Тем не менее разработки этого проекта в ХАЙ не были поддержаны, в Архип Михайлович с большим трудом добился своего перевода в СКБ-1 (специальное конструкторское бюро).
Специальное конструкторское бюро, созданное по решению правительства, работало при заводе, имевшем хорошую производственную и экспериментальную базу. В этом бюро велись работы по парогазотурбинным установкам, а также турбореактивным двигателям. Руководителем проекта турбореактивного двигателя стал А. М. Люлька,
В короткое время, а это был предвоенный период, в СКБ-1 удалось завершить выполнение рабочего проекта реактивного двигателя РД-1, который должен был иметь тягу 530 кгс, а подготовить рабочие чертежи всех узлов я деталей двигателя. Вопрос о парогазотурбинных установках для авиации к этому времени был окончательно снят с повестки дня, и реактивный двигатель, турбореактивный в частности, является и до настоящего времени наиболее перспективным авиационным двигателем. Хотя, надо сказать, в первое время он подвергался обоснованной критике в связи с большим удельным расходом топлива.
В целях повышения экономичности А. М. Люлька предложил схему двухконтурного турбореактивного двигателя. Таким образом, приоритет в разработке схемы двухконтурного турбореактивного двигателя принадлежит советским конструкторам.
Вот что говорилось в описании изобретения. Предлагаемый двигатель отличается от известного турбореактивного двигателя применением низконапорного вентилятора, установленного за входным диффузором двигателя, и разделением потока воздуха за вентилятором на два потока, иа которых один проходит через компрессор, камеру сгорания и турбину, образующие внутренний контур, а другой - по внешнему контуру, смешиваясь затем с продуктами сгорания внутреннего контура перед общим реактивным соплом.
В авторском свидетельстве изображена принципиальная схема предлагаемого двухконтурного турбореактивного двигателя.
После сжатия во входном диффузоре 1 и вентиляторе 2 поток воздуха разделяется на два потока. Поток внутреннего контура проходит через компрессор 5, камеру сгорания 4 в газовую турбину 5, поток внешнего контура - через кольцевой канал, окружающий внутренний контур. Поток воздуха внешнего контура и поток газа, выходящий из турбины, смешиваются перед общим реактивным соплом 6. Предлагаемый двигатель имеет преимущество в экономичности перед одноконтурным турбореактивным авиационным двигателем при умеренных скоростях полета.
Наряду с работами по двухконтурной схеме двигателя в 1939 - 1941 гг. А. М. Люлька впервые начал заниматься разработками различных схем воздушно-реактивных двигателей, в том числе и схемой ТРД с форсажным устройством.
Здесь хотелось бы сделать небольшое отступление и упомянуть о том, что в послевоенные годы между Архипом Михайловичем Люлькой и автором этих строк не раз возникали дискуссии по вопросу о применении одноконтурных и двухконтурных двигателей. К созданию двухконтурных двигателей в последнее десятилетие перешли многие конструкторы как у нас, гак а за рубежом вначале для больших транспортных и пассажирских самолетов, которым присуща большая дальность полета, а следовательно, необходим малый расход топлива. Двухконтурные двигатели представляют собой как бы сочетание турбовинтового и турбореактнвного двигателей, первый из которых обладает меньшим по сравнению со вторым расходом топлива. Отечественные конструкторские бюро, работавшие над турбореактивными двигателями, специализировались на создании двигателей различных типов и размеров, определяемых назначением самолета ОКБ А. М Люльки в послевоенные годы занималось одноконтурными двигателями для военных самолетов. Возвратимся, однако, к работе над двигателем РД-1 в 1940 г.
К маю 1941 г. двигатель на 70% был готов в металле. На стенде работали камера сгорания и турбина, в производстве находился компрессор - собственно, это основное, из чего состоит газотурбинный двигатель.
Началась Великая Отечественная война. Все, что было создано в СКВ, пришлось укрыть на заводе. Шли особенно тяжелые первые годы войны, и все подчинялось задаче обеспечения фронта боевой техникой. Тем не менее руководители государства занимались не только нуждами сегодняшнего дня Полет летчика Г. Я. Бахчиванджи 15 мая 1942 г. на первом боевом реактивном самолете-истребителе, созданном под руководством В. Ф. Болховитинова, да и активные разработки по реактивной технике за границей диктовали необходимость форсирования у нас в стране работ по реактивным двигателям и самолетам.
В 1944 г. решением Государственного Комитета Обороны был создан специализированный научно-исследовательский институт по разработке и конструированию для авиации реактивных двигателей всех видов. Там же организуется отдел по исследованию и конструированию турбореактивных двигателей. Руководителем его стал А. М. Люлька. С группой сотрудников он перевез с завода в НИИ чертежи и детали двигателя РД-1, которые несколько лет ожидали своих создателей в осажденном городе. Вновь созданный отдел был укомплектован специалистами из различных организаций и стал специализированной группой, в задачу которой входило проектирование ТРД, причем более совершенного по сравнению с довоенным,
В 1945 г. первый отечественный турбореактивный двигатель был собран и установлен на испытательном стенде. В ходе испытаний удалось достигнуть заветной цифры: тяга - 1250 кгс, как и предполагалось по проекту. Создатели двигателя верили в расчет, однако, как вспоминал А. М. Люлька, всегда с замиранием сердца ожидали подтверждения своих теоретических предпосылок.
Сообщение о том, что создан первый отечественный газотурбинный двигатель, быстро облетело самолетные конструкторские организации, руководители которых сразу заинтересовались этим двигателем, предвещавшим перспективные летно-тактические данные для проектируемых самолетов.
По общему предложению представителей промышленности и военных специалистов правительство утверждает решение о постройке летного варианта двигателя, который получил наименование ТР-1 (турбореактивный первый). Для выполнения этого задания была создана экспериментальная база и выделен опытный завод. Главным конструктором назначается А. М. Люлька (трудно предположить, чтобы в каком-нибудь другом обществе, кроме советского, украинский мальчик из многодетной крестьянской семьи, пасший в детстве стадо и с малых лет узнавший, какой ценой достается кусок хлеба, имел возможность получить образование, развить свои способности и стать крупным специалистом в области авиационной техники). Вначале дела с двигателями шли не так гладко, как предполагалось по срокам, возникало множество трудностей, особенно по технологии изготовления лопаток компрессора. Но вот, наконец, в 1947 г., к общему удовлетворению, двигатель ТР-1 прошел государственные испытания на стенде, в ходе которых были получены проектные данные и проверена его надежность, Тяга двигателя составляла 1360 кгс, что явилось достаточным для установки его на опытные самолеты П. О. Сухого и С. В. Ильюшина. Все делалось впервые, поэтому несколько необычно выглядели пробные "подлеты", рулежки.
Первая половина 1947 г. ушла на проведение предварительных летно-наземных испытаний, а 28 мая был осуществлен первый полет самолета Су-11 с двигателями ТР-1. Все прошло хорошо, самолет выполнил задание и благополучно произвел посадку. В ходе дальнейших испытаний Су-11 достиг скорости 900 км/ч. Вторым самолетом, на котором также испытывались двигатели ТР-1, был четырехдвигательный самолет Ил-22. Это происходило в июле августе. Настоящим триумфом нашей реактивной авиации стал воздушный парад в Тушино в 1947 г., когда реактивные самолеты различных марок, в том числе Су-11 и Ил-22, с отечественными, оригинальной конструкции реактивными двигателями демонстрировали достижения советской авиации и мастерство ее летчиков
В 1946 г коллектив, руководимый Архипом Михайловичем, приступает к созданию двигателя тягой 4500 кгс, получившего наименование ВРД-5, или ТР-3. В отличие от своего предшественника ТР-1 он имел семиступенчатый осевой компрессор в пусковое устройство. Позже этот двигатель под маркой АЛ-5 был запущен в серийное производство. Самолет Ил-30, который имел оригинальное велосипедное шасси, с двумя двигателями этого типа в 1951 г. достиг скорости 1000 км/ч. Бомбардировщик Ил-46 также с двумя двигателями АЛ-5 тягой 5000 кгс каждый достиг максимальной скорости 928 км/ч на высоте 3000 м
В 1951 г. на самолете Як-1000, явившемся экспериментальным истребителем, с одним двигателем АЛ-5 была достигнута максимальная скорость 1150 км/ч, на Ла-190 - скорость 1190 км/ч (его силовая установка - двигатель АЛ-5).
Справедливо отмечается, что с этим двигателем конструкторскому бюро Архипа Михайловича не везло, так как ей один из самолетов не был запущен в серийное производство.
Параллельно А. М. Люлька занимался проблемой конструирования сверхзвукового компрессора, создание которого позволило бы уменьшить массу и габариты двигателя" Завершением этих работ явилось создание в 1952 г. двигателя ТР-7 с осевым компрессором, имеющим первую сверхзвуковую ступень компрессора.
Двигатель ТР-7 (AJI-7) в своем первоначальном варианте имел тягу 6500 кгс и был предназначен для установки на самолет Ил-54.
С двумя двигателями АЛ-7ПБ на гидросамолете был установлен мировой рекорд скорости на дистанции 15 - 25 км - 912 км/ч. Позже этот двигатель был оборудован форсажной камерой и имел обозначение АЛ-7Б. С двумя такими двигателями самолет Ту-98 развивал скорость полета 1238 км/ч на высоте 12000 м.
Большое распространение получил двигатель АЛ-7Ф-1, установленный на широко известном истребителе-бомбардировщике Су-7 и его модификациях, а также на других истребителях.
В области гражданской авиации двигатели А. М. Люльки были установлены на самолете Ту-110, рассчитанном на размещение в его пассажирской кабине 100 человек.
Кроме того, конструкторским бюро был построен маломощный двигатель ТС-31М с тягой 55 кгс и массой 23 кг для установки на мотопланер Антонова Ан-13.
Следует заметить, что с двигателями, созданными под руководством А. М. Люльки, было установлено на самолетах П. О. Сухого и Г. М. Бериева свыше двадцати мировых рекордов скорости и высоты полета.
Характерной особенностью Архипа Михайловича является то, что он, работая в области создания силовых установок, интересуется происходящим в смежных областях пауки и техники. А. М. Люлька не замыкается в узком кругу решаемых задач, не довольствуется тем, что уже освоено, тем чем можно пользоваться сегодня, он ищет новое, которое позволило бы произвести скачок, а может, и больше в решении рассматриваемой проблемы. Как и многие конструкторы силовых установок, он не любит работать, как принято говорить, "на полку" и в этом всегда находит поддержку со стороны заказчика.
Последующие годы работы ОКБ генерального конструктора. Героя Социалистического Труда, академика Архипа Михайловича Люльки были не менее плодотворными. По мнению пионера отечественного турбореактивного двигателестроения, предел возможностей газотурбинного двигателя еще не достигнут. Очевидно, что увеличение температуры газа перед турбиной, улучшение коэффициента полезного действия компрессора и турбины, а также других усовершенствований конструкции наряду с применением более прочных, 1еплостойких и легких материалов в сочетании с новыми методами технологии изготовления деталей являются той базой, на основе которой можно решить еще не одну задачу по созданию перспективных турбореактивных двигателей.
В семидесятые годы А. М. Люлька вновь начал работу над двухконтурным турбореактивным двигателем уже на новом уровне развития техники. Используя новейшие достижения в совершенствовании газодинамической эффективности компрессоров и турбин, создании новых материалов и разработке прогрессивной технологии, ОКБ создало весьма совершенные двигатели, превосходящие все двигатели подобного назначения в мире. Однако государственные испытания этот двигатель уже проходил после кончины Архипа Михайловича, умершего в 1984 г.
А. М. Люлька был еще в 1968 г. избран действительным членом Академии наук СССР (академиком) и активно в ней работал. В частности, с 1969 г., после смерти Б. С. Стечкина, Архип Михайлович возглавил работу комиссии газовых турбин АН СССР. Комиссии удалось объединить усилия ученых и коллективов, работавших в различных исследовательских и производственных организациях, и скоординировать их деятельность. До последних дней своей жизни А. М. Люлька активно работал в комиссии.
Коллектив научно-производственного объединения им. А. М, Люльки продолжает работу по созданию современных двигателей для военной авиации.
Николай Дмитриевич Кузнецов
Среди конструкторов отечественных авиационных двигателей одно из ведущих мест принадлежит Николаю Дмитриевичу Кузнецову. Как и многие другие конструкторы, он начинал свою деятельность еще во время учебы в Военно-воздушной инженерной академии им. Н. Е. Жуковского. Уже на третьем курсе обучения вместо обычного проекта по деталям машин ему было разрешено проектировать авиационный двигатель.
Окончив академию в 1938 г. с отличием, Николай Кузнецов был оставлен адъюнктом на кафедре конструкции двигателей. Надо сказать, что, будучи отличником учебы, он имел разрешение учиться одновременно и в летной школе, которую также успешно окончил. Продолжая активную конструкторскую работу, он читал слушателям лекции по вопросам конструкции и прочности авиационных поршневых двигателей. Научные труды Кузнецова в тот период касались именно этих вопросов. Все это. вместе взятое, способствовало тому, что в 1941 г. он защитил кандидатскую диссертацию по своей специальности. В течение 1942 г. Н. Д. Кузнецов находился в действующей армии, а в 1943 г. был отозван с фронта в связи с назначением заместителем главного конструктора ОКБ и завода авиационных двигателей под руководством В. Я. Климова. Несколько позже в соответствии с решением правительства организуется опытное конструкторское бюро, в задачу которого входило создание турбовинтовых двигателей, а его главным конструктором в 1946 г. становится Н. Д. Кузнецов.
В конце сороковых годов наша промышленность выпускает первые отечественные реактивные двигатели. В связи с этим направления развития реактивных двигателей были неодинаковы, например, для самолетов-истребителей и бомбардировщиков с небольшим и средним радиусом действия. Для летательных аппаратов, которым в первую очередь необходимо было иметь большую дальность и продолжительность полета (стратегический бомбардировщик), требовалось создать дотоле неизвестный в авиационной технике турбовинтовой двигатель (ТВД). Как во всяком газотурбинном двигателе, в ТВД имеются входное устройство, компрессор, камера сгорания, турбина. Но в отличие от ГТД у ТВД есть еще редуктор и винт. В турбовинтовом двигателе частота вращения воздушного винта составляет 1000 - 1500 об/мин, а турбины - в 10 - 15 раз больше, поэтому для изменения частоты вращения на турбовинтовых двигателях используются редукторы с различным передаточным числом. Общая тяга в двигателях этого типа создается в основном за счет воздушного винта и в меньшей степени за счет реакции газовой струи. Создание тяги за счет винта более эффективно на малых и средних скоростях полета. Поэтому турбовинтовые двигатели и применяются на самолетах, летающих на скоростях до 600 - 750 км/ч. По сравнению с турбореактивными двигателями конструкция ТВД сложнее, более сложна и система регулирования, так как необходимо регулировать углы установки лопастей воздушного винта в зависимости от условий и режима полета.
На небольших скоростях полета турбовинтовой двигатель более экономичен по сравнению с обычным турбореактивным двигателем. Вот почему силовые установки с ТВД выгодно применять на пассажирских и транспортных самолетах, имеющих большие дальности и продолжительность полета. С увеличением же скорости полета экономичность ТВД падает. На базе ТВД иногда создают газотурбинные установки для вертолетов. Важным эксплуатационным достоинством самолетов с ТВД являются короткий разбег перед взлетом и особенно короткий пробег после посадки.
Первым турбовинтовым двигателем, созданным в конце сороковых годов в конструкторском бюро, руководимом Николаем Дмитриевичем Кузнецовым, стал двигатель ТВ-2. В этой организации и в дальнейшем велись работы над созданием ТВД, при разработке которых приходилось изыскивать пути повышения эффективности лопаточных машин, отработки процесса сгорания, запуска и решения многих других проблем. Вопросы обеспечения надежности и прочности таких агрегатов, как редуктор, в ту пору также считались довольно трудными, особенно если на базе существующего двигателя необходимо было создать вертолетный двигатель.
На основе обширных теоретических и экспериментальных работ, проведенных по турбовинтовым двигателям, в начале пятидесятых годов ОКБ приступило к созданию мощного и экономичного двигателя НК-12. Этот двигатель имел высокую для того времени степень повышения давления в компрессоре и температуру газа перед турбиной, без чего нельзя было получить хорошие данные как по мощности, так и по расходу топлива, что потребовало освоения новых, более жаропрочных материалов. Впервые в этом конструкторском бюро был применен новый высокожаропрочный сплав для изготовления литых монолитных и пустотелых охлаждаемых лопаток оригинальной конструкции, которые применяются в настоящее время на некоторых типах реактивных двигателей.
Турбовинтовой двигатель НК-12 развивал невиданную мощность - 15 000 л. с. Естественно, потребовалось создание надежного авиационного редуктора для передачи этой мощности.
Из практики зарубежного авиадвигателестроения известно, что попытка создания ТВД мощностью более 10 000 л. с. вызвала большие трудности в конструировании достаточно надежного редуктора с высоким к. п. д. и малой массой и окончилась неудачей. В ОКБ Н. Д. Кузнецова эта особо сложная задача была решена в содружестве с М. Л. Новиковым - профессором Военно-воздушной академии им. Н. Е. Жуковского благодаря применению зубчатых передач оригинальной конструкции. Для обеспечения устойчивого регулирования всего комплекса силовой установки с огромными соосными винтами, вращающимися в противоположные стороны, требовались совместные усилия двигателистов, винтовиков и самолетчиков. Недаром в одном из первых полетов на самолете с этими двигателями А. Н. Туполев тщательно изучал все тонкости поведения не только силовой установки, но и самолета в целом. Двигатель НК-12 был создан в начале пятидесятых годов, однако до настоящего времени он является наиболее мощной и экономичной силовой установкой этого типа в мировой практике.
Ранее уже упоминалось, какое удивление вызвал самолет с этой силовой установкой во время первой демонстрации Ту-114 на выставке в Париже. Каждому посетителю непременно хотелось "пощупать" эту сложную технику, и многие старались повернуть шестиметровый винт за лопасть.
Естественно, что создание силовой установки такой огромной мощности было сопряжено с большими трудностями, и на первых порах случались неполадки. И тем не менее все, кто имел дело с этими двигателями, встречали со стороны генерального конструктора доброжелательное отношение, стремление выяснить истинные причины неполадок. Н. Д. Кузнецов проявлял максимум оперативности в решении возникших при эксплуатации вопросов.
Немало времени пришлось затратить на выбор силовой установки для самолета, который должен был иметь грузоподъемность и дальность полета большие, чем любой из существующих отечественных и зарубежных летательных аппаратов. Мнения специалистов разошлись: одни предлагали строить самолет с турбореактивными двигателями, а следовательно, с большей скоростью полета, другие считали возможным использовать (при значительной модификации) хорошо зарекомендовавший себя турбовинтовой двигатель НК-12. После рассмотрения нескольких проектов самолетов с двигателями различных типов заказчики единодушно решили отдать предпочтение турбовинтовому самолету. Сотрудникам ОКБ Н. Д. Кузнецова пришлось немало потрудиться, проявить настоящий творческий подход и оперативность, так как реализация новых конструктивных решений требовала изменения не только двигателя, но и многолопастных винтов, а также редукторов.
В результате стендовых испытаний модифицированных двигателей НК-12, установки их на макете самолета и всякого рода "примерок" в наземных условиях и на летающих: лабораториях в очень короткие сроки был создан самый грузоподъемный в мире самолет Ан-22. Надежность силовой установки позволила после сравнительно небольшого количества испытательных полетов запустить самолет с модифицированными двигателями в серию.
Казалось, немного времени прошло после первого поле-га крупнейшего для своего времени пассажирского самолета Ту-114, имевшего четыре турбовинтовых двигателя НК-12 конструкции Н. Д. Кузнецова. Это было в 1957 г., а в июне 1965 г. "Антей" с четырьмя модифицированными турбовинтовыми двигателями типа НК-12 совершил полет в Европу, в 1967 г. на нем был осуществлен рекордный для турбовинтовых самолетов подъем груза 100,44 т на высоту 7848 м. Официальный рекорд удалось перекрыть более чем на 47 т. Всего десять лет разделяли эти события.
Силовая установка, разработанная конструкторским бюро Н. Д. Кузнецова, по-видимому, завершает создание этого типа двигателей (мощных ТВД для магистральных самолетов) как в нашей стране, так и за границей. Объясняется это тем, что появился газотурбинный двигатель нового типа - двухконтурный (турбовентиляторный), в котором нет огромного и напряженного редуктора, сложного многолопастного винта с собственными системами регулирования и защиты в аварийных случаях. Распространение турбовентиляторных двигателей связано с тем, что кинетическая энергия газов, вытекающих из сопла турбореактивного двигателя, при малых скоростях полета в значительной степени теряется бесполезно, кроме того, она служит источником шума, создаваемого реактивным двигателем. Минимальные потери энергии возможны при отбрасывании назад наибольшей массы газов с наименьшей скоростью. Именно поэтому при малых скоростях полета винт турбовинтового двигателя являлся более экономичным движителем, чем реактивная струя турбореактивного двигателя, несмотря на то что в ТВД энергия передается последовательно через турбину, редуктор и винт. Однако при больших скоростях полета коэффициент полезного действия винта падает. На таких скоростях (околозвуковых) целесообразнее применять двухконтурный двигатель, в котором располагаемая мощность цикла, развивающаяся в процессе расширения газов, используется для ускорения как горячей, так и холодной (во втором контуре) струй. Коэффициент полезного действия такого двигателя более высокий, чем обычного турбореактивного двигателя, при умеренных дозвуковых скоростях полета. Вместе с тем у него нет таких ограничений по скорости полета, как у ТВД.
Вопросы уменьшения шума, создаваемого двигателем, особенно для пассажирских самолетов, всегда привлекали внимание ученых, конструкторов и эксплуатационников. Они встали еще острее при увеличении тяги двигателей современных самолетов.
Именно по этим причинам конструкторское бюро, руководимое Николаем Дмитриевичем Кузнецовым, в 1960 г. приступило к разработке двухконтурного двигателя НК-8, предназначавшегося для межконтинентального пассажирского лайнера Ил-62. Позднее выпускается его улучшенная модификация - НК-8-4. Для самолета Ту-154 был создан еще один вариант двигателя этого семейства НК-8-2. Двухконтурные двигатели должны были иметь данные на уровне современных зарубежных силовых установок, что и было достигнуто благодаря простоте выбранной конструкции двигателя с малым количеством опор, умеренной степени повышения давления и широкому применению сравнительно новых в авиационном двигателестроении титановые сплавов. Помимо требуемых технических характеристик двигатель, предназначенный для установки на пассажирском самолете, должен отличаться повышенной надежностью.
В конструкции двухконтурного двигателя для первого советского аэробуса Ил-86 получили дальнейшее развитие лучшие черты двигателей семейства НК-8, реализованные в эксплуатации на самолете Ил-62. Особое внимание было уделено обеспечению высокой надежности и большого ресурса двигателя без переделки основной конструкции. Обеспечению высокой надежности в эксплуатации способствует также применение на двигателе многочисленных систем автоматического контроля и защиты, а также системы ранней диагностики и предупреждения о возникающих неисправностях.
Дальнейшее развитие получила конструкция многофорсуночной камеры сгорания, обеспечивающая не только равномерное поле температур перед турбиной, что важно для надежной работы горячей части двигателя, но и бездымный выхлоп двигателя, не загрязняющий окружающую среду. В двигателе предусмотрены также конструктивные мероприятия по существенному снижению уровня шума на всех этапах полета соответственно международным нормам. Значительное внимание уделено повышению экономичности двигателя по сравнению с двигателями семейства НК-8 за счет применения более высокой степени повышения давления в компрессоре и степени двухконтурности, а также за счет дальнейшего повышения к. п. д. всех узлов.
Под руководством Н. Д. Кузнецова созданы и создаются двигатели многих типов для различных аппаратов. В частности, для решения проблемы транспортировки газа с труднодоступных месторождений страны разработан, серийно изготовляется и широко эксплуатируется на газоперекачивающпх станциях газотурбинный привод НК-12СТ. В его конструкции осуществлена идея использования авиационного двигателя типа НК-12 в качестве привода газоперекачинающих агрегатов ГПА-Ц-6,3. Выполнены работы, позволившие использовать природный газ, перекачиваемый по трубопроводам, в качестве топлива для двигателя, осуществлена автоматизация всех процессов управления двигателем и его регулирования.
Решение этих сложных технических задач позволило:
- обеспечить газоперекачивающие агрегаты мощным газотурбинным приводом с малой массой и небольшими габаритами (мощность привода 6300 кВт);
- осуществить полную автоматизацию газоперекачивающих агрегатов и обеспечить полную автономию двигателя, не требующую дополнительных источников тепла, топлива и водоснабжения.
Впоследствии для транспортировки газа был конвертирован и другой двигатель ОКБ Н. Д. Кузнецова - НК-8, Этот автоматизированный газоперекачивающий агрегат ГПА-Ц-16/76-100, использующий достижения авиационной техники и современной технологии, надежно эксплуатируется в условиях пустынь Средней Азии, районах Крайнего Севера и горах Кавказа.
Николай Дмитриевич Кузнецов явился пионером в разработке авиационных двигателей, работающих на альтернативных топливах. В 1988 и 1989 гг. совершили испытательные полеты экспериментальные самолеты Ту-155. Для первого из них ОКБ Н. Д. Кузнецова разработало двигатель НК-88, использующий в качестве топлива водород. При его создании пришлось решить целый комплекс научно-технических и инженерных задач, в частности организацию рабочего процесса в камере сгорания. Из-за чрезвычайной сложности системы подачи топлива (практически невозможно избежать парообразования в подводящих трубопроводах) жидкий водород перед подачей в камеру сгорания газифицировался и подогревался.
Для другого экспериментального самолета ОКБ Н. Д. Кузнецова разработало двигатель НК-89, использующий в качестве топлива сжиженный природный газ.
Создание этих экспериментальных двигателей явилось большим творческим успехом конструкторского бюро и его руководителя.
Многогранную научно-исследовательскую, конструкторскую работу Николай Дмитриевич сочетает с педагогической деятельностью и подготовкой научных кадров на кафедре в одном из ведущих авиационных вузов страны. Таков путь выходца из рабочей семьи генерал-лейтенанта-инженера, действительного члена Академии наук СССР, Героя Социалистического Труда, лауреата Ленинской премии, генерального конструктора авиационных двигателей Николая Дмитриевича Кузнецова.
Аркадий Дмитриевич Швецов, Павел Александрович Соловьев
Аркадий Дмитриевич Швецов - один из старейших конструкторов авиационных двигателей нашей страны. Он родился в 1892 г. в семье народного учителя и окончил реальное училище в Перми. В этом городе прошла большая часть его конструкторской деятельности. Как и многие интересовавшиеся в ту пору авиацией, А. Д. Швецов поступил в МВТУ, но учебу вынужден был прервать, поскольку не имел средств продолжать обучение. И только при Советской власти, в 1921 г., он получил диплом инженера.
Рост молодого инженера и конструктора был непосредственно связан с развитием советского авиационного двигателестроения. Деятельность Швецова началась на моторостроительном заводе. В начале двадцатых годов он сконструировал звездообразный двигатель воздушного охлаждения М-11. Двигатель имел пять цилиндров и мощность 100 л. с. В течение 40 лет он служил нашей учебной и легкомоторной авиации, а самолет По-2 с этим двигателем на протяжении всей Великой Отечественной войны эффективно выполнял ночные боевые полеты на бомбометание.
Позднее, в начале тридцатых годов, в соответствии с Директивами XV съезда ВКП(б) началось строительство нового моторостроительного завода. При нем было организовано ОКБ. В это же время завершились переговоры с американской фирмой "Райт" о покупке лицензии на авиационный двигатель воздушного охлаждения "Райт-циклон", который послужил прототипом первых советских серийных двигателей М-25.
В 1934 г. Аркадия Дмитриевича назначили главным конструктором завода на Урале. Завод находился в стадии строительства и организации, а поэтому проблема кадров, особенно в то время, была очень острой. А. Д. Швецов верил в своих земляков-уральцев и смело приступил к организации опытного конструкторского бюро. В своем распоряжении он имел лишь несколько молодых авиационных инженеров. Но, помогая им советом и делом, он создал основной костяк бюро. Расхлябанность или недисциплинированность несовместимы были с работой в этом ОКБ. Швецов часто предостерегал своих сотрудников против опасности, заключенной в мнимой "очевидности", которая часто сбивает с пути логических умозаключений, особенно при тяжелых летных происшествиях. Сам главный конструктор осторожно подходил к принятию окончательного решения по интересующему его техническому вопросу. А. Д. Швецов был человеком молчаливым и сдержанным, скупым на слова, он отличался большим трудолюбием и аккуратностью.