ModernLib.Net

()

ModernLib.Net / / / () - (. 13)
:
:

 

 


, сочетанию отраслевого и территориального управления, иерархическому принципу при организации управления энергетикой, а также обязательный учёт влияния энергетики на окружающую среду. Последнее обстоятельство приобретает всё большее значение, оно требует увеличенных капиталовложений и повышенного внимания к проблеме загрязнения окружающей среды. Мероприятия, направленные на снижение неблагоприятного влияния работы электростанций на окружающую среду, предусматриваются как органическая часть любого энергетического сооружения ещё на стадии его проектирования, а не как некие дополнительные установки к уже построенному энергетическому комплексу. Это необходимо прежде всего в связи с ростом установленных мощностей энергетических объектов, превращающих ежегодно во всём мире не менее 6-7 млрд. тусловного топлива в различные виды энергии. Такие масштабы «энергетического воздействия» человека на природу становятся соизмеримы с масштабами естественных геофизических и геологических явлений, меняющих климатический облик Земли. Количество энергии, вырабатываемой на Земле, пока ещё составляет сотые доли % от того количества энергии, которое Земля получает от Солнца, но её тепловой эффект уже достаточно заметно сказывается на климате, особенно тех «энергетически напряжённых» районов, где происходит т. н. тепловое загрязнение .Последнее обусловлено тем, что превращение энергии в энергоустановках происходит с весьма низким кпд (8-10% у подвижных и 25-30% у стационарных установок). В результате огромное количество тепла идёт на подогрев воды, почвы, воздуха. К существенно неприятным последствиям приводят ошибки, допущенные в проектировании водохранилищ ГЭС, ориентированных только на задачи .Большой вред биосфере приносят выбросы в атмосферу продуктов сгорания топлива (золы, окислов азота, двуокиси серы, сернистого ангидрида и др.). Все эти вредные экологические влияния могут быть значительно снижены (а в перспективе ликвидированы) при системном подходе к проектированию энергоустановок, когда Э. рассматривается как система, взаимодействующая с другими системами жизнедеятельности человека и биосферой. К экологическим проблемам могут быть также отнесены трудности развития энергетики, обусловленные ростом площадей и объёмов, требующихся под энергетические сооружения. Однако и здесь интенсивная работа над конструкцией инженерных сооружений и эксплуатационными характеристиками энергетического оборудования позволяет резко снизить объёмы и площади, занимаемые ими: если, например, в 1900 на 1 квтмощности электростанций требовался рабочий объём 50 м 3 ,то в 50-х гг. 20 в. этот объём составлял уже около 6 м 3,а к 1975 в связи с техническим усовершенствованием энергетического оборудования эта величина снизилась до десятых долей м 3.

 В СССР благодаря единой технической политике в области использования достижений при решении народно-хозяйственных задач развитие энергетики тесно увязано с задачами охраны и преобразования природы. Наряду с рациональным использованием природных ресурсов принимаются необходимые меры для того, чтобы научно-технический прогресс сочетался с бережным отношением к природным богатствам страны, не служил источником опасного загрязнения воздуха и воды, истощения земли. Развитие энергетики, так же как и других отраслей промышленности, требует изменения характера общественного производства, правильная организация которого должна предусматривать технологические процессы полной переработки сырья в полезные продукты, без отходов или почти без отходов.

  Лит.:Электрические системы. Кибернетика электрических систем, М., 1974; Мелентьев Л. А., Оптимизация развития и управления больших систем энергетики, М., 1975; Чернухин А. А., Флаксерман К. Н., Экономика энергетики СССР, 2 изд., М., 1975; Веников В. А., Энергетика и биосфера, в сборнике: Методологические аспекты исследования биосферы, М., 1975.

  В. А. Веников.

Иерархическая структура энергетической системы страны.

Энергосистемы автоматизация

Энергосисте'мы автоматиза'ция,применение в энергосистеме различных устройств, которые служат для управления процессом производства, преобразования и распределения электроэнергии и тепла в соответствии с заложенными в этих устройствах программами действия и настройкой. Э. а. обеспечивает нормальное функционирование оборудования электростанций, подстанций и линий электропередачи, экономичную и надёжную работу энергосистемы в целом, требуемое качество электрической и тепловой энергии. По основному назначению и области применения автоматического устройства разделяются на технологические и системные.

  Технологические устройства автоматики обеспечивают автоматическое регулирование основных параметров технологических процессов на агрегатах тепловых, атомных и гидравлических электростанций и на оборудовании подстанций в нормальных и аварийных условиях например, автоматическое регулирование частоты вращения турбин, возбуждения генераторов, процесса горения в топках котлоагрегатов и т. п.). Применяются также общестанционные устройства автоматики, обеспечивающие управление электростанцией как одним комплексным объектом управления с воздействием на автоматику агрегатов или энергоблоков. Эти устройства, в свою очередь, могут служить исполнительными органами системных устройств автоматики; к ним относятся, например, устройства экономического распределения задаваемой электростанции мощности между агрегатами или энергоблоками.

  Системные устройства автоматики осуществляют автоматизацию процесса ведения режима в нормальных и аварийных условиях энергосистемы в целом. Устройства управления нормальными режимами предназначены для работы при относительно небольших и медленных изменениях режима, поэтому они являются сравнительно медленнодействующими. К ним относятся средства в энергосистеме и в электрической сети и др. Средства автоматического управления аварийными режимами при больших (аварийных) возмущениях осуществляют интенсивное воздействие на объекты управления. В их состав входят локальные устройства релейной защиты, действующие при коротких замыканиях, устройства включения резервного оборудования, обеспечивающие восстановление прекратившегося питания электроэнергией, автоматы повторного включения линий электропередачи, трансформаторов и пр. (после их автоматического отключения), а также устройства противоаварийной автоматики. Последние обеспечивают автоматическую разгрузку линий электропередачи при опасном увеличении мощности, автоматическое деление энергосистемы при нарушении или угрозе нарушения синхронной работы её частей, отключение ряда наименее ответственных потребителей для предотвращения опасного снижения частоты и др. Для единой и объединённых энергосистем СССР характерно наряду с массовым применением местных автоматических устройств создание централизованных систем противоаварийной автоматики, осуществляющих с помощью средств телемеханики противоаварийное управление.

  Лит. см. при ст. .

  Г. А. Черня. Я. Н. Лугинский.

Энергосистемы диспетчерское управление

Энергосисте'мы диспе'тчерское управле'ние,централизованное оперативное управление режимом в целом и входящих в неё энергетических объектов, осуществляемое в процессе производства, преобразования и распределения электрической энергии и тепла для обеспечения бесперебойного и надёжного энергоснабжения. В зависимости от масштаба энергосистемы управление может осуществляться с одного либо с нескольких, деятельность которых координируется с центрального диспетчерского пункта (см. ) .

 В СССР диспетчерские службы в энергетике были созданы в 1926 в Московской и Ленинградской энергосистемах, а затем в Донбасской, Свердловской и др. Для оперативного управления параллельной работой Днепровской и Донбасской энергосистем в 1940 была организована диспетчерская служба Юга, в 1942 - Объединённое диспетчерское управление (ОДУ) Урала (Свердловская, Челябинская, Пермская энергосистемы), в 1945 - ОДУ Центра (Московская, Горьковская, Ивановская, Ярославская энергосистемы). Сооружение в 1956 линии электропередачи (400 кв) Волжская ГЭС им. В. И. Ленина - Москва послужило началом формирования Единой электроэнергетической системы (ЕЭЭС) Европейской части СССР. В 1957 на базе ОДУ Центра было организовано ОДУ ЕЭЭС Европейской части СССР. Создание объединённых энергосистем (ОЭС) Сибири и Средней Азии, присоединение на параллельную работу к ЕЭЭС объединённых энергосистем Закавказья, Казахстана и Сибири вызвало необходимость в организации центрального диспетчерского управления (ЦДУ) ЕЭЭС СССР (1967).

  В 1976 на территории СССР действовали 93 энергосистемы, из них 85 работали параллельно в составе ОЭС с суммарной мощностью электростанций, составляющей более 90% общей мощности электростанций страны. Диспетчерское управление режимами работы ЕЭЭС СССР, ОЭС, энергосистем, электростанций и сетей осуществляется на соответствующих уровнях с соблюдением подчинения низшего звена высшему: от ЦДУ через объединённые диспетчерские управления до центральных диспетчерских служб энергосистем (ЦДС). Для оперативного управления режимами разрабатываются суточные планы-графики, обеспечивающие экономичное покрытие нагрузок энергосистемы. ЦДУ ЕЭЭС СССР задаёт графики нагрузки для ОЭС, ОДУ - для энергосистем, а ЦДС - для электростанций. На всех уровнях Э. д. у. обеспечивается круглосуточное управление. Дежурные диспетчеры следят за соблюдением режима и соответствием его заданным планам-графикам и осуществляют их оперативную корректировку при изменении условий работы энергосистем. Диспетчеры руководят также работой по восстановлению нормального режима энергосистем при авариях. Диспетчерские пункты оснащены комплексом средств связи, телемеханики, автоматики и вычислительной техники. Схема и режим основной электрической сети и энергетических объектов отображаются на мнемонических схемах диспетчерского щита и на пультах управления, оснащенных устройствами телеизмерений и телесигнализации.

  Развитие энергосистем и усложнение задач управления энергосистемами обусловили разработку и создание автоматизированных систем диспетчерского управления (АСДУ), которые обеспечивают сбор, передачу, обработку и отображение оперативной информации о состоянии схемы и текущем режиме энергосистемы (или энергетического объекта) и выполнение расчётов оптимальных режимов работы. С развитием АСДУ связана полная автоматизация некоторых важных функций оперативного управления. При этом в режиме автоматического регулирования частоты и мощности используются ЭВМ, предусматривается применение ЭВМ в системах противоаварийной автоматики и т. д.

  Лит.:Электрификация СССР, под ред. П. С. Непорожнего, М., 1070. См. также лит. при ст. .

  Г. А. Черня, Я. Н. Лугинский.

Энергосистемы мощность

Энергосисте'мы мо'щность,суммарная электростанций, входящих в состав энергосистемы.

Энергоснабжение электрических железных дорог

Энергоснабже'ние электри'ческих желе'зных доро'г,преобразование и передача электрической энергии электрическому подвижному составу (ЭПС). Э. э. ж. д. осуществляется спец. системой, состоящей из (ТП), (КС) и соединяющих их линий (см. рис. ). В СССР система Э. э. ж. д. тесно связана с общей энергосистемой и используется для электроснабжения районных и нетяговых ж.-д. потребителей. На ТП электрическая энергия поступает по трёхфазным высоковольтным линиям электропередачи (ЛЭП) и после необходимого преобразования передаётся через питающие и отсасывающие линии в КС и далее ЭПС. ТП присоединяются к ЛЭП так, чтобы повреждение их не вызывало отключения более чем одной подстанции. В зависимости от устройства ЭПС электроснабжение осуществляется по системам постоянного тока, однофазного тока промышленной частоты (в СССР 50 гц) ,однофазного тока пониженной частоты (16 2/ 3, 25 гц) .Существовавшие ранее за рубежом небольшие участки с трёхфазной системой электроснабжения ЭПС не получили развития и переоборудованы на однопроводные. В СССР применяются системы постоянного тока с номинальным напряжением 3 кви системы переменного тока частотой 50 гцс номинальным напряжением 25 кв.(Дальнейшая ,как правило, будет осуществляться по системе переменного тока 25 кв) .Э. э. ж. д. переменным током будет производиться также по системе 2х25 кв,при которой в КС даётся напряжение 25 квот автотрансформаторов, расположенных между ТП и получающих энергию от них по линии 50 кв,включающей специальный питающий провод и рельсы.

  К особенностям Э. э. ж. д. относятся резкая неравномерность нагрузок устройств, трудность защиты от токов короткого замыкания, несинусоидальность и несимметрия токов (в системах переменного тока), влияние на линии связи, возврат энергии при рекуперативном торможении локомотивов. Для уменьшения колебаний подводимого к ЭПС напряжения и улучшения энергетических показателей системы используются трансформаторы с регулированием напряжения под нагрузкой, компенсирующие и другие устройства. Снижение влияния системы Э. э. ж. д. переменного тока на линии связи достигается путём замены воздушных линий связи кабельными и, в необходимых случаях, установкой т. н. отсасывающих трансформаторов, обеспечивающих протекание всего тока по рельсам (без утечки в землю) или по спец. обратному проводу. При питании КС постоянным током на ТП устанавливаются сглаживающие устройства, уменьшающие пульсацию выпрямленного напряжения. При использовании рекуперативного торможения локомотивов в системе постоянного тока предусматриваются спец. приёмники энергии рекуперации. Электроснабжение районных и нетяговых ж.-д. потребителей осуществляется по ЛЭП с напряжениями 10 и 35 кв, расположенным на специальных опорах или опорах КС. Кроме того, широко используются также специальные линии, состоящие из двух проводов, подвешенных на опорах КС, и рельсов в качестве третьего провода трёхфазной системы.

  Бесперебойное движение поездов обеспечивается высокой надёжностью устройств энергоснабжения, стационарными и передвижными резервными агрегатами ТП. Для повышения экономичности на железных дорогах СССР применяется двустороннее питание КС от двух соседних ТП. Совокупность устройств Э. э. ж. д. СССР - высокоавтоматизированная система. Оперативное управление осуществляется энергодиспетчерами, выполняющими необходимые переключения и контроль за состоянием устройств средствами телемеханики или при помощи обслуживающего персонала. Для обслуживания и совершенствования устройств электроснабжения организуются дорожные электротехнической лаборатории и вагоны-лаборатории КС. Методы выбора параметров устройств Э. э. ж. д. (мощности трансформаторов и выпрямителей, сечения проводов КС, мощности компенсирующих устройств, установок защиты и системы автоматического регулирования напряжения) существенно отличаются от применяемых в системах электроснабжения других объектов. Для расчёта параметров, обеспечивающих необходимую надёжность и экономическую эффективность Э. э. ж. д., применяются методы теории вероятностей и имитационного моделирования системы на ЭВМ.

  Лит.:Марквардт К. Г., Энергоснабжение электрических железных дорог, 3 изд., М., 1965; Пронтарский А. Ф., Системы и устройства электроснабжения, 2 изд., М., 1974; 50 лет электрификации железных дорог СССР, М., 1976.

  Г. Г. Марквардт.

Схема электроснабжения электрических железных дорог: 1 - линия эпектропередач; 2 - тяговая подстанция; 3, 4 - питающие линии; 5 - отсасывающая линия, 6 - рельсы; 7 - локомотив.

Энеску Джордже

Эне'ску(Enescu) Джордже (19.8.1881, с. Ливени-Вырнав, ныне Джордже-Энеску,- 4.5.1955, Париж), румынский композитор, скрипач, дирижёр, пианист, педагог, музыкально-общественный деятель, академик Румынской академии (1932). В 1893 окончил Венскую консерваторию, в 1899 - Парижскую консерваторию по классу скрипки у М. П. Ж. Марсика, по композиции занимался у Ж. Массне и Г. Форе. Глава композиторской школы Румынии 20 в., классик румынской музыки. В своем творчестве Э. достиг органичного синтеза особенностей национального фольклора с классическими традициями европейского искусства, опираясь главным образом на завоевания музыкального романтизма и импрессионизма. Созданные им произведения во многих жанрах заложили основы современной румынской музыки.. Наиболее значительное сочинение опера


  • :
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20