Современная электронная библиотека ModernLib.Net

Моделирование рассуждений. Опыт анализа мыслительных актов

ModernLib.Net / Научно-образовательная / Поспелов Дмитрий Александрович / Моделирование рассуждений. Опыт анализа мыслительных актов - Чтение (стр. 9)
Автор: Поспелов Дмитрий Александрович
Жанр: Научно-образовательная

 

 


Это внутреннее представление преобразуется в запрос к базе знаний. Если прямого ответа на запрос в базе нет, то логический блок осуществляет поиск косвенной информации, получаемой из хранящейся в базе с помощью достоверного или правдоподобного вывода. Система объяснения (это специфический блок, отличающий экспертные системы от других интеллектуальных систем) при необходимости по требованию пользователя поясняет ему, как получена та информация, которая выдана в качестве ответа.

Рис. 31.



Мы хотим отметить, что ядром всех основных типов рассмотренных интеллектуальных систем являются база знаний и блок, осуществляющий вывод с помощью знаний (решатель, планировщик или логический блок). Этот вывод составляет основную процедуру, реализуемую в интеллектуальных системах.

Знания о внешнем мире могут иметь двоякую природу. Они могут содержать декларативное описание фактов и явлений внешнего мира, фиксирующее их наличие или отсутствие, а также основные связи и закономерности, в которые эти факты и явления входят. Но они могут содержать и процедурные описания того, как надо манипулировать с этими фактами и достигать целей, интересных для системы. Для описания знаний в интеллектуальных системах используются специальные языки описания знаний (ЯОЗ). Эти языки могут иметь различную природу. Нас будут интересовать (из-за темы данной книги) лишь языки логического типа. Простейшими видами таких ЯОЗ являются языки исчисления высказываний или исчисления предикатов вместе с теми процедурами вывода, которые для них известны. Однако в современных интеллектуальных системах такие языки используются довольно редко. Куда более распространены в них языки, основанные на продукциях. Продукции в общем виде можно записать в форме «Если…, то…». Сама по себе эта форма оказывается весьма характерной для фиксации знаний в различных областях человеческой деятельности. Вот несколько примеров текстов, взятых почти наугад из различных книг.

1. Если Академия заблагорассудит присоединить к себе ученого русского или иностранца, который не столько еще известен, чтобы мог требовать чести быть почетным членом, но своими полезными сочинениями или познаниями, или же ревностию и старанием, оказав полезные Академии услуги, обратил на себя отличное внимание, то она принимает его в корреспонденты, которые также разделяются на русских и иностранных. (Устав Санкт-Петербургской Академии наук 1836 года, № 85)

2. Если враг не сдается, то его уничтожают. Если кто к нам с мечем придет, то от меча и погибнет. (Высказывания полководцев.)

3. Если температура в верхней зоне превысит 75°, то необходимо открыть задвижку № 7. (Из инструкции.)

Число подобных примеров можно увеличивать до бесконечности. Они показывают, что представление фрагментов наших знаний о внешнем мире и действиях в нем в виде продукций имеет весьма большое распространение. Часть специалистов по интеллектуальным системам считает, что запись знаний в виде систем продукций носит универсальный характер – любые знания можно записать в такой форме. Они приводят немало примеров, когда знания, внешне не имеющие продукционной формы, удается перевести в систему продукций. Вот один из таких примеров.

Химические реакции мы со школьных лет привыкли воспринимать в форме соотношений следующего вида:



И т.д.

Покажем, как подобные утверждения можно записать в продукционной форме. Введем шесть сортов базовых элементов. К первому сорту отнесем металлы: Q1={Cu,Mg,Zn,…}. Ко второму – газы: Q2={H2,О,N,…}, к третьему – воду: Q3={H2O}. Четвертый сорт составляют окиси: Q4={MgO,CuО,…}. Пятый сорт образуют кислоты: Q5={H2SO4,HCl,…}. Наконец, шестой сорт образуют соли: Q6={ZnSO4,NaCl,…}. Зададим два базовых отображения. Первое отображает элементы из Q4 в элементы Q1. С его помощью для окисей выделяются основания. Второе отображение сопоставляет с именами веществ (под веществом будем понимать металл, газ, окись, воду, кислоту или соль) их химические формулы. Введем еще два оператора, которые будем использовать в продукциях: A(q) и E(q). Оператор A(q) добавляет в базу знаний q, а оператор E(q) убирает q из базы. Выпишем первый тип продукций для описания химических реакций.

Эта продукция годится для описания двух из приведенных выше химических реакций. Для описания третьей реакции используем другой тип продукций.

Вспомним программу «Логик-теоретик», которую мы обсуждали в третьей главе. Она была основана на том, что при доказательстве равенства двух выражений в исчислении высказываний использовалось понятие различия в двух выражениях и подбирались такие преобразования, которые эти различия устраняли. Для соотнесения различий с преобразованиями была построена таблица, в которой указывалось, какие преобразования какие различия устраняют. От этой таблицы чрезвычайно легко перейти к продукционной системе. Если i есть номер различия, a F* – одно из преобразований, то запись iF* соответствует утверждению, что при наличии различия i можно применить преобразование F*.

Два последних примера показывают, что продукциями являются не только те выражения, которые имеют форму «Если…, то…», но и многие другие выражения. К ним, по сути, сводятся все каузальные, т.е. причинно-cледственные утверждения, подобные тем, которые мы обсуждали в предшествующей главе. К ним же относятся и любые схемы вывода типа «посылки – следствие». Замкнутые системы правил типа законов короля Павзолия, описанных в романе Пьера Луиса «Приключения короля Павзолия»[9], также могут рассматриваться как особая форма продукций. Даже такие утверждения, как знаменитое «Если звезды зажигают, значит, это кому-то нужно» (В. Маяковский), можно рассматривать как продукцию.

Продукционные системы получили при представлении знаний в последнее время наибольшее распространение. Поэтому посвятим им специальный раздел нашей книги.

Продукционные системы

Анализ структур ЭВМ пятого поколения, роботов автономного типа и экспертных систем приводит к обобщенной структуре, показанной на рис. 32. Эта схема при условии, что система R представляет собой продукционную систему, может послужить основой для классификации типов продукций. На ней показано взаимодействие «рассуждающей» системы с внешним миром и базой знаний, из которой рассуждающая система может черпать накопленную ранее информацию о закономерностях этого мира и его состояниях. Из внешнего мира в рассуждающую систему приходит сиюминутная, текущая информация о наблюдаемых в этом мире фактах и явлениях. А из базы знаний поступает информация, имеющая более фундаментальное значение. Она может описывать законы внешнего мира, правила действий в нем, целевые структуры или ожидаемые отклики внешнего мира на те или иные воздействия на него. В памяти рассуждающей системы хранится текущая информация, связанная с ходом рассуждений. Со временем она либо исчезает, либо передается для хранения в базу знаний. Последнее происходит лишь в том случае, когда в процессе рассуждений появилась информация, которая может оказаться полезной для рассуждающей системы в будущем.


Рис. 32.



Теперь приступим к классификации продукций.

1. Продукции типа AWBR. В левой части продукции стоит информация, поступившая из внешнего мира, а в правой – сведения о вытекающих из этой информации изменениях в рассуждающей системе. Эти изменения сказываются на ходе рассуждений. Например, рассуждая утром о выборе места воскресного отдыха, вы вдруг слышите по радио сообщение о том, что в середине дня ожидается сильная гроза. Это сообщение и есть AW. В ответ на него может измениться весь ход ваших рассуждений о планах отдыха. Сразу же будут отброшены варианты, связанные с пребыванием за городом на открытом воздухе, а другие варианты приобретут куда больший вес. Это изменение предпочтительности вариантов отдыха характеризуется правой частью продукции BR. Сама продукция для данного случая могла бы выглядеть, например, следующим образом: «Если на улице идет дождь или гроза или они ожидаются в течение дня, то вместо прогулки лучше пойти в музей или кино».

В качестве AW может выступать не только некоторое сообщение о W или некоторый факт, имеющий место во внешнем мире, но и прямое воздействие из внешнего мира на рассуждающую систему. Но что бы ни стояло в левой части продукции ABWR, в ее правой части стоят некоторые операторы, меняющие ход самих рассуждений.

2. Продукции типа AWBK. Такие продукции отражают ситуацию передачи некоторого сообщения из внешнего мира для запоминания в базе знаний. Примером продукции такого типа может служить приказание, которое отдает командир разведчику: «Все, что увидишь интересного в окрестности переправы, запомни, а потом передай через связного». Это приказание можно переписать в стандартной продукционной форме: «Если F есть интересный факт, относящийся к району переправы, то F надо запомнить и передать со связным». При работе с продукциями такого типа рассуждающая система выступает в роли отделения связи, передающего сообщение от одного абонента другому. Правда, в этом отделении связи может происходить перлюстрация корреспонденции. Рассуждающая система может при необходимости воспользоваться информацией о AW и BK для своих целей.

3. Продукции типа AKBW. В этом случае рассуждающая система также выступает в виде отделения связи. Только теперь выдача сообщения происходит из базы знаний во внешний мир. Примером возникновения подобной продукции может служить обнаружение в базе знаний противоречивой информации. Пусть некто X знает, что у его приятеля Y пятеро детей. Но встретившийся X знакомый Z утверждает, что по его сведениям у Y не пятеро детей, а трое. Такое противоречие может заставить «рассуждающую систему X» реализовать продукцию, в которой АК характеризует факт наличия противоречивой информации о числе детей у Y, a BW – некоторое действие, которое X предпринимает в связи с этим. Например, BW может соответствовать разговору X по телефону с Y, в ходе которого X попытается выяснить истинное количество детей у Y.

4. Продукции типа ARBK. Они соответствуют тому, что некоторый факт, полученный рассуждающей системой, передается на хранение в базу знаний. Интерпретация продукций такого типа очевидна.

5. Продукции типа AKBR. Подобно продукциям предшествующего типа эти продукции описывают обмен информацией при работе рассуждающей системы. Необходимая для рассуждений информация выбирается из базы знаний и передается для обработки в рассуждающую систему.

6. Продукции типа AWBW. Эти продукции обычно называют продукциями непосредственного отклика. Левая их часть AWописывает некоторую наблюдаемую ситуацию во внешнем мире или воздействие внешнего мира на рассуждающую систему. Правая часть продукции описывает действие, которое поступает от системы в окружающий ее мир. Выполнение подобных продукций чем-то напоминает мгновенный отклик, возникающий при рефлекторных процессах (например, при отдергивании руки, когда она касается чего-то горячего). Рассуждающая система в этих случаях просто не успевает срабатывать. Она лишь транслирует информацию об AW и BW адресатам.

7. Продукции типа ARBW. Они описывают те воздействия на внешний мир, которые порождает результат работы рассуждающей системы. «Подумай, прежде чем делать» – мудрый совет, призывающий того, к кому он обращен, воспользоваться продукцией данного типа, а не продукцией непосредственного отклика.

8. Продукции типа ARBR. Это внутренние продукции рассуждающей системы. Они описывают промежуточные шаги процесса вывода и не влияют непосредственно на содержимое базы знаний и состояния внешнего мира. Эти продукции описывают единичные шаги многошаговых процессов рассуждений.

9. Продукции типа АКВК. Они описывают процедуры преобразования знаний в базе знаний: обобщение знаний, получение новых знаний из ранее известных с помощью логического вывода, установление закономерностей между знаниями на основании обработки сведений о единичных фактах, хранящихся в базе знаний, и т.п. Рассуждающая система в этом случае используется лишь в качестве инструмента, с помощью которого происходит изменение состояния базы знаний.

Сказанное наводит на мысль, что продукции могут иметь весьма различное значение. В качестве их левых и правых частей могут выступать и некоторые утверждения, и действия. Возможны не только те интерпретации, которые мы привели выше, но и ряд других. Например, продукции типа AWBK можно трактовать как способ описания шагов общения между пользователем и системой в диалоговом режиме. Тогда AW будет интерпретироваться как вопрос пользователя, а ВK – как ответ системы. При смене спрашивающего и отвечающего надо использовать для описания шага диалога продукции типа AKBW.

Продукционной системой будем называть любую совокупность продукций, в которую могут входить продукции любого из перечисленных выше типов.

Часто вместо продукций типа ?? рассматривают более сложные конструкции. В общей форме продукции имеют вид


i, П, P, A B, Q.


Здесь АВ – обычная продукция «Если …, то …», которая носит название ядра продукции. Элемент Р характеризует внешние условия или условия применимости продукции, определяемые факторами, не входящими непосредственно в А, например целями, которые стоят перед рассуждающей системой. Условия Р позволяют из всех продукций, у которых в левой части ядра стоит А, отбирать нужную часть продукций.

Элемент П характеризует сферу проблемной области базы знаний или предусловия применимости продукции. Эти предусловия ничем не отличаются от Р, но выделяют подсистемы продукций на ранг выше тех, которые выделяют условия. Предусловия задают формальную систему, в рамках которой будут проводиться логические рассуждения. Поясним эту мысль на примере. В обычном мире лошади не летают. Поэтому продукция «Если х лошадь, то она летать не может» в обычном мире всегда имеет место. Но если мы от обычного мира перейдем к миру греческих мифов, то продукция «Если лошадь есть Пегас, то она летает» станет верной. В мире же русской сказки продукция «Если лошадь есть Конек-Горбунок, то она летает» принимается без всякой критики. В приведенном примере предусловия П должны развести между собой обычный мир, мир греческих мифов и мир русской сказки.

Наконец, Q характеризует постусловия продукции, указывающие на те изменения, которые необходимо внести в базу знаний и в систему продукций после реализации данной продукции. Операторы A(q) и E(q), рассмотренные при описании химических реакций, являются примером таких постусловий.

Однако в общем виде продукции встречаются весьма редко. Предусловия характерны лишь для больших по объему и разнородных по составу баз данных и знаний, а постусловия – для планирующих систем роботов, когда используются продукции типа ARBW.

Если продукционная система такова, что на некотором шаге процесса может быть реализована не одна продукция, а несколько, то возникает ситуация, в которой необходимо уметь управлять ходом процесса. Эта ситуация настолько важна и принципиальна, что мы посвятим ее анализу специальный раздел. Именно в этом анализе раскрываются особенности использования продукций для моделирования рассуждений.

Управление выводом

Несколько изменим предшествующий рисунок. Будем считать, что информация из внешнего мира W поступает в базу знаний К, минуя рассуждающую систему R. Это позволит нам рассматривать лишь продукции типа АКВК. Не будем пока учитывать предусловия и условия. Все условия применимости продукций сосредоточим в А, а В будем трактовать как внесение некоторых изменений в базу знаний. Таким образом, как условия активизации продукции, так и результат ее выполнения связаны с информацией, хранящейся в базе знаний. Будем считать также, что интеллектуальная система функционирует в некоторые дискретные моменты времени t. В эти моменты времени в базу знаний из внешнего мира может поступать некоторая информация. В эти же такты времени происходит проверка выполнения условий срабатывания продукций.

Последнее допущение позволяет ввести понятие состояния базы знаний в момент времени t, которое будем обозначать dt. Одно состояние может смениться другим по двум причинам. В момент t+1 из внешнего мира в базу знаний может прийти новая информация. Или в этот момент времени в базу знаний будет занесена новая информация, возникающая в результате срабатывания некоторой продукции.

Если в некоторый момент t состояние dt таково, что в нем удовлетворяются условия для некоторого множества продукций, то все они образуют фронт готовых продукций. Основная задача управления состоит в выборе из этого фронта очередной продукции для исполнения.

Для выбора важен вопрос о влиянии порядка выбора на окончательный результат рассуждений. Если имеются две продукции и ситуация такова, что изменение состояния базы знаний, которое может возникнуть при срабатывании одной из них, сказывается на выполнимости условий срабатывания для другой, то такие продукции естественно назвать зависимыми. Если две продукции независимы, то порядок их выбора из фронта не может сказаться на результате рассуждения. Поэтому интерес представляют лишь зависимые продукции.

Как осуществлять выбор в этом случае? Для пояснения складывающейся ситуации рассмотрим следующий пример. Только что кончилась лекция, наступил двухчасовой перерыв и группа студентов обсуждает проблему: куда сейчас пойти? В имеющихся условиях есть две альтернативы: пойти в кино (но никто не знает, какая там идет картина) или пойти в кафе-мороженое (но ни у кого нет уверенности, что кафе работает). Ясно лишь одно, что выбор одного варианта исключает выбор другого, так как кино и кафе-мороженое находятся в разных концах города. Убедившись, что кафе не работает, нет надежды успеть в кино, а обнаружив, что в кино ничего интересного не идет, нет надежды поесть мороженое. В условиях, когда никто из студентов не имеет никакой информации о кино и кафе, единственным разумным способом выбора является известное бросание монетки, т.е. случайный выбор. Но если в момент обсуждения появляется их сокурсник, который говорит, что только что был в кино и ушел, не досмотрев скучную картину (тем самым он меняет состояние «баз знаний» остальных студентов), то выбор активизируемой «продукции», соответствующей программе достижения кафе-мороженого, станет однозначным.

Описанная ситуация является в некотором смысле экстремальной. Один выбор исключает другой. Чаще это не так – после неудачного выбора можно вернуться к альтернативному выбору и попробовать другой вариант. Чтобы так можно было делать в процессах рассуждений, необходимо сохранять состояние базы знаний в момент выбора. Для реализации этого при принятии решения об альтернативном выборе можно, например, запоминать не всю информацию, имеющуюся в данный момент в базе знаний, а только ту ее часть, которая меняется в результате применения продукций из выбранного варианта. Если вариант окажется удачным, то новое состояние базы знаний будет сформировано на основе полученной в ходе проверки варианта информации. Если попытка окажется безрезультатной, то произойдет возвращение к состоянию базы знаний в момент выбора, а информация, полученная в ходе плохого варианта, сотрется из памяти. Практически все системы моделирования рассуждений в интеллектуальных системах используют этот прием, который называется «бэктрекинг».

Но в любом случае остается проблема выбора продукции из готового фронта. Психологов весьма интересует вопрос, как это делают люди. К сожалению, однозначного ответа на этот вопрос пока нет. При экспериментах с программой «Логик-теоретик» ее авторы проводили сравнение работы программы с тем, как ведут себя в многочисленных возникающих по ходу доказательства случаях альтернативного выбора люди. В частности, последовательность, в которой перечислены различия в формулах, используемая для выбора преобразований в программе «Логик-теоретик», отражает экспериментально наблюдаемые приоритеты, демонстрируемые людьми.

Отсутствие точных психологических данных о способах выбора продукций из фронта людьми привело к тому, что в интеллектуальных системах стали использовать эвристические соображения, которые могут и не отражать особенности человеческих рассуждений. Так, весьма популярной стратегией выбора является принцип «стопки книг». Этот принцип описывает процедуру наиболее быстрого (в среднем) способа поиска нужной книги в стопке книг. Если каждый раз, использовав некоторую книгу, класть ее в стопку сверху, то часто используемые книги постепенно сосредоточатся в ее верхней части, а внизу будут лежать те, которые почти никогда не требовались. Если при поиске очередной нужной книги начинать просмотр стопки сверху, то она, как правило, встретится довольно скоро. Если продукции во фронте будут упорядочены по частоте их предшествующего успешного использования и активизироваться будет первая продукция этого фронта, то принцип стопки книг будет реализован.

У этого принципа есть определенный аналог в процедурах работы с информацией у человека. Если потребовать от испытуемых «не задумываться», говорить первое, что «приходит в голову», то на просьбу «Назовите поэта XIX века», как правило, будет дан ответ «Пушкин», а на просьбу «Назовите плодовое дерево» в подавляющем большинстве случаев ответ «Яблоня». Это, конечно, справедливо для испытуемых, живущих в средней полосе СССР. В других местах и социо-культурах возникнут свои приоритетные ответы. Человек как бы всегда имеет наготове, «на языке», подходящие отклики на часто встречающиеся ситуации.

Другой эвристический прием, заставляющий вспомнить герменевтические рассуждения, состоит в проверке в первую очередь продукции с самым длинным условием А. Такой прием обосновывается принципом «частное важнее общего» или «исключение важнее правил».

Но такие априорные внешние способы задания продукций, выбираемых из фронта, не всегда оправданы. В большинстве случаев тот или иной выбор зависит от текущего состояния базы знаний dt и того реального набора продукций, который образует в этот момент времени фронт. Для описания выбора при таких условиях в интеллектуальных системах часто используют так называемые метапродукции. Они вводятся в систему продукций специально для того, чтобы осуществлять приоритетный выбор тех или иных продукций из фронта в зависимости от предыстории развития процесса рассуждений, состава фронта и состояния базы знаний. Вот пример такой метапродукции, используемой в американской экспертной системе MYCIN – TEIRESIAS, диагностирующей инфекционные заболевания.

Мы специально не расшифровываем латинские термины, так как они совершенно не мешают понять суть работы метапродукции в данной экспертной системе.

Довольно часто возможность применения той или иной продукции зависит не только от того, какие именно продукции входят во фронт (как в только что приведенном примере метапродукции), но и от того, какие продукции в этот фронт не вошли. Другими словами, влияние может оказывать как «положительный», так и «отрицательный» контекст, в котором происходит выбор продукции из фронта готовых продукций.

Когда имеется выбор из нескольких продукций, то их можно выполнять последовательно, альтернативно или параллельно. Если считать, что в период реализации продукций из фронта время как бы останавливается (т.е. сохраняется неизменной база знаний со своим состоянием di), а влияния действий продукций друг на друга нейтрализуются тем, что все они работают в автономных участках памяти, не искажая информации в базе знаний, то порядок их выполнения роли не играет. Лишь после реализации всех продукций надо выбрать те из них, которые сформируют новый фронт (с учетом их возможного взаимодействия). Однако и эта задача оказывается весьма непростой и требует каких-то эвристических соображений.

Другой проблемой управления реализацией системы продукций является поиск наиболее эффективных способов проверки выполнения условий А в множестве продукций на текущем состоянии базы знаний di. При большой базе знаний эта переборная процедура весьма неэффективна. Каков аналог данного процесса у человека?

У психологов бытует термин «поле активного внимания». В это поле попадает та часть хранимой в памяти человека информации, которая обусловливает его текущие размышления или рассуждения. Как бы лучом прожектора эта информация выхватывается из огромного хранилища всевозможных знаний. Поле активного внимания скользит по памяти, не всегда подчиняясь нашему желанию. Как порой мучительно трудно выудить нужную информацию (например, вспомнить фамилию человека, лицо которого вам явно знакомо), как, отчаявшись, мы перестаем об этом думать, а оно «само, без видимых усилий» как бы всплывает из темных, неосвещенных глубин памяти.

Нечто аналогичное применяют специалисты в области баз знаний, вводя механизм окна активизации знаний. С помощью этого «окна» активизируются определенные фрагменты базы знаний. Эти фрагменты используются для проверки условий в продукциях. Для вычленения фрагментов удобно воспользоваться условиями Р, активизирующими ту область продукционной системы, которая оказывается тесно связанной с фрагментом знаний, попавшим в окно активизации знаний. Постусловия позволяют управлять перемещением окна по полю памяти, а также его размерами. Управлять «окном» могут и специальные метапродукции, подобные тем, которые используются для приоритетного выбора из фронта готовых продукций.

Мы рассматривали до сих пор лишь такие продукции, в которых В обязательно следовало при активизации продукции. Однако весьма часто продукции приходится использовать в условиях правдоподобного вывода. Собственно говоря, правдоподобные схемы рассуждений из четвертой главы уже демонстрируют продукции такого сорта. Тем не менее, приведем еще один пример, взяв его из уже упоминавшейся экспертной системы MYCIN. Поскольку в ряде случаев система не может выдать рекомендацию со стопроцентной уверенностью, то она выдает ее с оценкой правдоподобности, о которой мы говорили в предшествующей главе.

При работе с правдоподобными продукциями применяются приемы, аналогичные описанным в четвертой главе. Вместо числового значения оценки правдоподобия в таких продукциях могут встречаться нечеткие квантификаторы, как в D-силлогизмах.

Кроме обычных приемов вывода (как достоверного, так и правдоподобного) для систем продукций могут использоваться и иные способы получения результатов рассуждений. Один из них – это получающий в последнее время распространение вывод на семантической сети.

Вывод на семантической сети

Семантические сети – это наиболее общая модель представления знаний об окружающем интеллектуальную систему мире и способах действий в нем. В самом общем виде семантическая сеть есть множество вершин, каждая из которых соответствует определенному понятию, факту, явлению или процессу, а между вершинами заданы различные отношения, изображаемые дугами. Дуги снабжены именами или описаниями, задающими семантику отношений. Вершины также помечены именами или описаниями, содержащими нужную для понимания семантики вершины информацию.

Прибегнем, как всегда, к наглядному примеру. Известный роман Э. Хемингуэя «Острова в океане» начинается так:

«Дом был построен на самом высоком месте узкой косы между гаванью и открытым морем. Построен он был прочно, как корабль, и выдержал три урагана. Его защищали от солнца высокие кокосовые пальмы, пригнутые пассатами, а с океанской стороны крутой спуск вел прямо от двери к белому песчаному пляжу, который омывался Гольфстримом».

Попробуем отобразить информацию, содержащуюся в этом отрывке, в виде семантической сети. Введем систему понятий, которым для удобства присвоим имена по первым буквам соответствующего слова текста: Д – дом, СВМ – самое высокое место, К – коса, Г – гавань, ОМ – открытое море, КП – кокосовые пальмы, С – солнце, КС – крутой спуск, ДВ – дверь, П – пляж, Г – Гольфстрим. Теперь будем постепенно строить семантическую сеть, вводя нужные отношения и описания. На рис. 33, а показан фрагмент семантической сети, соответствующей первым двум фразам текста.


  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13