Современная электронная библиотека ModernLib.Net

Большая Советская Энциклопедия (СО)

ModernLib.Net / Энциклопедии / БСЭ / Большая Советская Энциклопедия (СО) - Чтение (стр. 47)
Автор: БСЭ
Жанр: Энциклопедии

 

 


  Полное излучение С. определяется по освещённости, создаваемой им на поверхности Земли, - около 100 тыс. лк, когда С. находится в зените. Вне атмосферы на среднем расстоянии Земли от С. освещённость равна 127 тыс. лк. Сила света С. составляет 2,84Ч10 27световое количество энергии, приходящее в 1 минна площадку в 1 см 3, поставленную перпендикулярно солнечным лучам за пределами атмосферы на среднем расстоянии Земли от С., называют . Мощность общего излучения С. - 3,83Ч10 26 вт, из которых на Землю попадает около 2Ч10 17 вт, средняя яркость поверхности С. (при наблюдении вне атмосферы Земли) - 1,98Ч10 9 нт, яркость центра диска С. - 2,48Ч10 9 нт. Яркость диска С. уменьшается от центра к краю, причём это уменьшение зависит от длины волны, так что яркость на краю диска С., например для света с длиной волны 3600 Е, составляет около 0,2 яркости его центра, а для 5000 Е - около 0,3 яркости центра диска С. На самом краю диска С. яркость падает в 100 раз на протяжении менее одной секунды дуги, поэтому граница диска С. выглядит очень резкой ( рис. 1 ).

  Спектральный состав света, излучаемого С., т. е. распределение энергии в спектре С. (после учёта влияния поглощения в земной атмосфере и влияния фраунгоферовых линий), в общих чертах соответствует распределению энергии в излучении абсолютно чёрного тела с температурой около 6000 К. Однако в отдельных участках спектра имеются заметные отклонения. Максимум энергии в спектре С. соответствует длине волны 4600 Е. Спектр С. - это непрерывный спектр, на который наложено более 20 тыс. линий поглощения (фраунгоферовых линий). Более 60% из них отождествлено со спектральными линиями известных химических элементов путём сравнения длин волн и относительной интенсивности линии поглощения в солнечном спектре с лабораторными спектрами. Изучение фраунгоферовых линий даёт сведения не только о химическом составе атмосферы С., но и о физических условиях в тех слоях, в которых образуются те или иные линии поглощения. Преобладающим элементом на С. является водород. Количество атомов гелия в 4-5 раз меньше, чем водорода. Число атомов всех других элементов вместе взятых, по крайней мере, в 1000 раз меньше числа атомов водорода. Среди них наиболее обильны кислород, углерод, азот, магний, кремний, сера, железо и др. В спектре С. можно отождествить также линии, принадлежащие некоторым молекулам и свободным радикалам: OH, NH, CH, CO и др.

  Магнитные поля на С. измеряются главным образом по зеемановскому расщеплению линий поглощения в спектре С. (см. ). Различают несколько типов магнитных полей на С. (см. ). Общее магнитное ноле С. невелико и достигает напряжённости в 1 этой или иной полярности и меняется со временем. Это поле тесно связано с межпланетным магнитным полем и его секторной структурой. Магнитные поля, связанные с солнечной активностью, могут достигать в солнечных пятнах напряжённости в несколько тысяч э. Структура магнитных полей в активных областях очень запутана, чередуются магнитные полюсы различной полярности. Встречаются также локальные магнитные области с напряжённостью поля в сотни э вне солнечных пятен. Магнитные поля проникают и в хромосферу, и в солнечную корону. Большую роль на С. играют магнитогазодинамические и плазменные процессы. При температуре 5000-10 000 К газ достаточно ионизован, проводимость его велика и благодаря огромным масштабам солнечных явлений значение электромеханических и магнитомеханических взаимодействий весьма велико (см. ).

 Атмосферу С. образуют внешние, доступные наблюдениям слои. Почти всё излучение С. исходит из нижней части его атмосферы, называемой фотосферой. На основании уравнений лучистого переноса энергии, лучистого и локального термодинамического равновесия и наблюдаемого потока излучения можно теоретически построить модель распределения температуры и плотности с глубиной в фотосфере. Толщина фотосферы около 300 км, её средняя плотность 3Ч10 –4 кг/ м 3. температура в фотосфере падает по мере перехода к более внешним слоям, среднее её значение порядка 6000 К, на границе фотосферы около 4200 К. Давление меняется от 2Ч10 4до 10 2н/ м 2. Существование конвекции в подфотосферной зоне С. проявляется в неравномерной яркости фотосферы, видимой её зернистости - т. н. грануляционной структуре. Гранулы представляют собой яркие пятнышки более или менее круглой формы, видимые на изображении С., полученном в белом свете ( рис. 2 ). Размер гранул 150-1000 км, время жизни 5-10 мин. отдельные гранулы удаётся наблюдать в течение 20 мин. Иногда гранулы образуют скопления размером до 30 000 км. Гранулы ярче межгранульных промежутков на 20-30%, что соответствует разнице в температуре в среднем на 300 К. В отличие от др. образований, на поверхности С. грануляция одинакова на всех гелиографических широтах и не зависит от солнечной активности. Скорости хаотических движений (турбулентные скорости) в фотосфере составляют по различным определениям 1-3 км/ сек. В фотосфере обнаружены квазипериодические колебательные движения в радиальном направлении. Они происходят на площадках размерами 2-3 тыс. км, с периодом около 5 мини амплитудой скорости порядка 500 м/ сек. После нескольких периодов колебания в данном месте затухают, затем могут возникнуть снова. Наблюдения показали также существование ячеек, в которых движение происходит в горизонтальном направлении от центра ячейки к её границам. Скорости таких движений около 500 м/ сек. Размеры ячеек - супергранул - 30-40 тыс. км. По положению супергранулы совпадают с ячейками хромосферной сетки. На границах супергранул магнитное поле усилено. Предполагают, что супергранулы отражают существование на глубине нескольких тыс. кмпод поверхностью конвективных ячеек такого же размера. Первоначально предполагалось, что фотосфера даёт только непрерывное излучение, а линии поглощения образуются в расположенном над ней обращающем слое. Позже было установлено, что в фотосфере образуются и спектральные линии, и непрерывный спектр. Однако для упрощения математических выкладок при расчёте спектральных линий понятие обращающего слоя иногда применяется.

  Солнечные пятна и факелы. Часто в фотосфере наблюдаются солнечные пятна и факелы ( рис. 1 и 2 ). Солнечные пятна - это тёмные образования, состоящие, как правило, из более тёмного ядра (тени) и окружающей его полутени. Диаметры пятен достигают 200 000 км. Иногда пятно бывает окружено светлой каёмкой. Совсем маленькие пятна называются порами. Время жизни пятен - от нескольких чдо нескольких мес. В спектре пятен наблюдается ещё больше линий и полос поглощения, чем в спектре фотосферы, он напоминает спектр звезды спектрального класса КО. Смещения линий в спектре пятен из-за эффекта Доплера указывают на движение вещества в пятнах - вытекание на более низких уровнях и втекание на более высоких, скорости движения достигают 3Ч10 3 м/ сек(эффект Эвершеда). Из сравнений интенсивностей линий и непрерывного спектра пятен и фотосферы следует, что пятна холоднее фотосферы на 1-2 тыс. градусов (4500 К и ниже). Вследствие этого на фоне фотосферы пятна кажутся тёмными, яркость ядра составляет 0,2-0,5 яркости фотосферы, яркость полутени около 80% фотосферной. Все солнечные пятна обладают сильным магнитным полем, достигающим для крупных пятен напряжённости 5000 э. Обычно пятна образуют группы, которые по своему магнитному полю могут быть униполярными, биполярными и мультиполярными, т. е. содержащими много пятен различной полярности, часто объединённых общей полутенью. Группы пятен всегда окружены факелами и флоккулами, протуберанцами, вблизи них иногда происходят солнечные вспышки, и в солнечной короне над ними наблюдаются образования в виде лучей шлемов, опахал - всё это вместе образует активную область на С. Среднегодовое число наблюдаемых пятен и активных областей, а также средняя площадь, занимаемая ими, меняется с периодом около 11 лет. Это - средняя величина, продолжительность же отдельных циклов солнечной активности колеблется от 7,5 до 16 лет (см. ). Наибольшее число пятен, одновременно видимых на поверхности С., меняется для различных циклов более чем в два раза. В основном пятна встречаются в т. н. королевских зонах, простирающихся от 5 до 30° гелиографической широты по обе стороны солнечного экватора. В начале цикла солнечной активности широта места расположения пятен выше, в конце цикла - ниже, а на более высоких широтах появляются пятна нового цикла. Чаще наблюдаются биполярные группы пятен, состоящие из двух крупных пятен - головного и последующего, имеющих противоположную магнитную полярность, и несколько более мелких. Головные пятна имеют одну и ту же полярность в течение всего цикла солнечной активности, эти полярности противоположны в северной и южной полусферах С. По-видимому, пятна представляют собой углубления в фотосфере, а плотность вещества в них меньше плотности вещества в фотосфере на том же уровне.

  В активных областях С. наблюдаются факелы - яркие фотосферные образования, видимые в белом свете преимущественно вблизи края диска С. Обычно факелы появляются раньше пятен и существуют некоторое время после их исчезновения. Площадь факельных площадок в несколько раз превышает площадь соответствующей группы пятен. Количество факелов на диске С. зависит от фазы цикла солнечной активности. Максимальный контраст (18%) факелы имеют вблизи края диска С., но не на самом краю. В центре диска С. факелы практически не видны, контраст их очень мал. Факелы имеют сложную волокнистую структуру, контраст их зависит от длины волны, на которой проводятся наблюдения. Температура факелов на несколько сот градусов превышает температуру фотосферы, общее излучение с 1 см 2превышает фотосферное на 3-5%. По-видимому, факелы несколько возвышаются над фотосферой. Средняя продолжительность их существования - 15 сут, но может достигать почти 3 мес.

 Хромосфера. Выше фотосферы расположен слой атмосферы С., называемый хромосферой. Без специальных телескопов с узкополосными светофильтрами хромосфера видна только во время полных солнечных затмений как розовое кольцо, окружающее тёмный диск, в те минуты, когда Луна полностью закрывает фотосферу. Тогда можно наблюдать и спектр хромосферы, т. н. спектр вспышки. На краю диска С. хромосфера представляется наблюдателю как неровная полоска, из которой выступают отдельные зубчики - хромосферные спикулы. Диаметр спикул 200-2000 км, высота порядка 10 000 км, скорость подъёма плазмы в спикулах до 30 км/ сек. Одновременно на С. существует до 250 тыс. спикул. При наблюдении в монохроматическом свете (например, в свете линии ионизованного кальция 3934 Е) на диске С. видна яркая хромосферная сетка, состоящая из отдельных узелков - мелких диаметром 1000 кми крупных диаметром от 2000 до 8000 км. Крупные узелки представляют собой скопления мелких. Размеры ячеек сетки 30-40 тыс. км. Полагают, что спикулы образуются на границах ячеек хромосферной сетки. При наблюдении в свете красной водородной линии 6563 Е около солнечных пятен в хромосфере видна характерная вихревая структура ( рис. 3а ). Плотность в хромосфере падает с увеличением расстояния от центра С. Число атомов в 1 см 3изменяется от 10 15вблизи фотосферы до 10 9в верхней части хромосферы. Спектр хромосферы состоит из сотен эмиссионных спектральных, линий водорода, гелия, металлов. Наиболее сильные из них -красная линия водорода Н a(6563 Е) и линии Н и К ионизованного кальция с длиной волны 3968 Е и 3934 Е. Протяжённость хромосферы неодинакова при наблюдении в разных спектр, линиях: в самых сильных хромосферных линиях её можно проследить до 14 000 кмнад фотосферой. Исследование спектров хромосферы привело к выводу, что в слое, где происходит переход от фотосферы к хромосфере, температура переходит через минимум и по мере увеличения высоты над основанием хромосферы становится равной 8-10 тыс. К, а на высоте в несколько тыс. кмдостигает 15-20 тыс. К. Установлено, что в хромосфере имеет место хаотическое (турбулентное) движение газовых масс со скоростями до 15Ч10 3 м/ сек. В хромосфере факелы в активных областях видны в монохроматическом свете сильных хромосферных линий как светлые образования, называемые обычно флоккулами. В линии Н aхорошо видны тёмные образования, называемые волокнами. На краю диска С. волокна выступают за диск и наблюдаются на фоне неба как яркие протуберанцы. Наиболее часто волокна и протуберанцы встречаются в четырёх расположенных симметрично относительно солнечного экватора зонах: полярных зонах севернее + 40° и южнее -40° гелиографической широты и низкоширотных зонах около ± 30° в начале цикла солнечной активности и 17° в конце цикла. Волокна и протуберанцы низкоширотных зон показывают хорошо выраженный 11-летний цикл, их максимум совпадает с максимумом пятен. У высокоширотных протуберанцев зависимость от фаз цикла солнечной активности выражена меньше, максимум наступает через 2 года после максимума пятен. Волокна, являющиеся спокойными протуберанцами, могут достигать длины солнечного радиуса и существовать в течение нескольких оборотов С. Средняя высота протуберанцев над поверхностью С. составляет 30-50 тыс. км, средняя длина - 200 тыс. км, ширина - 5 тыс. км. Согласно исследованиям А. Б. , все протуберанцы по характеру движений можно разбить на 3 группы: электромагнитные, в которых движения происходят по упорядоченным искривленным траекториям - силовым линиям магнитного поля; хаотические, в которых преобладают неупорядоченные, турбулентные движения (скорости порядка 10 км/ сек); эруптивные, в которых вещество первоначально спокойного протуберанца с хаотическими движениями внезапно выбрасывается с возрастающей скоростью (достигающей 700 км/ сек) прочь от С. температура в протуберанцах (волокнах) 5-10 тыс. К, плотность близка к средней плотности хромосферы. Волокна, представляющие собой активные, быстро меняющиеся протуберанцы, обычно сильно изменяются за несколько чили даже мин. Форма и характер движений в протуберанцах тесно связаны с магнитным полем в хромосфере и солнечной короне.

  Солнечная корона - самая внешняя и наиболее разрежённая часть солнечной атмосферы, простирающаяся на несколько (более 10) солнечных радиусов. До 1931 корону можно было наблюдать только во время полных солнечных затмений в виде серебристо-жемчужного сияния вокруг закрытого Луной диска С. (см. т. 9, вклейка к стр. 384-385). В короне хорошо выделяются детали её структуры: шлемы, опахала, корональные лучи и полярные щёточки. После изобретения солнечную корону стали наблюдать и вне затмений. Общая форма короны меняется с фазой цикла солнечной активности: в годы минимума корона сильно вытянута вдоль экватора, в годы максимума она почти сферична. В белом свете поверхностная яркость солнечной короны в миллион раз меньше яркости центра диска С. Свечение её образуется в основном в результате рассеяния фотосферного излучения свободными электронами. Практически все атомы в короне ионизованы. Концентрация ионов и свободных электронов у основания короны составляет 10 9частиц в 1 см 3. Нагрев короны осуществляется аналогично нагреву хромосферы. Наибольшее выделение энергии происходит в нижней части короны, но благодаря высокой теплопроводности корона почти изотермична - температура понижается наружу очень медленно. Отток энергии в короне происходит несколькими путями. В нижней части короны основную роль играет перенос энергии вниз благодаря теплопроводности. К потере энергии приводит уход из короны наиболее быстрых частиц. Во внешних частях короны большую часть энергии уносит солнечный ветер - поток коронального газа, скорость которого растет с удалением от С. от нескольких км/ секу его поверхности до 450 км/ секна расстоянии Земли. температура в короне превышает 10 6К. В активных областях температура выше - до 10 7К. Над активными областями могут образовываться т. н. корональные конденсации, в которых концентрация частиц возрастает в десятки раз. Часть излучения внутренней короны - это линии излучения многократно ионизованных атомов железа, кальция, магния, углерода, кислорода, серы и др. химических элементов. Они наблюдаются и в видимой части спектра, и в ультрафиолетовой области. В солнечной короне генерируются радиоизлучение С. в метровом диапазоне и рентгеновское излучение, усиливающиеся во много раз в активных областях. Как показали расчёты, солнечная корона не находится в равновесии с межпланетной средой. Из короны в межпланетное пространство распространяются потоки частиц, образующие солнечный ветер. Между хромосферой и короной имеется сравнительно тонкий переходный слой, в котором происходит резкий рост температуры до значений, характерных для короны. Условия в нём определяются потоком энергии из короны в результате теплопроводности. Переходный слой является источником большей части ультрафиолетового излучения С. Хромосфера, переходный слой и корона дают всё наблюдаемое радиоизлучение С. В активных областях структура хромосферы, короны и переходного слоя изменяется. Это изменение, однако, ещё недостаточно изучено.

  Солнечные вспышки. В активных областях хромосферы наблюдаются внезапные и сравнительно кратковременные увеличения яркости, видимые сразу во многих спектральных линиях. Эти яркие образования существуют от нескольких миндо нескольких ч. Они называются солнечными вспышками (прежнее название - хромосферные вспышки). Вспышки лучше всего видны в свете водородной линии Н a, но наиболее яркие видны иногда и в белом свете. В спектре солнечной вспышки насчитывается несколько сотен эмиссионных линий различных элементов, нейтральных и ионизованных. Температура тех слоев солнечной атмосферы, которые дают свечение в хромосферных линиях (1-2) Ч10 4К, в более высоких слоях - до 10 7К. Плотность частиц во вспышке достигает 10 13-10 14в 1 см 3. Площадь солнечных вспышек может достигать 10 15 м 3. Обычно солнечные вспышки происходят вблизи быстро развивающихся групп солнечных пятен с магнитным полем сложной конфигурации. Они сопровождаются активизацией волокон и флоккулов, а также выбросами вещества. При вспышке выделяется большое количество энергии (до 10 10-10 11 дж). Предполагается, что энергия солнечной вспышки первоначально запасается в магнитном поле, а затем быстро высвобождается, что приводит к локальному нагреву и ускорению протонов и электронов, вызывающих дальнейший разогрев газа, его свечение в различных участках спектра электромагнитного излучения, образование ударной волны. Солнечные вспышки дают значительное увеличение ультрафиолетового излучения С., сопровождаются всплесками рентгеновского излучения (иногда весьма мощными), всплесками радиоизлучения, выбросом корпускул высоких энергий вплоть до 10 10 эв. Иногда наблюдаются всплески рентгеновского излучения и без усиления свечения в хромосфере. Некоторые солнечные вспышки (они называются протонными) сопровождаются особенно сильными потоками энергичных частиц - солнечного происхождения. Протонные вспышки создают опасность для находящихся в полёте космонавтов, т.к. энергичные частицы, сталкиваясь с атомами оболочки космического корабля, порождают тормозное, рентгеновское и гамма-излучение, причём иногда в опасных дозах.

  Влияние солнечной активности на земные явления. С. является в конечном счёте источником всех видов энергии, которыми пользуется человечество (кроме атомной энергии). Это - энергия ветра, падающей воды, энергия, выделяющаяся при сгорании всех видов горючего. Весьма многообразно влияние солнечной активности на процессы, происходящие в атмосфере, магнитосфере и биосфере Земли (см. ).

 Инструменты для исследования С. Наблюдения С. ведутся с помощью рефракторов небольшого или среднего размера и больших зеркальных телескопов, у которых большая часть оптики неподвижна, а солнечные лучи направляются внутрь горизонтальной или башенной установки телескопа при помощи одного (сидеростат, гелиостат) или двух (целостат) движущихся зеркал (см. рис. к ст. ). При строительстве больших особое внимание обращается на высокое пространственное разрешение по диску С. Создан специальный тип солнечного телескопа - внезатменный коронограф. Внутри коронографа осуществляется затмение изображения С. искусственной «Луной» - специальным непрозрачным диском. В коронографе во много раз уменьшается количество рассеянного света, поэтому можно наблюдать вне затмения самые внешние слои атмосферы С. Солнечные телескопы часто снабжаются узкополосными светофильтрами, позволяющими вести наблюдения в свете одной спектральной линии. Созданы также нейтральные светофильтры с переменной прозрачностью по радиусу, позволяющие наблюдать солнечную корону на расстоянии нескольких радиусов С. Обычно крупные солнечные телескопы снабжаются мощными спектрографами с фотографической или фотоэлектрической регистрацией спектров. Спектрограф может иметь также магнитограф - прибор для исследования зеемановского расщепления и поляризации спектральных линий и определения величины и направления магнитного поля на С. Необходимость устранить замывающее действие земной атмосферы, а также исследования излучения С. в ультрафиолетовой, инфракрасной и некоторых др. областях спектра, которые поглощаются в атмосфере Земли, привели к созданию орбитальных обсерваторий за пределами атмосферы, позволяющих получать спектры С. и отдельных образований на его поверхности вне земной атмосферы.

  Лит.:Солнце, под ред. Дж. Койпера, пер. с англ., т. 1, М., 1957; Ягер К., Строение и динамика атмосферы Солнца, пер. с англ., М., 1962; Аллен К. У., Астрофизические величины, пер. с англ., М., 1960; Мустель Э. Р., Звездные атмосферы, М., 1960; Северный А. Б., физика Солнца, М., 1956; Зирин Г., Солнечная атмосфера, пер. с англ., М., 1969: Alien С. W., Astrophysical quantities, 3 ed., L., 1973.

  Э. Е. Дубов.

Рис. 1. Фотография Солнца в белом свете. Чёрная линия указывает направление суточного движения Солнца. Видны тёмные солнечные пятна и яркие факелы.

Рис. 3б. Изображение Солнца в свете отдельных спектральных линий, образующихся на разной высоте в хромосфере. Снимок в лучах ионизованного кальция.

Рис. 2. Фотография грануляции и солнечного пятна; получена с помощью стратосферного телескопа (СССР).

Рис. 3а. Изображение Солнца в свете отдельных спектральных линий, образующихся на разной высоте в хромосфере. Снимок в лучах водородной линии Н a.

Солнцев Николай Адольфович

Со'лнцев(настоящая фамилия - Солнцев-Эльбе) Николай Адольфович [р. 8.2(21.2).1902, станция Евье, ныне г. Вевис Тракайского района Литовской ССР], советский физико-географ, один из основоположников региональной школы сов. ландшафтоведения, доктор географических наук (1964). Профессор географического факультета МГУ (с 1965). Основные экспедиционные исследования в Арктике (о. Колгуев, Н. Земля, Карское море, Кольский полуостров) и в Европейской части СССР (главным образом центральные районы). Исследования морфологической структуры и динамики ландшафтов и их составных частей - урочищ и др.; рельефообразующей роли снежников; истории физической географии и ландшафтоведения; проблем физико-географического районирования. Именем С. названа бухта на восточное побережье Новой Земли.

  Лит.:Ландшафтоведение, М., 1972; Семидесятилетие Николая Адольфовича Солнцева, «Вестник МГУ. Сер. 5, География», 1972, № 1.

Солнцев Сергей Иванович

Со'лнцевСергей Иванович [1(13).10. 1872, с. Терешок Рославльского района Смоленской области, - 13.3.1936, Москва], советский экономист, академик АН УССР и АН СССР (1929). В 1900-04 учился в Петербургском университете на юридическом факультете. В 1909-1913 направлен за границу для повышения экономического образования. В 1913-30 на преподавательской и научной работе в Петербургском, Томском, Новороссийском (в Одессе) университетах, в Одесском институте народного хозяйства и др. С 1929 в (СОПС). Исследуя заработную плату в капиталистическом обществе как проблему распределения национального дохода, С. стремился показать антагонизм между рабочим классом и буржуазией и падение доли рабочего класса в национальном доходе. Однако, признавая относительное обнищание рабочего класса, недооценивал его абсолютное обнищание. Проблему распределения С. отрывал от проблемы производства.

  Соч.: Рабочие бюджеты в связи с теорией обеднения, Смоленск, 1907; Заработная плата, как проблема распределения, СПБ, 1911; Общественные классы, Томск, 1917; Введение в политическую экономию. Предмет и метод, П., 1922.

  В. В. Орешкин.

Солнцева Юлия Ипполитовна

Со'лнцеваЮлия Ипполитовна [р. 25.7(7.8).1901, Москва], русская советская актриса и кинорежиссёр, народная артистка РСФСР (1964). Окончила Государственный институт музыкальной драмы (1922). Первая роль в кино - Аэлита («Аэлита», 1924), затем играла Зину («Папиросница от Моссельпрома», 1924), дочь Опанаса («Земля», 1930) и др. С 1930 работала с мужем - кинорежиссёром А. П. Довженко (с 1939 - сорежиссёр и режиссёр). Участвовала в создании художественных картин - «Иван» (1932), «Аэроград» (1935), «Щорс» (1939) и «Мичурин» (1949); документальных фильмов «Освобождение» (1940); «Битва за нашу Советскую Украину» (1943), «Победа на Правобережной Украине» (1945). С. поставила ряд фильмов по сценариям и мотивам др. произведений Довженко: «Поэма о море» (1958), «Повесть пламенных лет» (1961), «Зачарованная Десна» (1963), «Незабываемое» (1967); о творчестве Довженко - «Золотые ворота» (1969). С. воссоздала на экране своеобразие поэтики Довженко, близкой украинскому фольклору, его высокий гражданственный пафос, лиризм. Награждена орденом Ленина, 2 др. орденами, а также медалями.

  Лит.:«Искусство кино», 1968, № 7, с. 27-33.

  О. В. Якубович.

Солнцево (город в Московской обл.)

Со'лнцево,город (с 1971) областного подчинения в Московской области РСФСР. Ж.-д. станция (Солнечная) на линии Москва - Киев, в 16 кмот Москвы. 50,2 тыс. жителей (1975). Асфальтовый и бетонный заводы, производство швейных изделий.

Солнцево (пос. гор. типа в Курской обл.)

Со'лнцево,посёлок городского типа, центр Солнцевского района Курской области РСФСР. Ж.-д. станция на линии Курск - Белгород, в 55 кмк Ю.-В. от Курска. Кирпично-известковый завод, маслозавод.

Солнцезащитные средства

Солнцезащи'тные сре'дства,солнцезащита, совокупность архитектурно-планировочных, конструктивных и технических средств и мероприятий, используемых для защиты от неблагоприятного действия и создания комфортных условий световой и тепловой среды (микроклимата) в зданиях (сооружениях) и на открытых территориях населённых мест. К архитектурно-планировочным С. с. относятся: рациональная ориентация зданий (а также оконных проёмов и фонарей) и уличной сети относительно сторон горизонта, устройство галерей и глубоких лоджий, озеленение и обводнение территорий с наиболее продолжительной и интенсивной инсоляцией, озеленение фасадов зданий, светлая окраска наружных ограждающих конструкций зданий и окраска внутренних поверхностей помещений в «холодные» тона (в южных районах), покрытие дорог и тротуаров нетеплоёмкими материалами и др. Конструктивные С. с.: солнцезащитные устройства - стационарные (рис. 1) и регулируемые (рис. 2); использование в качестве материалов для заполнения световых проёмов зданий теплоотражающих, теплопоглощающих и светорассеивающих стекол и пластмасс; применение в конструкциях наружных стен теплоизоляционных материалов (например, минеральной ваты, стекловолокна и др.) и воздушных прослоек; устройство защитного (водоизолирующего) слоя на плоских покрытиях и др. К техническим С. с. относятся кондиционирование воздуха, радиационное охлаждение и т.п.

  Основные требования, предъявляемые к С. с.: защита от перегрева в жаркое время года и суток и от слепящего действия солнечного света в течение всего года; обеспечение необходимого (нормируемого) уровня и инсоляции помещении; возможность их сквозного проветривания через световые проёмы, а также видимость внешнего пространства из помещений; экономическая целесообразность. Наилучший солнцезащитный эффект достигается при ограничении инсоляции помещений через световые проёмы комплексным применением наружных регулируемых жалюзи и теплоотражающего стекла в наружном переплёте окна. Выбор рациональных видов С. с. производится на основе соответствующих измерений и расчётов.

  Лит.:Уманский Н. Г., Солнцезащитные устройства в зданиях, М., 1962; Руководство по проектированию солнцезащитных средств, «Труды Научно-исследовательского института строительной физики», 1972, в. 5(19); Оболенский Н. В., О комплексе критериев оценки солнцезащитных устройств, там же, 1974, в. 7(21).


  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88