистские объекты, строго говоря, вне общей теории относительности рассматривать их нельзя. Однако кое-какие свойства черных дыр качественно получаются и в нерелятивистской механике - это и было неявно использовано Майклом и Лапласом.
Наблюдатель, попавший, к своему несчастью, на ее поверхность, видит нечто совсем иное. За конечное и весьма небольшое время (разумеется, по часам внутреннего наблюдателя: t ~ v 3/8?G((0), где ((0) - начальная плотность звезды) он попадает вместе с окружающим его веществом в центр звезды. Это очень похоже на космологическую ситуацию. Если отождествить Вселенную при современной очень маленькой средней плотности с внутренностью черной дыры, то сжатие в точку, при котором мы поневоле стали бы сопутствующими веществу наблюдателями, заняло бы как раз космологический промежуток времени порядка 1017 с. Разумеется, разогрев вещества привел бы к гибели наблюдателя. Но произошло бы это очень не скоро. В случае звезды Оппенгеймера-Снайдера из-за очень высокой начальной плотности (близкой к плотности атомного ядра) все разыгралось бы гораздо быстрее. Примерно за 10-5 с наблюдатель мог бы просмотреть интереснейшую ленту с историей первых мгновений после Первовзрыва, прокрученную в обратном направлении, однако условия просмотра вряд ли стимулировали бы его исследовательское любопытство. Кроме того, у него нет никаких средств для передачи информации во внешний мир - черная дыра не выпускает сигналов.
Итак, в результате коллапса звезда как бы застывает - извне она воспринимается как совершенно темный объект, характеризующийся массой, моментом количества движения (если речь идет о вращающейся звезде) и числом барионов*. Внутри, где разыгрывается "космологическая трагедия" собственного наблюдателя, ситуация очень похожа на ту, которая имеет место во фридмановской модели - вплоть до той же проблемы Сингулярности.
*В модели Оппенгеймера-Снайдера рассматривают эволюцию звезды с массой М ( 2.5-3 М( .
Соответственно, здесь черная дыра - небольшой объект (R ( 9?10 км) с огромной (примерно ядерной) средней плотностью. В принципе же, можно говорить о черных дырах совершенно иных масс и плотностей, лишь бы выполнялось соотношение Шварцшильда. Стоит все-таки подчеркнуть существенное различие между пониманием черной дыры в эпоху Майкла-Лапласа и в современной теории гравитации. В первом случае, ограниченном представлениями ньютоновой механики - это сверхплотная звезда, не выпускающая свет. Во второй - это особая область пространства-времени, если угодно, продукт воздействия неограниченно сжимающейся материи на пространство и время.
После второго своего теоретического рождения черные дыры привлекли всеобщее внимание - особенно в 60-годы, когда открытия экзотических объектов сыпались как из рога изобилия. В силу своих особых свойств черные дыры оказались твердым орешком для астрономов - это самое скромное, что можно сказать о задаче наблюдения далеких небесных тел, лишенных собственной светимости. Их поиск довольно быстро свелся к ситуации двойной звезды с темной компонентой. В чистом виде такая постановка задачи страдает явными неопределенностями: двойных систем с темной компонентой не так уж мало, а невидимость спутника яркой звезды может быть объяснена слишком многими причинами.
Более конкретная идея связала поиск черных дыр с тесными двойными системами, когда дыра способна как бы отсасывать часть атмосферы своего яркого соседа. Струя газа, устремляясь к черной дыре, окружает ее облаком, которое постепенно оседает. Это явление называется аккрецией. Аккрецирующий газ разогревается, особенно во внутренних частях облака, так как заметная доля его потенциальной энергии переходит в тепловую. Из-за этого начинается излучение в ультрафиолетовом и рентгеновском диапазонах.
Наблюдения рентгеновских источников начались после запуска спутника "Ухуру" и аналогичных аппаратов, снабженных специальными регистрирующими устройствами. Были обнаружены сотни таких источников. 18 из них отождествлены с рентгеновскими пульсарами, большинство же остальных представляют собой объекты, не похожие на пульсары или черные дыры.
Различить пульсар и черную дыру можно, лишь оценив массу. У первого она не должна превышать 3М( (самые оптимистические оценки - до 8М(), иначе неизбежен
коллапс и переход в состояние черной дыры.
Благодаря этому обстоятельству и состоялось экспериментальное открытие черных дыр. Рентгеновский источник в созвездии Лебедя (Cyg X-I) связан с яркой звездой-сверхгигантом. Период яркой звезды 5.6 дня, а масса - порядка 20 М(. Удалось
оценить и массу темной компоненты - она заключена в пределах 8-11 М(. Кроме того,
наблюдалась хаотическая изменчивость рентгеновского потока с характерным временем порядка одной тысячной секунды, что как раз соответствует периоду обращения газового облака на расстояниях, где, согласно теории, должно иметь место максимальное энерговыделение.
Все это дает основания с большой долей уверенности говорить о регистрации черной дыры. Аналогичные объекты найдены в созвездиях Скорпиона (V 861 SCO источник ОАО 1653-40) и Циркуля (Cir X-I).
Другое менее надежное указание получено в связи с исследованием 14 импульсных рентгеновских источников с резким, в течение секунд, изменением спектра. Некоторые из них (MX 0513-40, 3 U 1820-30 и А 1850-08) надежно соотнесены с шаровыми скоплениями (NGC-1851, NGC-6625, NGC-6712, соответственно). В этом случае довольно правдоподобно, что в центре каждого из шаровых скоплений находится очень массивная черная дыра (М(). Однако пока такое объяснение остается не более чем
интересной гипотезой, мы еще не достаточно ясно представляем себе законы коллективной эволюции звезд в плотных скоплениях, а также механизм формирования суперзвезд в сотни раз массивней Солнца на космогонической стадии. Есть также указания на присутствие черной дыры с М ~ 4 106 М( в центре нашей Галактики, а в
центре галактики М 87 - даже с М ~ 5 109 М(!
Если же говорить о надеждах, то черные дыры представляются чем-то очень широко распространенным во Вселенной. По идее, они должны встречаться часто и на весьма различных уровнях. В этом плане особо подозрительны ядра галактик и центры шаровых скоплений - места, где в условиях высокой концентрации вещества "сам Бог велел" создаваться сильным гравитационным полям и суперзвездам грандиозного масштаба.
В связи с этим обратим внимание вот на какие обстоятельства. Почему Лапласу пришлось изобретать монстр в 60 миллионов солнечных масс? Ответ прост. В его время представления о структуре вещества были развиты слабо, и он вряд ли мог представить себе космические объекты с плотностью атомного ядра - то, чем свободно оперировали теоретики 30-х годов 20 века, современники становления ядерной физики. Тем не менее, вплоть до открытия белых карликов и пульсаров в реальное существование сверхплотных звезд верили не слишком охотно.
Что же касается черных дыр - сейчас их высокой плотностью трудно кого-нибудь удивить. Само образование черных дыр с массой порядка 10М( как возможной
конечной стадии звездной эволюции теперь тоже не представляется чем-то из ряда вон выходящим.
Весьма вероятно, что ближайшие годы принесут окончательное открытие сверхмассивных дыр с относительно небольшой плотностью и массами от нескольких сот до миллиардов М(, и лапласовские монстры станут чем-то привычным. Это откроет
путь к решению проблемы коллективной эволюции звездных скоплений самого разного масштаба. Действительно, трудно поверить, что в плотных шаровых скоплениях и тем более в галактических ядрах каждая звезда могла бы рождаться и умирать совершенно индивидуально, никак не связываясь с судьбой ассоциации. Именно эта связь и должна во многих случаях приводить к появлению разномасштабных черных дыр с огромными массами. Один из важных гипотетических вариантов такого рода - присутствие гигантских черных дыр в ядрах квазаров, что пока дает едва ли не единственный путь к объяснению их фантастической светимости.
Казалось бы, все в порядке, остается только активно вести расширение круга наблюдений по более или менее ясной схеме.
Но тут-то как раз произошло интереснейшее уточнение самой схемы, если можно так выразиться, состоялось третье теоретическое рождение черных дыр.
В 1974 году английский теоретик С. Хокинг опубликовал в журнале "Nature" ("Природа") небольшую заметку с интригующим вопросом в заголовке "Взрывы черных дыр?". Это положило начало, пожалуй, самому впечатляющему астрофизическому буму 70-х годов.
Идея Хокинга была довольно проста. Как бы ни самоизолировалась черная дыра, она всегда связана с вакуумом элементарных частиц. Процессы вблизи ее поверхности идут с характерным временем tg ~ Rg/c = 2GM/c3, и они вызывают рождение частиц с энергией E ~ h?g ~ h/ tg - характерная собственная частота черной дыры как бы резонирует с частотами вакуума, вышибая из него реальные частицы. Более наглядно можно пояснить ситуацию так: черная дыра способна удержать объекты с размером l "Rg, но не излучение с длинами волн ? ( Rg, которое как бы выдавливается из черной дыры в силу соотношения неопределенностей*.
* Соотношение неопределенностей ?р.?x ( h показывает, что объект с импульсом р = h?/c нельзя локализовать в области с размером меньшим h/р ~ c/?~ ? . Излучение с длиной волны ? не локализуется в области с размером меньше ?.
Отсюда следовало, что черная дыра вовсе не мертва. С точки зрения квантовой теории, она должна излучать во внешнее пространство радиоволны, свет и даже тяжелые элементарные частицы - все, что допустимо ее размерами и энергетическими возможностями. Излучая, черная дыра разогревается, теряет массу, и конечная стадия ее испарения должна выглядеть как взрыв. Законы эволюции черной дыры, следующие из хокинговской модели, очень наглядно записываются с использованием планковских масштабов (М - масса черной дыры):
Светимость: L ~ LP (mР/M)2
Температура: Т ~ TP (mР/M)
Плотность: ( ~ (P (mР/M)2
Время жизни: ? ~ M/L ~ tP (mР/M)3 ? 3.1017 (M (г)/1015)3 с
Отсюда хорошо видно, что эффект хокинговского излучения несущественен для обычных черных дыр типа Лебедя X-I, чья температура порядка 108 К, а время испарения сильно превышает возраст Вселенной (? ~ 1074 с!). Тем более, практически незаметна квантовая эволюция гипотетических дыр-гигантов.
Забавные дырочки размером около 1 миллиметра, но с довольно солидной массой (М ~1027 г) и колоссальной плотностью (( ~ 2,5.1030 г/см3) могли бы имитировать наблюдаемый фон теплового излучения с температурой в несколько градусов Кельвина. Однако чтобы вытеснить модель космологического реликтового излучения, следовало бы предположить, что малютки существуют в изобилии и распределены в пространстве крайне равномерно по всем направлениям. Неясно также их происхождение.
Наибольший интерес с самого начала вызвали, конечно, черные дыры с массами М~1015 г. Ведь они способны полностью испариться за известный космологический период, и в современную эпоху какая-то их часть должна взрываться, выбрасывая чрезвычайно жесткое излучение.
В связи с такими мини-дырами возродился интерес к идее советских астрофизиков Я. Б. Зельдовича и И. Д. Новикова, которые еще в 1967 году предсказывали, что наряду с черными дырами, возникающими космогоническим путем, то есть за счет эволюции звезд, могут существовать и так называемые первичные дыры, образующиеся на ранних стадиях космологической эволюции.
Дело в том, что вещество распределено равномерно лишь в среднем, в некоторых же областях пространства оно могло концентрироваться, а часть этих концентраций - коллапсировать до состояния черных дыр, даже в очень горячей обстановке самых ранних мгновений. Поэтому не исключено, что образование каких-то астрофизических структур - разумеется, совсем необычного типа - началось задолго до появления галактик и звезд первого поколения.
Представления такого рода способны оказать серьезнейшее влияние на астрофизические и космологические концепции. Во-первых, на повестку дня ставится задача о космических объектах исключительно малых размеров и высоких плотностей. Вообще возникает любопытный вопрос: чем ограничена снизу масса звездоподобных объектов, если процесс их образования отодвигается ко все более ранним моментам? Не играет ли роль такого ограничителя, скажем, планковская масса? С другой стороны, первичные мини-объекты могли бы дать полезнейшую информацию о структуре очень ранней Вселенной - был ли это лишь сугубо однородный кипящий бульон из элементарных частиц, или на фоне в среднем равномерного распределения возникали и гибли весьма нетривиальные миры, интересные ничуть не менее ныне наблюдаемых звезд и галактик*. И еще один важный вопрос: каково влияние реликтовых неоднородностей на формирование более крупных космических структур?
* Пусть в космологическую эпоху t при плотности ( ~ (P (tР/t)2 образуется черная дыра. Она должна собрать всю массу в области с размером R ( ct, и тогда Мрд ~ ( (ct)3 ~ (c3/G).t ~ mР(t/tР) Таким образом, первичные черные дыры с М ( М( могут образовываться не ранее эры адронного синтеза (t ~ 10-5с), с М ~ 1015 г - при t ~ 10-23с, когда ( ~ 1052 г/см3, а первичные дыры лапласовского типа при t ~ 103с - в эпоху синтеза гелия. Интересно, что в таком подходе для образования черной дыры с массой Вселенной нужно как раз космологическое время t ~ 1017 с.