Современная электронная библиотека ModernLib.Net

Большая Советская Энциклопедия (ИН)

ModernLib.Net / Энциклопедии / БСЭ / Большая Советская Энциклопедия (ИН) - Чтение (стр. 28)
Автор: БСЭ
Жанр: Энциклопедии

 

 


  Плоские поверхности изделий нагревают для закалки И. н. с индуктирующим проводом в виде плоских спиралей или зигзагов (для малых нагреваемых площадей) либо непрерывно-последовательным способом нагрева с перемещением нагреваемой детали над индуктирующим проводом ( рис. 3 ). Существуют секционированные И. н. с отдельными подводами электрического тока к каждой секции; включая или выключая в определённом порядке секции, можно закаливать (нагревать) поверхности переменной ширины и требуемой формы. Нагрев торцевых поверхностей производится И. н. зигзагообразной формы; для равномерного нагрева поверхности деталь вращают. Листовой материал и ленты наиболее эффективно нагреваются в поперечном магнитном поле ( рис. 4 ), при этом толщина листа должна быть меньше глубины проникновения тока (обычно на частотах от 10 до 70 кгц). Нагрев и закалку зубьев шестерни производят в петлевом И. н., охватывающем зуб с двух сторон. Чтобы закалить впадину между зубьями, индуктирующий провод располагают вдоль окружности шестерни, устанавливая против впадин магнитопроводы, входящие при рабочем положении внутрь впадин.

  Лит. см. при ст. Индукционный нагрев , Индукционная нагревательная установка .

Рис. 3. Индуктор для закалки плоской поверхности непрерывно-последовательным способом: 1 - индуктирующий провод; 2 - магнитопровод; 3 - душевое устройство для подачи закалочной воды; 4 - трубопровод водяного охлаждения.

Рис. 1. Индуктор для закалки цилиндрических деталей способом одновременного нагрева: 1 - воронки для выравнивания давления закалочной воды в камере 2; 3 - индуктирующий провод с отверстиями для выхода закалочной воды: 4 - трубопровод водяного охлаждения.

Рис. 2. Петлевой индуктор для закалки внутренних цилиндрических поверхностей способом одновременного нагрева при вращении закаливаемой детали: а - конструкция с отдельными камерами для охлаждения индуктора и выхода закалочной воды; б - конструкция без постоянного охлаждения; 1 - магнитопровод; 2 - индуктирующий провод; 3 - трубопровод водяного охлаждения.

Рис. 4. Схема индукторов для нагрева листового материала в поперечном магнитном поле при размещении индуктирующего провода: а - с одной стороны нагреваемого листа; б - с обеих сторон нагреваемого листа; 1 - индуктирующий провод; 2 - магнитопровод; 3 - ярмо магнитопровода.

Индуктор телефонный

Инду'ктор телефо'нный,магнитоэлектрическая машина с ручным приводом, применяемая в телефонных аппаратах для посылки сигналов вызова и отбоя на станции ручного обслуживания в сельской телефонной связи . И. т. вырабатывает переменный ток с частотой 18-21 гц, напряжением 60-70 ви мощностью 3,8 вт(на сопротивлении нагрузки 2,5 ком). Выпускаются 2 типа И. т.: с двумя неподвижными прямоугольными магнитами, вращающимся якорем (с обмоткой), редуктором и токосъёмными пружинами ( рис. 1 ); с неподвижным якорем (с обмоткой) и вращающимся многополюсным магнитом кольцеобразной формы ( рис. 2 ). Необходимая частота тока обеспечивается при вращении рукоятки с частотой 3-3,5 об/сек.

  Лит.:Телефония, под ред. В. А. Новикова, 2 изд., М., 1967.

Рис. 2. Индуктор с неподвижной обмоткой: а - общий вид; б - разрез; 1 - многополюсный вращающийся постоянный магнит (ротор); 2 - статор из мягкой стали; 3 - вращающийся диск; 4 - рукоятка; 5 - обмотка статора.

Рис. 1. Индуктор с вращающимся якорем: 1 - постоянные магниты; 2 - полюсные надставки; 3 - токосъёмные пружины с контактом.

Индукторный генератор

Инду'кторный генера'тор,электрическая машина переменного тока, у которой изменение магнитного потока, пронизывающего обмотки статора, вызывается перемещением ферромагнитного зубчатого ротора. Поток возбуждения создаётся обмоткой, питаемой постоянным током. Обмотка возбуждения и рабочая обмотка неподвижно располагаются на статоре. Различают И. г. с пульсирующим полем, в которых магнитное поле, изменяясь по величине (пульсируя), не меняет своей полярности, и генераторы, в которых магнитное поле меняется и по величине, и по направлению. И. г. первого типа выполняются как однофазными, так и трёхфазными; частота генерируемого тока достигает 10 кгц. И. г. второго типа выполняются только однофазными; частота от 10 до 20 кгц. И. г. всегда спарен с приводным двигателем и применяется главным образом для преобразования частоты электрического тока (см. также Генератор повышенной частоты ).

  Лит.:Шаров В. С., Электромашинные индукторные генераторы, М.-Л., 1961; Алексеева М. М., Машинные генераторы повышенной частоты, Л., 1967.

Индукторы

Инду'кторыв эмбриологии, зачатки органов и тканей развивающегося зародыша, воздействие которых на другие, контактирующие с ними, части зародыша необходимо для развития последних в определённом направлении (см. Индукция ). Например, у зародышей хордовых животных И. центральной нервной системы служит зачаток хорды и мышц ( хордомезодерма ), И. линзы - зачаток глаза и т. д. Действие И. не имеет видовой специфичности: И., взятый от зародышей одного вида животных, может вызвать индукцию соответствующего зачатка органа у зародышей другого вида. И. часто не теряют индуцирующих свойств после их умерщвления (фиксацией спиртом, кипячением и т. п.). В эксперименте действие собственных И. зародыша может быть заменено действием ряда органов и тканей (в живом или убитом состоянии) взрослых животных (чуждые или гетерогенные И.). Чуждые И. могут различаться по характеру индуцирующего действия; так, печень морской свинки вызывает у земноводных образование в эктодерме гаструлы структур переднего мозга, а костный мозг - образование хорды, мышц и др. производных мезодермы . Действие как собственных, так и чуждых И. может осуществляться не только при непосредственном контакте их с клетками реагирующей системы, но и через фильтр с микроскопическими порами. Переход веществ из И. в клетки реагирующей системы показан цито- и биохимическим, иммунологическим и др. методами. Переходящие из И. в клетки реагирующей системы вещества локализуются в цитоплазме этих клеток. В ряде случаев из И. выделены вещества, обладающие разными индуцирующими свойствами: рибонуклеопротеид, вызывающий образование головного мозга; белок с молекулярной массой 25-30 тыс., вызывающий образование хорды, мышц и др. производных мезодермы. Индуцирующее влияние сложных химических веществ, источником которых служат И., может быть имитировано обработкой клеток реагирующей системы более простыми химическими соединениями, например сахарозой, хлористым литием, а также некоторыми повреждающими агентами или изменением pH среды.

  Термином «И.» обозначают также факторы, необходимые для морфогенеза животных и растений в постэмбриональном периоде развития (например, гормоны и фитогормоны).

  Г. М. Игнатьева.

Индуктотермия

Индуктотерми'я(от лат. inductio - наведение, введение и греч. thйrme - тепло), метод электролечения, при котором определённые участки тела больного нагреваются под воздействием переменного, преимущественно высокочастотного (от 10 до 40 Мгц) электромагнитного поля. Это поле индуцирует в тканях организма вихревые электрические токи. Сила вихревых токов пропорциональна электропроводимости среды, поэтому токи наиболее интенсивны в жидких средах организмов, обладающих значительной электропроводимостью (кровь, лимфа и др.). В подвергаемых воздействию вихревых токов областях тела образуется большее или меньшее количество теплоты, повышается обмен веществ, усиливается кровообращение, а следовательно - и поступление питательных веществ и удаление продуктов жизнедеятельности тканей, понижаются тонус мышечных волокон и возбудимость нервов - уменьшаются боли. Всё это создаёт условия для быстрого рассасывания воспалительного очага, даже глубоко расположенного, и для лечения заболеваний периферических нервов. Для проведения И. используют генераторы высокочастотных электрических колебаний. В СССР для И. выпускают аппараты ДКВ-2. Подведение генерируемой аппаратом энергии электромагнитного поля к пациенту осуществляется посредством гибкого кабеля (кабельный электрод), изогнутого в виде цилиндрической или плоской спирали, или дисковым аппликатором - плоской спиралью из медной трубки. Больной во время процедуры испытывает ощущение приятного тепла.

  Лит.:Ливенцев Н. М., Электромедицинская аппаратура, 3 изд., М., 1964.

  В. Г. Ясногородский.

Индукционная нагревательная установка

Индукцио'нная нагрева'тельная устано'вка,электротермическая установка для нагрева металлических заготовок или деталей с применением индукционного нагрева . Наиболее широко распространены И. н. у. для сквозного нагрева металлических заготовок перед горячей обработкой давлением и для поверхностной закалки стальных деталей. Обычно И. н. у. состоят из генератора, индуктора, конденсаторной батареи, механизмов для перемещения нагреваемых заготовок, системы водоохлаждения и системы защиты и контроля.

  Нагрев заготовок в И. н. у. для сквозного нагрева осуществляется в многовитковом водоохлаждаемом футерованном индукторе (см. Индуктор нагревательный ). Холодные заготовки подаются в индуктор с одной стороны и выходят нагретыми с другой. Механизмы подачи имеют электромеханический, пневматический или гидравлический привод. Нагрев ведётся на низкой или средней частоте. И. н. у. применяют главным образом для нагрева заготовок из стали, меди, алюминия, молибдена, вольфрама, титана, циркония и различных сплавов на их основе. Для И. н. у. характерны высокая степень автоматизации процесса и малый угар нагреваемого в них металла (для стали менее 0,5% ).

  Индукторы И. н. у. для поверхностной закалки стальных деталей выполняют без теплоизоляции. Зазор между индуктором и нагреваемой деталью составляет 3-5 мм, что обеспечивает высокий электрический кпд процесса. Индукторы установок чаще всего состоят из одного витка; питание подводится от генератора средней или высокой частоты через согласующий трансформатор. В качестве охлаждающих жидкостей при закалке используют воду, масло и различные эмульсии, которые подают на поверхность детали через отверстия в индукторе или с помощью специальных устройств.

  Лит.:Демичев А. Д., Головин Г. Ф., Шашкин С. В., Высокочастотная закалка, М.-Л., 1965; Простяков А. А., Индукционные нагревательные установки. М., 1970.

  А. Б. Кувалдин.

Индукционная печь

Индукцио'нная печь,индукционная плавильная печь, электротермическая установка для плавки материалов с использованием индукционного нагрева.В промышленности применяют в основном индукционные тигельные печи и индукционные канальные печи (рис.).

  Тигельная И. п. состоит из индуктора, представляющего собой соленоид , выполненный из медной водоохлаждаемой трубки, и тигля, который в зависимости от свойств расплава изготовляется из керамических материалов, а в специальных случаях - из графита, стали и др. В тигельных И. п. выплавляют сталь, чугун, драгоценные металлы, медь, алюминий, магний. Печи изготовляют с ёмкостью тигля от нескольких кгдо нескольких сотен т. Они выполняются: открытыми, вакуумными, газонаполненными и компрессионными; питание печей осуществляется токами низкой, средней и высокой частоты. Основные узлы канальной И. п.: плавильная ванна и так называемая индукционная единица, в которую входят подовый камень, магнитный сердечник и индуктор. Отличие канальных печей от тигельных состоит в том, что преобразование электромагнитной энергии в тепловую происходит в канале тепловыделения, который должен быть постоянно заполнен электропроводящим телом. Для первичного пуска канальных И. п. в канал заливают расплавленный металл или вставляют шаблон из материала, который будет плавиться в печи. При завершении плавки металл из печи сливают не полностью, оставляя так называемое «болото», которое обеспечивает заполнение канала тепловыделения для последующего пуска. Для облегчения замены подового камня индукционные единицы современных печей изготовляют отъёмными. В канальных И. п. выплавляют цветные металлы и их сплавы, чугун. Ёмкость плавильных ванн печей может быть от нескольких сотен кгдо сотен т; питание печей осуществляется током промышленной частоты. Для плавки в И. п. характерны: относительно холодный шлак, так как тепло выделяется в расплавленном металле; большая производительность процесса; интенсивное перемешивание и высокое качество переплавляемого металла. И. п. применяют для переплава и рафинирования металлов, а также в качестве миксеров (копильников) для хранения и перегрева жидкого металла перед разливкой.

  Лит.:Вайнберг А. М., Индукционные плавильные печи, 2 изд., М., 1967; Фарбман С. А., Колобнев И. Ф., Индукционные печи для плавки металлов и сплавов, 4 изд., М., 1968.

  А. Б. Кувалдин.

Схемы индукционных плавильных печей: а - тигельная, б - канальная; 1 - индуктор; 2 - расплавленный металл; 3 - тигель; 4 - магнитный сердечник; 5 - подовый камень с каналом тепловыделения.

Индукционная сварка

Индукцио'нная сва'рка,см. в ст. Высокочастотная сварка .

Индукционный нагрев

Индукцио'нный нагре'в,нагрев токопроводящих тел за счёт возбуждения в них электрических токов переменным электромагнитным полем. Мощность, выделяющаяся в проводнике при И. н., зависит от размеров и физических свойств проводника (удельного электрического сопротивления, относительной магнитной проницаемости), а также от частоты и напряжённости электромагнитного поля. Источниками электромагнитного поля при И. н. служат индукторы (см. Индуктор нагревательный ). И. н. характеризуется неравномерным выделением мощности в нагреваемом объекте. В поверхностном слое, называемом глубиной проникновения, выделяется 86% всей мощности. Глубина проникновения тока D ( м) равна:  где r - удельное электрическое сопротивление ( омЧ м), m - относительная магнитная проницаемость, f- частота ( гц).

 Для создания переменного электромагнитного поля при И. н. используются токи низкой (50 гц), средней (до 10 кгц) и высокой (свыше 10 кгц) частоты. Для питания индукторов токами средней и высокой частоты применяют машинные и статические преобразователи, а также ламповые генераторы.

  К наиболее распространённым процессам, использующим И. н., относятся: плавка металлов (см. Индукционная печь ), зонная плавка , нагрев под обработку давлением (см. Индукционная нагревательная установка ) и др. И. н. - наиболее совершенный бесконтактный способ передачи электроэнергии в нагреваемое тело с непосредственным преобразованием её в тепловую. Принципиальная схема установки с использованием И. н. приведена на рис. О нагреве диэлектриков электромагнитным полем см. в ст. Диэлектрический нагрев.

  Лит.:Бабат Г. И., Индукционный нагрев металлов и его промышленное применение, 2 изд., М.-Л., 1965; Высокочастотная электротермия. Справочник, М.-Л., 1965; Электротермическое оборудование. Справочник, М., 1967.

  А. Б. Кувалдин.

Схема установки индукционного нагрева: 1 - источник питания; 2 - блок реактивной ёмкостной мощности (конденсатор); 3 - индуктор; 4 - футерованное технологическое пространство (тигель); 5 - нагреваемый объект.

Индукционный насос

Индукцио'нный насо'с,магнитогидродинамический насос (МГД-насос), подающий электропроводящую жидкость с помощью электромагнитной силы, которая возникает от взаимодействия магнитного поля индуктора с полем электрического тока, индуктируемого в проходящей через насос среде. И. н. подают жидкие щелочные металлы при температурах до 800-1000 °С и выше. Каналы И. н. обычно изготовляют из нержавеющей стали. По принципу действия И. н. аналогичен асинхронному электродвигателю , в котором обмотку ротора заменяет жидкий проводник. В зависимости от конструкции И. н. подразделяют на спиральные (СИН) и линейные. Последние бывают с плоским (прямоугольного сечения) каналом, обозначаемые сокращённо ПЛИН (рис.), и с цилиндрическим (кольцевого поперечного сечения) каналом, называемые ЦЛИН (иногда КЛИН). Если каналу и индуктору, изображенным на рис., придать кольцевую форму, то получится схема ЦЛИН. И. н. спирального типа отличаются от ЦЛИН главным образом расположением обмотки индуктора (её витки повёрнуты в горизонтальной плоскости на 90°) и наличием в кольцевом канале винтообразной (спиральной) перегородки. Благодаря этому вращающееся магнитное поле индуктора сообщает жидкости поступательное движение вдоль главной оси. И. н. работают на трёхфазном переменном токе, имеют кпд порядка 0,2 (СИН) и 0,5 (большие ЦЛИН). И. н. применяют для подачи жидких металлов в ядерной энергетике, металлургии и др. областях техники.

  Лит.:Охременко Н. М., Основы теории и проектирования линейных индукционных насосов для жидких металлов, М., 1968.

Схема плоского индукционного насоса ПЛИН: 1 - индуктор; 2 - магнитопровод; 3 - обмотка индуктора; 4 - канал; 5 - жидкий металл.

Индукционный прибор

Индукцио'нный прибо'рэлектроизмерительный, устройство для измерений электрических величин в цепях переменного тока. В отличие от электроизмерительных приборов других систем, И. п. можно применять в цепях переменного тока одной определённой частоты; незначительные её изменения приводят к большим погрешностям показаний. В СССР индукционные амперметры, вольтметры распространения не получили; ваттметры с начала 50-х гг. 20 в. также не выпускаются. Современные И. п. изготовляют лишь как счётчики электрической энергии для однофазных и трёхфазных цепей переменного тока промышленной частоты (50 гц). По принципу действия И. п. аналогичен асинхронному электродвигателю : ток нагрузки, проходя по рабочей цепи прибора, создаёт бегущее или вращающееся магнитное поле, которое индуктирует ток в подвижной части и вызывает её вращение. По количеству переменных магнитных потоков, индуцирующих ток в подвижной части прибора, различают однопоточные и многопоточные И. п.

  Конструктивно И. п. состоит из магнитной системы, подвижной части и постоянного магнита. Магнитная система содержит 2 электромагнита с сердечниками сложной формы, на которых размещают обмотки с параллельным и последовательным включением в цепь нагрузки; подвижная часть - тонкий алюминиевый или латунный диск, помещаемый в поле магнитной системы; постоянный магнит создаёт тормозной момент (см. Счётчик электрический ) .И. п. нечувствительны к влиянию внешних магнитных полей и обладают значительной перегрузочной способностью.

  Лит.:Алукер Ш. М., Электроизмерительные приборы, 2 изд., М., 1966; Попов В. С., Электротехнические измерения и приборы, 7 изд., М.-Л., 1963.

Индукционный ускоритель

Индукцио'нный ускори'тельзаряженных частиц, ускоритель, в котором частицы ускоряются вихревым электрическим полем. См. Ускорители заряженных частиц .

Индукция (в логике)

Индукция(греч. epagoge, лат. inductio - наведение), вид обобщений , связанных с предвосхищением результатов наблюдений и экспериментов на основе данных прошлого опыта. Именно поэтому и говорят об эмпирических, или индуктивных, обобщениях, или об опытных истинах, или, наконец, об эмпирических законах. Одним из оправданий И. в практике научного исследования служит познавательная необходимость общего взгляда на группы однородных фактов, позволяющего объяснять и предсказывать явления природы и общественной жизни. В И. этот общий взгляд выражается, как правило, посредством новых понятий, как бы расшифровывающих «скрытый смысл» наблюдаемых явлений, и закрепляется в формулировках причинных или же статистических законов.

  Начинается И. обычно с анализа и сравнения данных наблюдения или эксперимента. При этом, по мере расширения множества этих данных, может выявиться регулярная повторяемость какого-либо свойства или отношения. Наблюдаемая в опыте многократность повторения при отсутствии исключений внушает уверенность в её универсальности и естественно приводит к индуктивному обобщению - предположению, что именно так будет обстоять дело во всех сходных случаях. Если все эти случаи исчерпываются уже рассмотренными в опыте, то индуктивное обобщение тривиально и является лишь кратким отчётом о фактах. Такую И. называют полной, или совершенной, и часто рассматривают как дедукцию , так как её можно представить схемой дедуктивного умозаключения, что, в частности, делается по отношению к той идеализированной её форме, которая носит название бесконечной индукции (см. также Математическая индукция ) .

 Для практики повседневного и научного мышления характерны обобщения на основе исследования не всех случаев, а только некоторых, поскольку, как правило, число всех случаев практически необозримо, а теоретическое доказательство для бесконечного числа этих случаев невозможно. Такие обобщения называются неполной И. Неполная И. уже не является логически обоснованным рассуждением. С точки зрения логики обосновать рассуждение - это найти логический закон , соответствующий этому рассуждению, но никакой логический закон не соответствует переходу от частного к общему. С точки зрения логики справедливы только такие заключения, для получения которых не требуется никакой новой информации, кроме той, что содержится в посылках, но заключение неполной И. говорит всегда больше, чем могут сказать её посылки. В этом, собственно, познавательный смысл И. - абстрагирующая работа мысли помогает идти вперёд при недостатке практических знаний. Неполнота И. может обусловливаться не только числом посылок (неполнота в отношении числа посылок), но и их характером (неполнота в отношении характера посылок). Например, характер посылок - данных опыта - может определяться экспериментальной процедурой измерения, что, как известно, принципиально не может дать «абсолютно точных» результатов. В этом смысле неполна любая И., связанная с обобщением результатов измерений, т. е. по существу любой эмпирический закон количественной корреляции между величинами. Предполагая независимость от «сдвигов в пространстве и времени», закон является абстрактной формой выражения всеобщности в природе и тем самым бесконечности. Но по отношению к бесконечности охватываемых законом явлений наш опыт никогда не может быть закончен - нельзя пройти бесконечное. Значит И., приводящая к формулировке закона природы, неполна и в отношении посылок, и в отношении проверяемости вытекающих из него следствий, что делает её, вообще говоря, проблематичной.

  В этом видит философская критика самое слабое место неполной И. Поэтому последняя обычно рассматривается как источник предположительных суждений - гипотез , которые затем проверяются иными средствами. Тем не менее положительный ответ на вопрос, следует ли стремиться к увеличению числа примеров, подтверждающих неполную И., если никакое увеличение этого числа не способно преодолеть гносеологический скептицизм, связанный с неполнотой нашего опыта, подсказывается тем, что при вполне разумных допущениях существует такое число подтверждающих примеров, при котором неполная И. с точки зрения минимизации ожидаемой потери оказывается «вполне хорошим» видом обобщения. Конечно, этот ответ является в известном смысле прагматическим и не может служить ответом на др. вопросы об основах И., например гносеологических или онтологических, которые образуют так называемую «проблему И.», ставшую предметом философских дискуссий ещё в античности.

  Из стремления решить проблему И. возникла индуктивная логика, которая самим понятием «индуктивное рассуждение» обязана Сократу , хотя И. у Сократа - это не обобщение опытных данных, а скорее метод определения - «дорога» к истинному (философскому) смыслу понятий через анализ отдельных примеров их «житейского» употребления. Лишь у Аристотеля понимание И. связывается с обобщением наблюдений и означает, по существу, способ умозаключения, посредством которого «...общее доказывают на основании того, что известно частное» («Аналитики», 71 а1-71 а13; рус. пер., М., 1952). Этот аристотелевский взгляд восприняли философы эпикурейской школы, защищавшие И. в споре со стоиками как единственный авторитетный метод доказательства законов природы. Тогда-то и возникла впервые проблема И. В частности, в обоснование И. эпикурейцы выдвинули, как им казалось, эмпирический, а на деле вполне логический критерий: отсутствие фактов, мешающих индуктивному обобщению, - противоречащих ему примеров.

  Этот критерий, возрожденный Ф. Бэконом , стал основой той формы индуктивной логики, исторически первым вариантом которой явились индуктивные методы Бэкона - Милля. Важность противоречащего примера обусловлена тем, что наблюдения (факты), благоприятствующие индуктивному обобщению, могут лишь в той или иной степени подтверждать И., но никогда не могут иметь значения доказательств, в то время как единственный противоречащий пример, с чисто логической точки зрения, опровергает результаты И. необходимым образом. Если данные наблюдения позволяют нам выдвинуть несколько основанных на них индуктивных обобщений, или гипотез, то опровергающая сила противоречащего примера может быть использована вполне положительным образом для подтверждения одной (или нескольких) из них. Для этого только необходимо, чтобы гипотезы были альтернативными, т. е. чтобы они были связаны между собой так, что опровержение одной из них подтверждало бы остальные. Естественно тогда стремиться к созданию такой экспериментальной ситуации, которая устранит все гипотезы за исключением одной. Процесс устранения (элиминации) гипотез посредством опровергающего эксперимента был назван Дж. С. Миллем исключающей, или научной, И. Если из ряда возможных гипотез опровергаются все, кроме одной, элиминация будет полной. Если же остаются несколько неопровергнутых гипотез, т. е. таких, для которых не удалось построить противоречащего примера, элиминация будет частичной. Пусть, к примеру, за группой событий ABCследует группа событий abg. Данные наблюдения позволяют выдвинуть ряд альтернативных гипотез: или «a есть следствие А», или «a есть следствие B», или «a есть следствие С». Какая из этих гипотез истинна? Очевидно, что эксперимент, устанавливающий, что лишь bg являются следствиями BC, и будет опровергающим для последних двух гипотез, и элиминация будет полной.

  И Бэкон, и Милль стремились к разысканию аподиктических (необходимых) основ И. в рамках методологии эмпиризма . Казалось, что опровергающий эксперимент служит именно такой основой. Однако, вторгаясь в область эмпирических фактов, теория опровергающего эксперимента оказывается «слишком логической», не учитывающей, во-первых, что в этом случае результаты, полученные с помощью логики, зависят от характера «внелогических» допущений и не могут превышать точность последних и, во-вторых, всегда лишь «относительную доказательность» наблюдений и экспериментов. (Для примера достаточно сравнить эксперименты О. Ж. Френеля и Ж. Б. Л. Фуко , опровергающие корпускулярную «модель» света в пользу волновой, и фотоэлектрический эффект или милликеновский эксперимент по «выбиванию» электронов из мельчайших пылинок, опровергающие волновую «модель» в пользу корпускулярной.) Кроме того, дальнейший анализ миллевских методов показал, что все они являются по существу соединением приёмов дедуктивного вывода с неполной И. Если первые обеспечивают доказательную силу этим методам, то последняя её элиминирует, так что и в этом смысле степень убедительности научной И. не может превышать степень убедительности неполной И.

  Осознание этого факта привело большинство «эмпирически настроенных» исследователей к поискам вероятностных основ И. Стали предприниматься попытки свести учение об И. к учению о вероятности , а индуктивную логику - к вероятностной логике . Среди наиболее систематических попыток такого рода выделяются теории, в которых вероятностной мерой оценивается лишь правдоподобность индуктивного перехода от данных наблюдения к индуктивным обобщениям, в то время как самому индуктивному обобщению не приписывается никакой вероятности: индуктивное обобщение может быть либо истинным, либо ложным - одно из двух. Можно сказать, что такой подход сохраняет принципы классической логики в ущерб некоторым принципам эмпиризма. Действительно, если наше отношение к суждениям основывается на принципе двузначности (см. Двузначности принцип ), то проблематичность результатов И. должна иметь только субъективный смысл, отражающий преходящий факт нашего знания или незнания действительного, независимого от опыта, положения вещей.


  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60