Современная электронная библиотека ModernLib.Net

Развитие жизни на Земле

ModernLib.Net / Иорданский Н. / Развитие жизни на Земле - Чтение (стр. 3)
Автор: Иорданский Н.
Жанр:

 

 


      С6Н12О6 (R) 2СН3СН2ОН + 2СО2 + 0,209 кДж/моль
      С появлением фотосинтеза (первыми фотосинтезирующими организмами были сине-зеленые водоросли) в атмосферу стал выделяться кислород.
      В условиях бескислородной атмосферы распространение жизни было гораздо более ограниченным, чем ныне. Дело в том, что организмы не имеют никакой защиты от гибельной для них жесткой ультрафиолетовой части излучения Солнца (с длиной волны менее 250 нм). В современной атмосфере жесткая ультрафиолетовая радиация поглощается так называемым озоновым экраном - слоем озона О3, образующегося на высоте около 50 км из кислорода О2 под действием солнечного излучения и распределяющегося в основном в 15-60 км от земной поверхности. Озоновый экран надежно защищает живые организмы, которые могут существовать как в водоемах, так и на поверхности суши и в нижних слоях атмосферы. В бескислородной атмосфере раннего докембрия озоновый экран отсутствовал и жизнь могла развиваться только под защитой слоя воды толщиной около 10 м. Поверхностные слои водоемов, получающие наибольшее количество энергии солнечного излучения, были недоступны для организмов. Совершенно безжизненны были и материки криптозоя.
      Однако фотосинтез, осуществлявшийся в озерах, морях и океанах планеты сине-зелеными водорослями (а позднее и различными группами эукариотических водорослей), в течение 2 млрд. лет медленно, но неуклонно повышал содержание свободного кислорода в атмосфере. Когда содержание кислорода достигло 0,01 от современного (так называемая точка Пастера, соответствующая парциальному давлению кислорода 1,59 мм рт. ст.), у организмов впервые появилась возможность использовать для удовлетворения своих энергетических потребностей аэробную диссимиляцию; другими словами, после достижения точки Пастера стало возможно дыхание, которое энергетически выгоднее брожения почти в 14 раз:
      С6Н12О6 + 6О2 (R) 6СО2 + 6Н2О + 2,88 кДж/моль
      (Вспомним, что при брожении освобождается всего лишь 0,209 кДж/моль.) Это был важнейший переломный момент в развитии жизни.
      Среди современных организмов так называемые факультативные аэробы, каковыми являются многие бактерии и некоторые дрожжевые грибы, при уменьшении содержания кислорода ниже точки Пастера используют брожение, при поднятии содержания кислорода выше указанной точки - дыхание (эффект Пастера).
      Переход к аэробной диссимиляции в эволюции древних организмов произошел, разумеется, не сразу. Для этого необходимо развитие соответствующих ферментативных систем, но линии, приобретшие способность к дыханию, получили огромный энергетический выигрыш и в результате возможность резко интенсифицировать метаболизм и все жизненные процессы. Это явилось предпосылкой к дальнейшей прогрессивной эволюции и, вероятно, способствовало ускорению эволюционного процесса.
      Но достижение пастеровской точки в развитии атмосферы Земли ознаменовалось не только появлением возможности аэробной диссимиляции организмов. При содержании кислорода в атмосфере в количестве 0,01 от современного формирующийся озоновый экран может защитить от жесткой ультрафиолетовой радиации уже и верхние слои воды в водоемах (требуется "помощь" слоя воды толщиной примерно 1 м). Это, во-первых, позволяет организмам подниматься в поверхностные слои водоемов, наиболее богатые солнечной энергией; в результате резко усиливается эффективность фотосинтеза, увеличиваются биопродукция (синтез растениями органических веществ) и выделение свободного кислорода. Во-вторых, чрезвычайно расширяется арена жизни, малые глубины водоемов представляют огромное разнообразие условий по сравнению со средними и большими глубинами. Освоение этого разнообразия условий в богатой энергией среде обитания неминуемо должно привести к резкому повышению разнообразия форм жизни, подлинному взрыву формообразования.
      По расчетам Л. Беркнера и Л. Маршалла, точка Пастера в эволюции атмосферы Земли была пройдена примерно 620 млн. лет назад; по мнению некоторых других ученых, возможно, значительно раньше - в промежутке 700-1000 млн. лет назад. Но, во всяком случае, точка Пастера была пройдена в позднем протерозое, незадолго (в геологическом смысле слова) до нижнего рубежа кембрия. Здесь Л. Беркнер и Л. Маршалл видят ключ к решению загадки раннего кембрия: взрыв формообразования в конце протерозоя - начале палеозоя последовал за достижением точки Пастера в атмосфере и логически совершенно неизбежно вытекает из указанных выше последствий этого (интенсификация метаболизма, убыстрение эволюции, освоение множества новых разнообразных местообитаний на мелководье, усиление фотосинтеза, возрастание биопродукции).
      После достижения содержания кислорода в атмосфере, равного 0,1 от современного, озоновый экран уже в состоянии полностью защитить организмы от действия жесткой ультрафиолетовой радиации. С этого момента организмы могут приступить к освоению суши как среды обитания. По расчетам Л. Беркнера и Л. Маршалла, это должно было произойти в конце ордовика (около 420 млн. лет назад). Действительно, примерно к этому времени относится появление первых наземных организмов (см. главу 3). Современное содержание кислорода в атмосфере было достигнуто в конце пермского периода.
      Гипотеза Л. Беркнера и Л. Маршалла привлекательна не только своей логичностью и последовательностью в объяснении докембрийской эволюции, но и перспективностью в отношении дальнейшего развития этих идей.
      Как мы упоминали выше, на рубеже протерозоя и раннего кембрия у самых различных групп организмов развивается твердый скелет, облегчающий их фоссилизацию. Некоторые ученые склонны видеть сущность загадки раннего кембрия именно в скелетизации организмов. Однако сама эта скелетизация может быть непосредственным следствием повышения содержания кислорода в атмосфере. По мнению Р. и Е. Раффов (1970), при низком содержании кислорода в окружающей среде размеры тела многоклеточных животных не могли быть большими (вследствие низкого уровня метаболизма и энергетики организма), газообмен с внешней средой, вероятно, осуществлялся диффузно через поверхность тела, при этом толщина стенок тела не могла превышать нескольких миллиметров. Для таких организмов не возникало необходимости в опорном внутреннем скелете, а защитные наружные скелетные образования препятствовали бы газообмену. К. Тоув (1970) пришел к выводу, что у докембрийских животных в условиях малого содержания кислорода в окружающей среде не могло быть хорошо развитых соединительнотканных образований, формирующих основу для развития скелета. Прочность соединительнотканных образований базируется в основном на содержании в них белка коллагена, в состав которого входит аминокислота оксипролин. Оксипролин коллагена образуется посредством гидроксилизации другой аминокислоты - пролина с помощью фермента оксигеназы. Эта реакция возможна только при наличии достаточно большого количества кислорода в окружающей среде. Следовательно, при низком содержании кислорода синтез коллагена был биохимически затруднен и организмы не могли иметь прочных соединительнотканных образований, а поэтому и скелета, и сильно развитой мышечной системы, работа которой эффективна лишь при наличии соответствующих опорных структур.
      Д. Роудс и Дж. Морзе (1971) предприняли попытку своего рода экспериментальной проверки гипотезы Л. Беркнера и Л. Маршалла. Они исследовали распространение беспозвоночных животных в современных водоемах с пониженным содержанием кислорода в воде: в Калифорнийском заливе, на грабенах континентального склона Южной Калифорнии и в Черном море. Была обнаружена отчетливая корреляция между содержанием кислорода в воде и характером донной фауны (бентоса). При содержании кислорода менее 0,1 мл на 1 л воды многоклеточные животные в составе бентоса отсутствуют; при содержании кислорода 0,3-1 мл на 1 л воды встречаются небольшие мягкотелые (бесскелетные) животные, зарывающиеся в ил; наконец, в более поверхностных слоях с содержанием кислорода более 1 мл/л обитают самые разнообразные животные, обладающие известковым скелетом. Эти данные представляют как бы живую иллюстрацию гипотезы Л. Беркнера и Л. Маршалла.
      РАЗВИТИЕ ЖИЗНИ В ДОКЕМБРИИ
      В двух заключительных разделах этой главы мы вкратце рассмотрим общую картину развития жизни в течение криптозоя, коснувшись попутно некоторых биологических проблем, связанных с ранними этапами эволюции растений и животных (возникновение эукариот, полового процесса, многоклеточного уровня организации).
      Анализ основных этапов эволюции органического мира в докембрии был проделан Б. С. Соколовым (1972, 1975, 1976).
      Время появления жизни на Земле различными учеными оценивается по-разному. Можно указать на обширный промежуток между 3,5-4,25 млрд. лет назад. Как упоминалось выше, протоорганизмы были, вероятно, гетеротрофными формами, питавшимися готовыми высокомолекулярными органическими соединениями, которые содержались в "первичном бульоне" и имели абиогенное происхождение. В археозое жизнь существовала в условиях бескислородной восстановительной атмосферы, вероятно в водоемах на глубине порядка 10-50 м. Десятиметровый слой воды защищал протоорганизмы от губительного действия жесткого ультрафиолетового излучения Солнца.
      В промежутке времени между 3 и 3,5 млрд. лет назад какая-то форма (или формы) протоорганизмов приобрела способность к фотосинтезу. Вслед за этим произошла дивергенция прокариот на два главных ствола их эволюции: 1) бактерии (тип Bacteriae), в большинстве сохранившие в той или иной форме гетеротрофный способ питания и совершенствовавшие его применительно к новым условиям существования; 2) сине-зеленые водоросли (тип Cyanophyta), развившие автотрофное питание посредством фотосинтеза. Бактерии от использования органических веществ абиогенного происхождения по мере уменьшения их содержания в окружающей среде и распространения фотосинтезирующих организмов все в большей степени переходили к питанию органическими веществами, синтезированными водорослями 1.
      В течение последующих 1,5-2 млрд. лет - на протяжении большей части криптозоя - происходила медленная эволюция прокариот, в целом оказавшихся весьма консервативными (по крайней мере в морфологическом отношении, т. е. в сохранении основных особенностей строения). Вероятно, около 2,8-3 млрд. лет назад появились нитчатые формы сине-зеленых водорослей. Нитчатый тип строения представляет собой цепочку клеток, возникшую путем их последовательного деления в одном направлении. Клетки в цепочке связаны друг с другом лишь механически - разрыв цепочки никак не сказывается на жизнедеятельности и жизнеспособности составляющих ее клеток. Поэтому нитчатые формы нельзя приравнивать к многоклеточному состоянию, при котором обязательны дифференциация и интеграция многоклеточного организма, различные части которого выполняют разные функции и подчинены целому.
      Средний докембрий с полным основанием называют "веком сине-зеленых водорослей", получивших самое широкое распространение; это было время их расцвета. Благодаря их фотосинтетической деятельности, постепенно повышалось содержание кислорода в атмосфере. Первоначально свободный кислород быстро использовался как окислитель в различных химических реакциях, в частности в процессах отложения осадочных железных руд при участии ферробактерий. Основная масса железорудных толщ на всей Земле сформировалась в промежутке 2,2-1,9 млрд. лет назад. После завершения этих процессов, радикально изменивших геохимический облик поверхностных слоев земной коры, кислород стал накапливаться в атмосфере во все более заметных количествах. Большие масштабы в это время приобрела и строматолитообразующая деятельность нитчатых сине-зеленых водорослей, которая привела к образованию огромных толщ карбонатных пород.
      Возможно, около 1,1-1,4 млрд. лет назад возникли первые эукариоты. Это следующий важнейший рубеж в докембрийской эволюции организмов после возникновения фотосинтеза и обособления сине-зеленых водорослей. Эукариоты обладают значительно более сложной и совершенной организацией клетки, чем прокариоты. Протоплазма эукариотической клетки сложно дифференцирована; в ней обособлены ядро и другие органоиды (хондриосомы, пластиды, комплекс Гольджи, центриоли и др.), отделенные от цитоплазмы полупроницаемыми мембранами и выполняющие различные функции; снаружи клетка окружена клеточной мембраной. Наружная и внутренние клеточные мембраны образуют единый мембранный комплекс. Мембраны имеют сложное молекулярное строение (липидная "пленка", пронизанная белковыми "каналами"), обусловливающее избирательное проникновение веществ.
      У прокариот вместо клеточной мембраны клетка обволакивается единственной гигантской молекулой мукопептида (вещество, состоящее из аминокислот, углеводов и липидов). В ядре - интегрирующем центре клетки эукариот локализован хромосомный аппарат, в котором сосредоточена основная часть кода наследственной информации. У прокариот нет такого интегрирующего центра и подобной упорядоченности наследственной информации; элементы аппарата наследственности отчасти включены в единственную, так называемую "хромосому" бактериальной клетки, отчасти находятся в цитоплазме. Упорядоченность аппарата наследственности и сложность организации клетки у эукариот требуют такой же упорядоченности в передаче наследственной информации при клеточном делении. В связи с этим у эукариот развился весьма совершенный механизм клеточного деления (митоз), обеспечивающий точное и эквивалентное распределение наследственной информация в обе дочерние клетки. У прокариот митоза не наблюдается. Митоз возник, вероятно, около 1 млрд. лет назад (см. выше). Эукариотный уровень организации клетки обеспечивает более совершенное выполнение всех клеточных функций и открывает перспективы для дальнейшей прогрессивной эволюции.
      Имеются две основные точки зрения на проблему происхождения эукариотической клетки (и, соответственно, эукариот как таксономической группы). Первая из них (так называемая аутогенная концепция) предполагает постепенную дифференциацию прокариотической клетки, в ходе которой развился мембранный комплекс (сначала могла возникнуть наружная клеточная мембрана, затем ее локальные впячивания внутрь клетки образовали внутриклеточные мембраны). На основе мембранного комплекса структурно оформились клеточные органоиды. Согласно аутогенной концепции, эукариоты возникли от одной из групп прокариот (от какой именно, сказать сейчас невозможно).
      Вторая точка зрения (симбиогенная концепция) получила широкую известность после работ Л. Маргулис (Саган) (1967-1971), которая обосновала гипотезу о возникновении эукариотической клетки из симбиоза разных прокариот: крупной клетки - хозяина и более мелких организмов, поселившихся в цитоплазме первого. Последние дали начало различным органоидам. Аргументы в пользу этой точки зрения сводятся к фактам наличия в таких органоидах эукариотической клетки, как хондриосомы и пластиды, собственной дезоксирибонуклеиновой кислоты (носителя наследственной информации), а также существования весьма сложных симбиотических комплексов среди современных организмов. Согласно симбиогенной концепции, предками эукариот должны быть сразу несколько групп прокариот.
      В целом аутогенная (классическая) точка зрения представляется в настоящий момент лучше обоснованной и согласующейся с современными данными о сущности прогрессивной эволюции организмов.
      Для всех современных эукариот характерен в той или иной форме половой процесс 1, сущностью которого является обмен наследственной информацией между разными организмами, принадлежащими к одному биологическому виду. В результате полового процесса наследственная информация перекомбинируется в каждом следующем поколении, что резко повышает изменчивость данного вида (комбинативная форма изменчивости). Вторая важнейшая функция полового процесса - объединение наследственной информации, присущей разным индивидам, в единый видовой генофонд. При наличии полового процесса отдельные особи объединяются в целостную систему - биологический вид, который как целое неизмеримо устойчивее по отношению ко всем неблагоприятным изменениям внешней среды, чем генетически обособленные линии, размножающиеся бесполым путем (клоны).
      Половой процесс известен и у некоторых прокариот (бактерии), но у них он неупорядочен и не обеспечивает эквивалентного обмена разных особей наследственной информацией. Вероятно, характерная для эукариот упорядоченность полового процесса, связанная со структурой эукариотической клетки, сложилась вскоре после их возникновения.
      В результате присущего эукариотам полового процесса в одной клетке объединяются два генома, т. е. два полных набора наследственной информации (диплоидное состояние). В диплоидном наборе все хромосомы парные. Чтобы в дальнейшем не происходило новых удвоений числа геномов (что затруднило бы нормальное функционирование клетки), необходимо развитие особого механизма клеточного деления (мейоза), посредством которого каждая из дочерних клеток получает лишь один (гаплоидный) набор хромосом. Вероятно, мейоз появился практически одновременно с развитием у эукариот полового процесса. В процессе мейоза хромосомы из разных пар диплоидного набора распределяются в дочерние клетки независимо и случайно, что приводит к возникновению новых комбинаций хромосом в гаплоидных наборах и еще более увеличивает комбинативную изменчивость вида. Таким образом, половой процесс и мейоз обеспечивают резкое возрастание внутривидовой изменчивости, способствующее значительному убыстрению эволюции (что и наблюдается у эукариот) 2.
      Примерно 0,9 млрд. лет назад произошло разделение эволюционного ствола древнейших эукариот на ряд ветвей, давших начало разным типам водорослей: зеленых (Chlorophyta), бурых (Phaeophyta), красных (Rhodophyta) и др., а также грибам (тип Fungi). Вероятно, в это время существовали уже и одноклеточные животные - простейшие (тип Protozoa), либо возникшие от общего предкового ствола всех эукариот, либо обособившиеся от ранних представителей одной из групп растений (какой именно, с уверенностью сказать сейчас невозможно). Разные исследователи связывали происхождение животных с каждой из названных выше групп растений. По всей совокупности данных, к предкам Protozoa наиболее близкими кажутся некоторые одноклеточные зеленые водоросли. Не случайно таких жгутиконосных одноклеточных, как Euglenoidea, Volvocales и др., способных и к фотосинтезу, и к гетеротрофному питанию, ботаники рассматривают в составе типа зеленых водорослей, а зоологи - в составе типа простейших животных.
      ПРОИСХОЖДЕНИЕ МНОГОКЛЕТОЧНЫХ ОРГАНИЗМОВ
      Вероятно, 700-900 млн. лет назад на Земле появились первые многоклеточные животные и растения. У растений возникновение многоклеточного уровня организации, по-видимому, произошло на основе дифференциации лентообразных колоний, возникших путем бокового срастания прикрепленных нитчатых форм или благодаря делению клеток последних в двух взаимно перпендикулярных направлениях (в одной плоскости). У прикрепленных колоний различные участки находились в разных условиях по отношению к солнечному свету, субстрату и водному окружению. В связи с этим естественный отбор должен был благоприятствовать возникновению определенной дифференциации частей колонии. Первым шагом было возникновение полярности колонии: на одном ее конце выделялись клетки, служившие для прикрепления к субстрату (для них характерны ослабление фотосинтеза, потеря способности к делению), на другом - верхушечные клетки, интенсивно делившиеся и образовавшие своего рода точку роста колонии. Естественный отбор благоприятствовал приобретению клетками колонии способности делиться в разных направлениях; это содействовало ветвлению, что увеличивало поверхность колонии. Деление клеток в трех плоскостях или переплетение отдельных нитей вело к возникновению многослойного, объемного тела. В ходе его дальнейшей дифференциации сформировались многоклеточные органы, выполнявшие разные функции (фиксация на субстрате, фотосинтез, размножение). Одновременно между разными клетками растения складывалась определенная взаимозависимость, что, собственно говоря, и знаменует достижение многоклеточного уровня организации.
      У животных активный образ жизни требовал более совершенной и сложной дифференциации организма, чему растений. Сложность организации многоклеточных животных (Metazoa) и разнообразие ее конкретных форм стимулировали разработку различных гипотез о происхождении Metazoa. Эти гипотезы для упрощения изложения можно свести к двум основным концепциям - колониального и неколониального происхождения многоклеточных животных.
      Первая концепция берет начало в работах Э. Геккеля, который в создании известной теории гастреи основывался на сформулированном им биогенетическом законе (см. "Введение"), Геккель исходил из того, что филогенез древнейших Metazoa в определенной степени повторяется в онтогенезе современных многоклеточных животных (рис. 6). В соответствии с этим он видел предков Metazoa в колониальных простейших, обладавших сферическими колониями с однослойной стенкой, подобными бластуле - одной из ранних стадий эмбрионального развития современных многоклеточных животных. Геккель назвал эту гипотетическую предковую форму бластеей. При направленном плавании сферическая колония - бластея - ориентировалась одним полюсом вперед (как это наблюдается и у современных колониальных простейших, например у Volvox). Согласно Геккелю, на переднем полюсе колонии возникло впячивание ее стенки внутрь, подобно тому как это происходит при инвагинационной гаструляции в онтогенезе некоторых современных Metazoa. В результате образовался многоклеточный организм - гастрея, стенка тела которого состоит из двух слоев - эктодермы и энтодермы. Энтодерма окружает внутреннюю полость, первичный кишечник, открытый наружу единственным отверстием - первичным ртом. Организация гастреи соответствует принципиальному плану строения кишечнополостных (тип Coelenterata), которых Э. Геккель и рассматривал как наиболее примитивных многоклеточных животных.
      Рис. 6. Ранние стадии онтогенеза кораллового полипа Monoxenia (по Э. Геккелю):
      а - бластула; б - гаструляция; в, г - гаструла (внешний вид и продольный разрез).
      И. И. Мечников обратил внимание на то, что у примитивных кишечнополостных гаструляция происходит не путем инвагинации (впячивания одного полюса однослойного зародыша - бластулы), что характерно для более высокоорганизованных групп, а посредством миграции некоторых клеток (рис. 7) из однослойной стенки тела внутрь. Там они образуют рыхлое скопление, позднее организующееся в виде стенок гастральной полости, которая прорывается наружу ротовым отверстием. Такой способ гаструляции гораздо проще, чем инвагинация, так как не требует сложного направленного и координированного смещения целого пласта клеток и, вероятно, примитивнее инвагинации. В связи с этим И. И. Мечников модифицировал теорию Э. Геккеля следующим образом. В сфероидной колонии простейших - жгутиконосцев - клетки ее однослойной стенки, захватывавшие (фагоцитировавшие) пищу, мигрировали для ее переваривания внутрь, в полость колонии (подобно миграции клеток будущей энтодермы в процессе гаструляции кишечнополостных). Эти клетки образовали рыхлое внутреннее скопление - фагоцитобласт, функцией которого стало обеспечение всего организма пищей, включая ее переваривание и распределение, тогда как поверхностный слой клеток - кинобласт - осуществлял функции защиты и движения организма. Для захвата новых пищевых частиц клеткам фагоцитобласта, по мысли И. И. Мечникова, не было необходимости возвращаться в поверхностный слой: располагаясь непосредственно под кинобластом, клетки фагоцитобласта захватывали пищу псевдоподиями, выдвигаемыми наружу в промежутках между клетками кинобласта. Эта гипотетическая стадия эволюции Metazoa была названа Мечниковым фагоцителлой (или
      Рис. 7. Гаструляция зародыша гидроидного полипа Stomateca (из Н. А. Иоффа).
      паренхимеллой); ее строение соответствует таковому паренхимулы - личинки некоторых кишечнополостных и губок. В дальнейшем (как приспособление к повышению активности питания) у потомков фагоцителлы произошла эпителизация фагоцитобласта в виде первичного кишечника с образованием ротового отверстия в том месте, где происходила преимущественная миграция клеток внутрь. По мнению некоторых ученых, это место, вероятно, соответствовало заднему по направлению движения полюсу тела, где при плавании возникают завихрения воды и поэтому условия наиболее благоприятны для захвата (фагоцитоза) пищевых частиц. Теория И. И. Мечникова, как и теория Э. Геккеля, принимает происхождение Metazoa от колониальных простейших и рассматривает в качестве наиболее примитивных многоклеточных животных типы кишечнополостных и губок.
      Теория неколониального происхождения Metazoa была разработана сербским ученым Й. Хаджи. Хаджи обратил внимание на некоторое сходство между инфузориями - высшими простейшими, обладающими наиболее сложно дифференцированным клеточным телом, и турбелляриями - примитивной группой плоских червей (тип Plathelminthes). Некоторые инфузории и турбеллярии обладают близкими размерами и одинаковой формой тела, сходным положением ротового отверстия на брюшной стороне тела и расположением ряда внутренних структур. Нужно отметить, что это сходство имеет условный характер, поскольку многоклеточные органы турбеллярии сравниваются с органоидами - частями клетки инфузорий.
      Й. Хаджи высказал предположение, что многоклеточное строение могло возникнуть путем целлюляризации, т. е. разделения на отдельные клетки сложно устроенного многоядерного клеточного тела каких-то инфузорий. Согласно этой гипотезе, наиболее примитивной группой Metazoa являются низшие черви турбеллярии, а кишечнополостные возникли от них, перейдя к прикрепленной жизни на дне водоемов, что и вызвало вторичное упрощение их организации.
      Гипотеза неколониального происхождения многоклеточных (или гипотеза целлюляризации) по-своему логична и остроумна и поэтому получила признание со стороны ряда ученых. Однако эта концепция построена главным образом умозрительно и не основана на серьезных фактах. Явление целлюляризации никогда не наблюдалось ни у каких инфузорий (тогда как колониальные формы широко распространены среди жгутиковых). Внутриклеточные механизмы передачи информации и принципы интеграции одноклеточного тела инфузории принципиально отличаются от соответствующих процессов в многоклеточном организме, основанных на межклеточных взаимодействиях. Превратить одно в другое путем целлюляризации не представляется возможным. Специфический тип полового процесса инфузорий (конъюгация, при которой две особи обмениваются своими так называемыми блуждающими ядрами) не имеет ничего общего с половым процессом многоклеточных животных. Концепция целлюляризации никак не увязана с данными эмбриологии: ход онтогенеза многоклеточных животных необъясним с ее позиций.
      Рис. 8. Трихоплакс (Trichoplax adhaerens):
      а - изменения формы тела одной особи (по Ф. Шульце);
      б - разрез, перпендикулярный краям тела (по А. В. Иванову):
      1 - амебоидные клетки; 2 - спинной эпителий;
      3 - веретеновидные клетки;
      4 - липидные включения;
      5 - пищеварительные вакуоли; 6 - брюшной эпителий.
      Важные сведения для понимания ранних этапов эволюции Metazoa были получены при изучении Trichoplax adhaerens - крайне примитивного многоклеточного организма, обнаруженного в Красном море Ф. Шульце еще в 1883 г., но детально исследованного лишь в 70-е годы нашего века К. Греллом (1971) и А. В. Ивановым (1973, 1976). Трихоплакс (рис. 8) имеет уплощенное тело, лишенное полярности. Поверхность тела, обращенная вверх, выстлана плоским, а нижняя цилиндрическим мерцательным эпителием. Внутри, между эпителиальными слоями, соответствующими кинобласту, находится полость с жидким содержимым, в которой располагаются веретеновидные и звездчатые клетки. Эти последние можно рассматривать в качестве фагоцитобласта. Размножается трихоплакс бесполым способом: делением и почкованием. А. В. Иванов указал, что трихоплакс представляет собой как бы живую модель фагоцителлы, и предложил выделить эту форму в особый тип животных Phagocytellozoa. По-видимому, трихоплакс подкрепляет позиции теории фагоцителлы И. И. Мечникова и, следовательно, колониальной теории происхождения Metazoa 1.
      Как указывалось выше, в позднем протерозое (600-650 млн. лет назад) уже существовали такие группы многоклеточных животных, как губки, кишечнополостные, плоские и кольчатые черви и даже, возможно, предки членистоногих. Судя по общему уровню организации соответствующих групп, можно предполагать, что к этому времени обособились также эволюционные стволы нитчатых червей (тип Nemathelminthes), предков моллюсков и предков вторичноротых животных - олигомерных червей.
      Докембрийский филогенез Metazoa можно гипотетически представить следующим образом (рис. 9). От колониальных жгутиковых (по мнению ряда авторов, от гетеротрофных форм, принадлежавших к отряду Protomonadida) путем дифференциации и интеграции колонии, с миграцией внутрь клеток фагоцитобласта на заднем полюсе тела возникли первые многоклеточные животные, организация которых соответствовала фагоцителле (по И. И. Мечникову). Мало изменившимися потомками этих древнейших многоклеточных являются современные Phagocytellozoa (Trichoplax adhaerens). Примитивные многоклеточные были свободноплавающими (за счет работы мерцательного эпителия - кинобласта) животными, питавшимися различными микроорганизмами (простейшими и одноклеточными водорослями).
      При дальнейшем развитии приспособлений к активному питанию происходила постепенная эпителизация фагоцитобласта, т. е. преобразование рыхлого скопления клеток в орган с эпителизованными стенками. Эпителизация фагоцитобласта, вероятно, началась с развития на заднем по движению полюсе постоянного ротового отверстия. Как отметил К. В. Беклемишев (1974), на этой стадии филогенеза организм стал питаться как целое, а не как совокупность отдельных самостоятельно фагоцитирующих клеток. Вероятно, к этому времени появилась и интегрирующая организм нервная система в виде эпителиального нервного сплетения. Активное плавание требовало способности ориентироваться в пространстве и координировать работу всех органов. Для осуществления этих функций на аборальном (противоположном ротовому отверстию) полюсе тела животного возник нейрорецепторный комплекс, включавший нервный ганглий, осязательные щетинки и статоцист (орган равновесия). Подобный аборальный орган имеется у современных гребневиков (тип Ctenophora), а также у свободноплавающих личинок очень многих групп животных (плоских и кольчатых червей, моллюсков, членистоногих, полухордовых, иглокожих и др.). Эту гипотетическую стадию филогенеза древних Metazoa можно назвать "стомофагоцителлой" (подчеркивая эпителизацию лишь ротового отдела фагоцитобласта).

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15