Современная электронная библиотека ModernLib.Net

Открытие Вселенной - прошлое, настоящее, будущее

ModernLib.Net / Потупа Александр / Открытие Вселенной - прошлое, настоящее, будущее - Чтение (стр. 17)
Автор: Потупа Александр
Жанр:

 

 


Но ведь это настоящий приповерхностный спутник, и важно то, что в рамках ньютоновской механики нетрудно вычислить его минимальную скорость (1-ю космическую), как и скорость снаряда, способного уйти от Земли в межпланетное пространство (2-ю космическую). Но эти огромные - порядка 10 км/с - скорости, резко превосходящие все, что было достигнуто в артиллерийской стрельбе (не говоря уж о неспешном транспорте того времени), казались серьезнейшим, а подчас и непреодолимым препятствием для любого космического проекта. Нужен был целый комплекс открытий в математике, механике, химии - по сути, новый уровень технологической цивилизации, чтобы пройти путь от идеи пороховых ракет и общей оценки необходимых скоростей до реального запуска космического корабля...
      Два с половиной века после Бержерака фантасты искали конкурентоспособные неракетные транспортные решения. В 1703 году Дэвид Рассен отправил своих героев на Луну с помощью гигантских качелей, установленных на высокой горе. Лет через 40 Эберхард Киндерман стал литературным первооткрывателем марсианской трассы, заставив взлететь корабль на вакуумной сфере.
      И опять повезло социально-сатирической фантастике - в 1752 году, примерно к столетию выхода бержераковского романа, блестящий лидер французского Просветительства Франсуа-Мари Вольтер (1694-1778) выпустил в свет своего "Микромегаса". По-видимому, здесь впервые идея космических путешествий вырвалась в межзвездный и даже галактический масштаб. Вольтеровский Микромегас, существо 40-километрового роста, обладатель тысячи органов чувств, срок жизни которого доходит до 10 миллионов лет, отправляется в путешествие с родной планеты вблизи Сириуса. Способ его перемещения весьма оригинален - в какой-то степени шутка Вольтера предвосхищает перспективные идеи фантастов 20 века, ибо Микромегас "...оседлав солнечный луч, иной раз прибегнув к помощи какой-нибудь кометы, переправлялся вместе со своими слугами с планеты на планету". Так, изъездив весь Млечный Путь, он однажды оказывается на Сатурне и обнаруживает там "карликов", раз в 20 меньших его самого. Потом вместе с одним из обитателей Сатурна Микромегас устремляется к Земле, и тут новые друзья лишь с большим трудом выясняют, что планета-малютка обитаема, более того - на ней есть разумные создания...
      В 19 веке Эдгар По послал Ганса Пфалля на Луну на воздушном шаре, заполненном неким таинственным газом (в 37,4 раза легче водорода), Жюль Верн выстрелил капсулой с экипажем из гигантской пушки "Колумбиады", а его соотечественник Паскаль Груссе (писатель-коммунар, печатавшийся под псевдонимом Андре Лори) решил проблему предельно изящно - его герои притянули Луну мощным магнитом*. Даже в 20-х годах нашего века практически одновременно со стендовыми испытаниями первых реальных ракет Андрей Платонов придумывает своеобразную центробежную пращу, развивающую до 16 тысяч оборотов в секунду, и с ее помощью гениальный неудачник инженер Крейцкопф забрасывается к Луне...
      * Любопытно, что еще бержераковские селениты хотели притянуть Землю, хотя и не говорили конкретно о магнитах. Зато у Джонатана Свифта в одном из путешествий Гулливера встречается летающий остров Лапута, управляемый как раз магнитом...
      Но все средства, за исключением полушуточных бержераковских ракет, так или иначе, уходили в архив - они опровергались элементарными расчетами*. Впрочем, и ракета казалась ученым 19 века средством довольно фантастическим - те скорости и мощности двигателя, которые требовались для отрыва от Земли, были далеки от реальных возможностей техники. А главное, космический полет представлялся скорее результатом какого-то эффектного открытия гениального одиночки, плодом частного мастерства в духе характерного для 19 века представления об истории науки и техники, представления, возросшего на примерах открытия законов природы с помощью "мотка проволоки, веревочки и сургуча", на примерах изобретения станков и машин талантливыми умельцами. Еще не было оснований воспринять грядущий космический старт как промежуточный финиш огромной научно-технической программы, где сведены в единую систему десятки областей науки и производства, где складываются воедино усилия многотысячных коллективов. Духовная атмосфера проблемы еще определялась психологией жюльверновских героев - изобрел, построил, полетел, и по их следам шли уэллсовский физик Кейвор и толстовский инженер Лось... Поэтому, когда в 1865 году французский писатель Ашиль Эро впервые забросил космонавтов на Венеру с помощью многоступенчатой ракеты, уже вовсе не шуточной, его идея отнюдь не воспринималась как сигнал о надвигающемся прорыве в космос, прорыве, до которого тогда оставалось менее столетия.
      * Не будем забывать, что даже самые древние, "трижды опровергнутые" идеи сыграли свою роль - хотя и не обязательно в космонавтике. Возносясь на лифте на 9-й этаж своего дома или на смотровую площадку Эйфелевой башни, стоит вспомнить о создателях мифов про светила-древолазы и о творцах зиккуратов. Изучение принципов птичьего полета привело русского ученого Николая Егоровича Жуковского (1847 -1921) к теории самолетного крыла, а воздушные шары действительно оказались полезными для полетов внутри атмосферы. Древние идеи, трансформированные научным мировоззрением, живут вокруг нас и приносят огромную пользу - стоит лишь немного подумать над генезисом телефона, карманного компьютера или обычного карандаша, чтобы историческая машина времени стала демонстрировать удивительные метаморфозы человеческой мечты. Некоторые общие идеи - вроде вольтеровского использования светового луча или небесных тел как космических кораблей - до сих пор в определенной степени опережают время и считаются вполне перспективными, разумеется, с учетом современных представлений.
      Между тем, к последней трети 19 века естественные науки достигли достаточной зрелости, чтобы приступить к планомерной осаде проблемы полета в безвоздушном космическом пространстве. Реактивный аппарат должен был стать решающим ударным звеном в этой осаде, ибо в нем заключался единственный тип движения, не требующий опоры в окружающей среде и вообще в таковой не нуждающийся. Подъемную силу самолета или воздушного шара не создать в слишком разреженной атмосфере. Для ракеты наоборот - чем выше окружающий вакуум, тем лучше.
      Видимо, первым, кто осознал это на вполне научной основе, стал замечательный русский ученый Константин Эдуардович Циолковский (1857 -1935). На его долю выпала очень нелегкая судьба. В результате тяжелой болезни он с 9 лет стал глохнуть и к 14 годам практически полностью утратил слух. Весьма основательное общее и специальное физико-математическое образование Циолковский приобрел самостоятельно, и с 1880 года стал учительствовать в Калужской губернии, а позднее - в Калуге. Спектр увлечений молодого провинциального учителя поразителен - он разрабатывает основы кинетической теории газов, занимается биомеханикой и астрофизикой, предлагает проекты управляемого металлического дирижабля и поезда на воздушной подушке, обтекаемого аэроплана и аэродинамической трубы.
      Но главное увлечение Циолковского, со временем превратившее его в подлинного пророка космической эры, было связано с принципом реактивного движения. Исходные шаги в этом направлении были сделаны им в 1883 году в рукописи "Свободное пространство", которую в то время так и не удалось опубликовать.
      Систематическая и многоплановая работа приводит к впечатляющим результатам - в последнее десятилетие 19 века Циолковский строит теорию реактивного движения и намечает контуры реалистической программы космических исследований. Так, в изданной в 1895 году научно-фантастической книге "Грезы о Земле и Небе" он формулирует вполне оправдавшуюся впоследствии идею - на первом этапе исследований необходимо запускать искусственный спутник Земли. К фантастическому жанру Циолковский будет обращаться еще не раз, не стремясь, однако, достичь бержераковских литературных высот или жюльверновской занимательности. Для него фантастика - лишь одно из средств выразить свое видение будущего и привлечь внимание общественности к вполне научным проектам. Разумеется, искусственный спутник Земли и даже целая орбитальная станция - нечто менее впечатляющее в сравнении с полетами экипажей на Луну, Марс или далекие звезды, но суть в том, что спутники и орбитальные станции - технически необходимый этап любой реалистической программы выходы в космическое пространство. Заатмосферные баллистические броски и вывод спутников предшествуют межпланетным путешествиям подобно тому, как каботажные плавания исторически предшествовали прямому пересечению морей и плаваниям трансокеанским.
      В 1903 году Циолковский публикует знаменитое "Исследование мировых пространств реактивными приборами", где дана развернутая картина космических исследований. В последующие десятилетия эта картина дополняется и уточняется - возникают проекты мощных ЖРД (жидкостных реактивных двигателей) на предельно эффективном химическом топливе, разработки конкретных проектов ракет и стационарных орбитальных станций, идеи замкнутого биологического цикла в космических кораблях и специальных систем мягкой посадки...
      Уже в 20-х годах рождается расчет многоступенчатой ракеты - проект, который показал реальность достижения космических скоростей с помощью химического топлива. Именно та конструкция, которую Циолковский назвал "космическим поездом", и оказалась ключом к последующему запуску спутников и межпланетных кораблей.
      Но, пожалуй, самым важным достижением Циолковского стала комплексность его программы, своеобразная космическая философия. Он впервые рассмотрел выход в космос, исходя не из любопытства одиночки или группки энтузиастов, а как крупнейшую социальную задачу, затрагивающую все человечество. Для духовно одинокого на протяжении многих десятилетий калужского учителя главное заключалось в решении земных проблем общества, и выход в космос он считал неизбежным этапом общечеловеческой эволюции, этапом, который позволит преодолеть пространственную ограниченность, грядущие демографические и экологические трудности. Ему грезилась трехмерная цивилизация, не ограниченная поверхностью земного шара, а свободно организующая все пространство Солнечной системы в обширную и обильную среду обитания. Лишь такого громадного масштаба сверхзадача способна была стимулировать устойчивый и даже нарастающий интерес общества к космическим полетам.
      В этом плане можно сказать, что Циолковский творил истоки новых взаимоотношений человечества с Вселенной, истоки уже посткоперниковского мировоззрения. Большая область Вселенной - Солнечная система - начала выступать в иной ипостаси: не только как предмет визуально-астрономического изучения, но как потенциальная среда обитания, качественно отличная от той, которой человечество пользовалось на протяжении всей своей истории, среда, насыщенная искусственными конструкциями, творимая руками и разумом человека.
      Именно такая точка зрения станет стартом для последней части этой книги, где нам необходимо будет разобраться в целях устремления к звездам и к поиску внеземных цивилизаций. А пока попробуем завершить краткое путешествие в историю космонавтики.
      Циолковский был во многом первым, но отнюдь не единственным исследователем, обратившим внимание на возможности ракетных полетов.
      Еще в 1881 году Николай Иванович Кибальчич (1853 -1881), руководитель лаборатории взрывчатых веществ "Народной воли", находясь в заключении по делу об убийстве императора Александра II, разработал проект управляемого аппарата с пороховым реактивным двигателем.
      В самом конце 19 века преподаватель Петербургского университета, а впоследствии заведующий кафедрой Петербургского политехнического института Иван Всеволодович Мещерский (1859 -1935) построил подробную теорию движения точечного тела переменной массы*, а Николай Иванович Тихомиров (1860-1930), в будущем один из основателей советской ракетной школы, предложил проект "самодвижущихся мин реактивного действия".
      * Эта теория была в основном завершена публикацией работы "Уравнения движения точки переменной массы в общем случае" (1904) и потом развивалась Мещерским и многими другими авторами в разработке частных задач.
      С начала 20 века к решению ракетной проблемы устремляется целое созвездие талантливых людей. В 1907 году этой проблемой увлекся американский инженер (а тогда еще студент Вустерского политехнического института) Роберт Годдард (1882-1945). Ему же в 1921 году впервые удалось осуществить стендовые испытания ЖРД на кислородно-эфирном топливе и через 5 лет провести в Вустере пробный запуск первой ЖРД-ракеты, работающей на газолине и жидком кислороде. Годдард стал своеобразным ракетным Эдисоном при жизни и по оставшимся архивным материалам на его имя было выдано 214 патентов в области ракетостроения!
      Большой вклад в разработку идеи межпланетных полетов внес француз Робер Эно-Пельтри (1881 - 1957), создатель первого самолета-моноплана. Он первым приступил к разработке моделей оптимальных траекторий движения космического аппарата и схем испытания топливных смесей. Заглядывая в далекое будущее космонавтики, Эно-Пельтри построил теорию движения релятивистской ракеты и выдвинул идею использования ядерных двигателей.
      В СССР Фридрих Артурович Цандер (1887 - 1933) и Сергей Павлович Королев (1906-1966) в 1931 году организуют знаменитый ГИРД - Группу по изучению реактивного движения, где проводятся успешные испытания ряда двигателей, и через 2 года стартует первая советская ЖРД-ракета ГИРД-09. В том же 1933 году ГИРД сливается с тихомировской гидродинамической лабораторией в Ракетный научно-исследовательский институт (РНИИ), организацию, заложившую глубокие теоретические и экспериментальные основы будущих советских космических программ.
      В Германии начинают экспериментировать с реактивными аппаратами Герман Оберт (р. 1894), сумевший в 20-х годах независимо повторить результаты Циолковского, и Вернер фон Браун (1912-1977).
      В 30-е годы проблемы создания ракет начинают переходить в более практическую плоскость. Этому в немалой степени способствовал интерес военных - реактивные снаряды стали рассматриваться как потенциально эффективное средство ведения боевых действий, идущее на смену традиционной ствольной артиллерии, или, во всяком случае, как средство, способное решать те задачи, которые не под силу артиллерии и авиации. Это не слишком приятная полоса в истории создания космической техники, но она имела место и объективно обеспечила приток в эту сферу огромных финансовых, интеллектуальных и промышленных ресурсов. Как говорится, из песни слова не выкинешь, не отбросишь и того, что первая ракета дальнего действия Фау-2 была создана Вернером фон Брауном в 1944 году в военно-исследовательском центре Пенемюнде с целью переломить ход второй мировой войны и предотвратить разгром фашистских режимов. Страшно подумать о том, что немецкие ученые-ядерщики могли проявить не меньшую патриотическую инициативу и снабдить пресловутые Фау соответствующими зарядами...
      В течение первого послевоенного десятилетия были разработаны достаточно мощные двигатели, эффективные топливно-окислительные смеси и надежные системы управления. Баллистические ракеты поднялись на сотни километров, и стало ясно, что рубежи первой и второй космической скорости вполне преодолимы.
      4 октября 1957 года (дата, практически совпадающая со столетием рождения Циолковского) - начало космической эры. В этот день на орбиту был выведен первый советский искусственный спутник Земли. Этот сравнительно скромный аппарат - шар радиусом 29 см и массой 83,6 кг, начиненный радиоаппаратурой и двигавшийся на высотах от 228 до 947 км,- настоящий подвиг коллектива, возглавляемого Королевым, организатором и руководителем первых советских космических программ.
      Примерно через месяц на орбиту вышел второй советский ИСЗ, который стал и первым биологическим спутником - на его борту находилась собака Лайка. Это был необходимый этап для осуществления выхода человека в космическое пространство.
      Этот важнейший шаг был сделан 12 апреля 1961 года, когда на орбиту ИСЗ вышел корабль "Восток-1", пилотируемый Юрием Алексеевичем Гагариным (1934-1968). За 108 минут исторического полета человечество вслед за советским космонавтом перешагнуло порог неведомого, порог древней мечты.
      А 21 июля 1969 года первым ступил на поверхность Луны американский космонавт Нейл Армстронг (р. 1930), пробывший вне лунной кабины 8476 секунд - почти 2,5 часа*.
      *Полет космического корабля "Аполлон-II" проходил с 16 по 24 июля 1969 года с тремя космонавтами на борту - Армстронгом, Эдвином Олдрином и Майклом Коллинзом. Олдрин и Армстронг спускались в лунном отсеке, и Олдрин провел на поверхности Луны около полутора часов, а Коллинз находился в орбитальном отсеке - на орбите искусственного спутника Луны, ожидая товарищей.
      Таковы, на мой взгляд, 4 важнейшие вехи космической эры. На самом деле и между отмеченными здесь достижениями и после них были получены замечательные результаты.
      Советские и американские аппараты осуществляли посадку не только на Луне, но и на Марсе и на Венере. "Маринер-10" подходил к Меркурию, "Луна-1" стала первым искусственным спутником Солнца, "Пионер-10" прошел вблизи Юпитера и, передав на Землю важную информацию, впервые отправился в межзвездное путешествие, унося на борту золотую табличку, на которой записаны сведения о нашей планете - своеобразную визитную карточку землян, предназначенную неведомой инопланетной цивилизации. Вслед за ним устремились "Пионер-11", 1-й и 2-й "Вояджеры", чтобы собрать информацию о Юпитере, Сатурне, Уране, Нептуне и тоже унести послания землян за пределы Солнечной системы.
      Недалек тот час, когда люди отправятся на ближайшие планеты. Для этого прежде всего отрабатывается длительное пребывание человека в условиях корабля и в открытом космосе. Ведь при полете, скажем, к Марсу - а он и является реальной очередной целью высадки - не отделаешься 1-2 неделями, речь пойдет о годах. Исследования, связанные с длительным пребыванием космонавтов вне Земли, активно ведутся, и их результаты - особенно это касается многомесячных работ на советских орбитальных станциях - весьма обнадеживают.
      Разумеется, такая программа, как полет экипажа на Марс, не решится в ближайший год-два. Стоимость марсианского проекта раза в 3 выше, чем лунного, то есть программы высадки людей на Луну "Аполлон", стоившей порядка 30 миллиардов долларов. Не исключено, что для марсианской трассы придется ввести в действие космические корабли с ядерно-плазменными двигателями. Но так или иначе марсианский вариант может осуществиться уже на рубеже 20-21-го столетий.
      Можно было бы еще многое сказать о блестящих результатах космонавтики и о дерзких проектах вполне обозримого будущего. Все это в какой-то степени укладывается в образную формулу, содержащуюся в знаменитых словах Нейла Армстронга: "На Луне мы походили на пятилетних мальчишек в кондитерской лавке. У нас разбежались глаза, надо было сделать так много". Эта формула неплохо передает ощущение колоссально расширившегося мира, ощущение людей начала космической эры.
      Попробуем определить главные итоги этого раздела.
      Выход в космическое пространство открыл путь к мощному рывку астрономии в новые спектральные диапазоны, к наблюдениям, которые ранее не были доступны из-за атмосферы, непроницаемой для многих типов излучения. Это уже принесло ряд выдающихся результатов - от открытия рентгеновских источников до недавнего обнаружения заплутонового кольца (вероятней всего, второго астероидного пояса Солнечной системы) с помощью инфракрасного телескопа, установленного на спутнике.
      Открылся путь и к непосредственному, контактному исследованию небесных тел. Это уже оказало заметное влияние на космогонические модели и потребовало перестройки теории планет.
      По значимости появление космических обсерваторий - событие не меньшего масштаба, чем создание в 17 веке обсерваторий телескопических, открывших нам совершенно новую Вселенную. Ясно, что в ближайшее время круг достижений заметно расширится. На очереди грандиозные проекты стационарных внеземных обсерваторий и телескопов с базой космического масштаба, которые позволят разглядеть тончайшие детали строения Вселенной - от планет у ближайших звезд до структуры квазаров, а главное - увидеть много неожиданного, обитающего пока в пограничье астрофизических моделей и самой смелой фантастики. Не исключено, что не столь уж далекие потомки будут с уважительным трепетом читать о тех "допотопных временах", когда телескопы были ограничены толстой земной атмосферой и люди азартно обсуждали проблему марсианских каналов, не имея возможности слетать на одну из ближайших планет и как следует покопаться на ее поверхности. Но ведь и мы, уже сделав шаг в постгалилееву эпоху, с немного ироническим сыновним почтением взираем на труды и гипотезы классиков дотелескопической астрономии... Именно эту новую эпоху пророчествовал Циолковский в 1912 году: "Только с момента применения реактивных приборов начнется новая великая эра в астрономии эпоха более пристального изучения неба".
      Выход в космос заставляет по-новому взглянуть на проблему взаимодействия человека с Вселенной. Мы стоим на пороге создания искусственных конструкций космического масштаба, то есть реорганизации больших участков космического пространства по своему усмотрению. Как и во имя чего это осуществлять? Ограничится ли наша экспансия Солнечной системой или надо готовить идейную основу для прорыва в иные звездные миры? Выход в масштабы межзвездных и галактических порядков - крайне нетривиальная проблема, и на ее решение нельзя механически опрокидывать опыт освоения ближайших космических окрестностей. Даже вездесущие и всеопережающие фантасты решились повторить вольтеровские идеи совсем недавно - лишь в 1928 году ("Космический жаворонок" Эдварда Смита и "Сталкивающиеся светила" Эдмонда Гамильтона).
      Для того чтобы в сколь-нибудь обозримом будущем последовали и реальные попытки такого рода, нужна особая сверхзадача, скорее всего, не сводящаяся к завоеванию дополнительного жизненного пространства для землян. Станет ли такой сверхзадачей эволюционное расщепление земной цивилизации и Контакт с цивилизациями внеземными - попытка включить человечество в единую систему космической культуры?
      Обсуждение этих глубоких проблем мы отложим до последних глав книги. А сейчас хотелось бы подвести некоторые итоги I части - исторического обзора взглядов на Вселенную.
      ИТОГИ ПУТЕШЕСТВИЯ
      На этом мы в основном завершаем путешествие в прошлое космологических представлений. Небольшие исторические экскурсы придется использовать и в следующих частях, но они добавят к пройденному не так уж много.
      По пути наверняка кое-что упущено. Сотнями интересных фактов и десятками имен можно было бы дополнить рассказ о развитии астрономии, не говоря уж о совсем фрагментарно поданной картине общеисторического фона. Однако, пытаясь объять необъятное, мы, вероятней всего, понесли бы еще большие потери.
      Главное, что следовало извлечь из путешествия по далеким временам,крупномасштабная картина эволюции модели Вселенной. Отталкиваясь от простенькой, но неплохо соответствующей наблюдаемому миру схемы трех типов мышления: магико-тотемического, религиозного и научного, мы сумели отыскать нечто полезное - выяснилось, что указанные типы образуют эволюционную цепочку. Эта цепочка выстраивалась в сильной взаимосвязи со взглядами на Вселенную. Три заместивших друг друга картины устройства космоса, конечно, отражают изменение типов мышления, но и являются сильнейшими стимулами такого изменения. Крупнейшие исторически зафиксированные переходы от магии к религии и от религии к науке сопровождались появлением принципиально новых точек зрения на небо и небесные явления. Но эти переходы в значительной степени и совершались "через небо ". Общий вывод, связанный с данным подходом, выглядит так. Новые типы мышления возникают благодаря качественному усложнению их носителей - социальных структур, что в свою очередь происходит за счет освоения новых рубежей практики. Мышление по характеру фиксируемых им образов социоморфно. Другое дело, что в конкретных условиях разные элементы социальной практики представлены по-разному.
      В доступных историческому исследованию рамках мы сразу сталкиваемся с социоморфностью мышления, а через это и с социоморфностью модели Вселенной.
      Тотем австралийского аборигена или бушмена, символ локальной группы образ, бесспорно, социоморфный. Человек в какой-то степени лучше воспринимает свой род, чем себя индивидуально. Правила поведения относительно тотема (по сути, неявные законы поведения человека в обществе) крайне далеки от современной логики, но объективно полезны.
      Однако тотему, как и любым внешним факторам, разрешается своевольничать как угодно - нет предписанных общих законов. Сообразно с этим за любым явлением может угадываться совершенно особый механизм поэтому отсутствуют законы, стягивающие сколь-нибудь широкий круг явлений окружающего мира.
      В обществах с развитой иерархической структурой социоморфизм космических представлений просматривается довольно легко. Пантеон всегда выглядит, как царский двор во главе с более или менее своевольным монархом. Суть не в его тотемном образе Солнца или Пернатого Змея, или антропоморфности в духе Мардука или Зевса, суть в системе отношений богов между собой и с людьми. Образец Римской империи с ее весьма совершенной для античности юриспруденцией и могучей централизованной властью в слиянии с монотеизмом христианства, а потом ислама стал основой модели бога-императора, абсолютного самодержца, ни с кем не делящего свою власть, но снабдившего Вселенную (свою империю) системой абсолютных законов. Познавать их и восторженно им подчиняться - такова была установка христианской и мусульманской церквей, сулящая весьма практические блага и моральное удовлетворение. Эта установка и определила уровень развитого религиозного мышления, можно сказать, главное его направление*.
      *В отличие от христианства, которое в силу многих причин поддерживало дистанцию между духовной сферой и государственными интересами ("богу божье, кесарю - кесарево") и в связи с Реформацией не сумело фетишизировать абсолютистские формации, конфуцианство довело эту установку до предела, не поощряя притом активности в познании небесных явлений. Слияние моральных норм, юрисдикции и религии в высшей степени характерно для ислама, но здесь в отличие от конфуцианства духовная власть реально преобладала над светской, как бы стояла над государством. В буддизме дистанция оказалась фактически еще большей, чем в христианстве, и образцом для мировоззрения стала не та или иная государственная формация, а индивидуальное совершенствование. Эти факторы во многом обусловили различия в последующей ориентации Европы, Китая, Индии и мусульманского мира.
      В эру научного мировоззрения Вселенную стали изучать прежде всего как гигантскую машину с мощной энергетикой. Объективные законы ее функционирования - так называемые законы природы*, подлежащие экспериментальному обнаружению и теоретической привязке ко всей системе знаний, стали символом нового мировоззрения.
      * В картезианском понятии "законы природы" как нельзя лучше усматривается социоморфизм - применение юридического термина, который вполне оправдан в рамках религиозного типа мышления (законы, установленные Богом) и сразу становится расплывчатым при строгой научной трактовке.
      Может показаться, что социоморфизм такого рода неполноценен техносфера представляет собой лишь подсистему любой социальной структуры. Пытливый читатель сумеет сформулировать вопросы: а не соответствует ли наш уровень чему-то вроде фетишизма этой подсистемы? А где же место человека, вообще мыслящего социального организма?
      И все это вообще-то правда. Мы действительно фетишизируем машины, а до недавних пор и не стеснялись рекламировать такой подход, развивая мифы о мыслящем венце мироздания, вооружающемся все более мощной техникой, о безграничном покорении природы и неисчерпаемых ресурсах всего и повсюду.
      Мы пытались навязать познанию внесоциальные критерии, когда оно вышло на особо опасный и необычайно стремительный вираж, пытались, вроде бы отвергая примитивные теистические доктрины, но все-таки наивно полагая, что чья-то мудрая рука остановит нас за секунду до последнего смертоносного эксперимента... Сейчас хорошо видно, что розовой магии безграничностей и неисчерпаемостей приходит конец. Когда развитие техносферы достигло уровня, угрожающего существованию социальных организмов и между прочим самой техносферы в масштабах планеты, неизбежно вступают в игру мощнейшие социальные силы, которые должны перехватить управление выходящими из-под контроля факторами. Другого варианта просто нет, если предполагать долгосрочную и успешную эволюцию человечества более важной целью, чем удовлетворение имперских притязаний или чистого любопытства.
      В связи с этим отмеченную неполноценность социоморфизма на уровне научного мировоззрения можно считать временным явлением. Вселенная (а в частности Земля и ее окрестности) должна выглядеть не просто суперавтоматом, но и системой, пригодной для существования хотя бы земной цивилизации и созданной ею культуры, более того, системой, искусственно регулируемой в тех или иных масштабах.
      Наконец придется осознать и тот общий факт, что мы видим Вселенную сквозь линзу именно земной социальной практики в самом широком смысле, включая сюда и биосоциальный уровень нашего развития и соответствующие этому уровню технические структуры. Это дает лишь одну из возможных систем отсчета, и нельзя приписывать именно нашей системе уникальную объективность видения мира. Иначе никогда не удастся всерьез поставить и решить такую грандиозную проблему, как Контакт с внеземными цивилизациями. В силу иной социокультурной и даже биологической конституции наши будущие партнеры могут иметь совершенно иные представления по поводу одних и тех же событий, вовсе не совпадающие с представлениями земной науки. Не отказавшись от геоцентризма своего мировоззрения, мы попросту не сумеем их понять. И именно такая цель - понимание в масштабах Контакта - послужит маяком для попыток последовательного выяснения социоморфной природы наших знаний.
      Так и вырисовывается круг задач для дальнейших глав этой книги. В III части мы попробуем заглянуть в картину Вселенной, соответствующую уровню Контакта, а ближайшая задача - ознакомиться с некоторыми современными моделями космологии и астрофизики.

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36