Эврика-87
ModernLib.Net / Неизвестен Автор / Эврика-87 - Чтение
(стр. 25)
Автор:
|
Неизвестен Автор |
Жанр:
|
|
-
Читать книгу полностью
(809 Кб)
- Скачать в формате fb2
(317 Кб)
- Скачать в формате doc
(324 Кб)
- Скачать в формате txt
(315 Кб)
- Скачать в формате html
(318 Кб)
- Страницы:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27
|
|
Сохранить вещество в чистом виде не менее сложно, чем его очистить. Один из путей поддержания достигнутой чистоты - хранение металла в условиях низких температур: в жидком азоте или даже в жидком гелии. Новые лики микроэлектроники В тонких кристаллических ферромагнитных пленках возникают магнитостатические волны, волны намагничивания. Сейчас исследуются и разрабатываются электронные устройства, основанные на возбуждении и распространении магнитостатических волн. Это приборы магнитоэлектроники. Поиски путей дальнейшей миниатюризации электроники привели к исследованию влияния на их характеристики сверхнизких температур. Вспомнили о так называемом эффекте Джозефсона, предсказанном в 1962 году английским студентом Джозефсоном, впоследствии лауреатом Нобелевской премии. Устройство - "джозефсоновский переход" - сконструировано из двух сверхпроводящих электродов, разделенных тончайшим (10-50 ангстрем) слоем диэлектрика. В обычных условиях, даже при сверхнизких температурах, электрический ток через изолятор не протекает. Однако здесь благодаря сверхпроводящему состоянию электродов ток по изолятору возможен, и зависит он от электрических и магнитных полей, приложенных к переходу. Один или несколько таких переходов могут работать как детектор, усилитель, логический элемент или ячейка памяти. Благодаря сверхпроводимости при температуре всего 4,2 градуса Кельвина такой прибор, работая, выделяет в десять тысяч раз меньше тепла, чем обычный транзистор. Он оказался находкой для разработчиков ЭВМ будущего. Ведь на полупроводники уже не надеялись: они потребляют слишком много энергии. Созданная на основе полупроводниковых интегральных схем ЭВМ размером с футбольный мяч должна выделять киловатт энергии за секунду. Такая ЭВМ работать бы не смогла - нет способа отвода столь Большого количества тепла. В то же гремя ЭВМ, построенная на сверхпроюдящей электронике, выделяла бы всего 0,1 ватта. В десять тысяч раз меньше! Наиболее стабильны в работе джозефсоновские переходы с электродами из ниобия и других тугоплавких металлов. Развитие методов литографии, вакуумной техники, применение тугоплавких металлов позволяет надеяться, что производство элементов вычислительных машин на основе переходов Джозефсона начнется в ближайшие годы. Устройства сверхпроводящей электроники обладают высокой чувствительностью. На их основе сделаны особо чувствительные измерители магнитных потоков и полей, способные фиксировать магнитные поля не только сердца (магнитокардиография), но и мозга (магнитоэнцефалография). Кардиологи и нейрохирурги получили новый тонкий инструмент для исследований и практики. Металл - это почти вакуум Исследования на образцах металлов сверхвысокой чистоты способствовали прогрессу в изучении свойств электронов проводимости. Чтобы "поймать" увеличение длины свободного пробега электронов, эксперименты проводили на монокристаллах с высокой степенью очистки от посторонних электрически активных примесей и при космическом холоде - температуре кипения гелия - и даже более низкой. Рекордный свободный пробег в восемь-десять миллиметров совершают электроны в сверхчистых образцах индия, выращенных сотрудниками институтов АН СССР. То есть чистый металл вел себя в известной мере как вакуум! Кандидатом физико-математических наук В. Петрашовым (ИФТТ АН СССР) создан новый метод анализа чистоты металлов. Он основан на свойстве особого типа электромагнитных волн - геликонов - затухать в ряде металлов пропорционально концентрации в них примесей. Метод пригоден для анализа чистоты всех металлов, в которых обнаружено распространение геликонов лития, натрия, алюминия, калия, золота, свинца и других. Его чувствительность повышается с возрастанием чистоты металла. Отсутствие контакта с анализируемым веществом позволяет вести измерения, когда образец находится в запаянной ампуле. На основе явления затухания геликонных волн создана аппаратура и для определения свободного пробега электронов проводимости (некое подобие сверхпроводимости) в рекордно чистых металлах при температуре жидкого гелия. А сами геликоновые волны - это затухание электромагнитных волн, испускаемых плазмой заряженных частиц. Это опять же попытка рассмотрения чистых металлов как чего-то, что сродни вакууму. Ведь только в вакууме появляется подобная плазма. Исследования чистых металлов могут привести к появлению нового направления науки и техники - металлической электроники, металлотроники. Речь идет о создании направленных пучков электронов в металле и управлении ими, подобно тому как это делается в электронной вакуумной лампе. Ведь в известном смысле металлический образец высокой степени чистоты подобен вакууму для электронов проводимости. Ясно, что металлотроника резко повысила бы эффективность - быстродействие - вычислительных и управляющих систем. Сейчас эта идея уже не кажется фантастической. Эксперименты с такими чистыми металлами, как индий и висмут, с длиной свободного пробега электронов более пяти миллиметров, выполненные в Институте физики твердого тела доктором физико-математических наук В. Цоем, доказали возможность фокусирования электронов проводимости внутри металлического образца и управления их траекториями с помощью магнитного поля. Основными элементами для новейшей ветви микроэлектроники металлической электроники - могут стать микромостики, изготовленные путем локального утоньшения до одного микрона массивных металлических кристаллов особой чистоты. Микромостик - это, по сути, узкий, длиной сто микрон "мост", соединяющий два металлических монокристалла. Когда была сооружена первая ЭВМ на электронных лампах, оказалось, что вес у нее весьма солидный - тридцать тонн! Соответственно занимала она зал в сто пятьдесят квадратных метров. Современная микроЭВМ, превосходящая первую и по быстродействию, и по объему памяти, напоминает солидную книгу. По размерам, не более. Металлотроника - еще только в процессе исследований и становления. Время точных характеристик еще впереди. Но можно с уверенностью предсказать: металлотроника-новый революционный скачок в электронной технике. Железо растет! Что сплавы железа при нагревании расширяются - далеко не новость. Известна и величина теплового расширения - до двух процентов. Но вот ученые Днепропетровского металлургического института берут заготовку из железа, нагревают - и она начинает расти. Длина ее буквально на глазах увеличивается вдвое, втрое, в пять раз! Фокус? Нет, просто найдена любопытная закономерность: если металл циклично нагревать и охлаждать в интервале от 850 до 950 градусов, но не на воздухе, а в водородной атмосфере - он начинает "разбухать". Обнаруженное явление открывает широкую дорогу новым эффективным способам обработки металлов и сплавов. "Металлическое" фото Принципиально новый метод получения фотоизображения разработали ученые Института физики Сибирского отделения АН СССР. Он позволяет отказаться от традиционного способа химической обработки фотопленки. ...Яркая вспышка на тысячную долю секунды осветила негатив, наложенный на стекло, покрытое тонким металлическим слоем. Когда негатив убрали, на металлическом покрытии осталось изображение. Правда, его не было видно до тех пор, пока не включили поляризованный свет - под его воздействием проявились все детали. Основой для металлической "фотоэмульсии" толщиной в десятую долю микрона пока служит стекло. Но ею в принципе может быть любой материал. Изображение, получаемое по-новому, лишено недостатка обычной фотопленки зернистости, а разрешающая способность металлической "фотоэмульсии" составляет тысячу линий на миллиметр. Такую пленку можно экспонировать бессчетное число раз - старое изображение размагничивается и записывается новое, Ученые считают, что "металлическая" фотография может использоваться для художественных съемок, голографических изображений. Телескоп с жидким зеркалом Диаметр зеркала самого крупного в мире оптического телескопа, работающего в обсерватории близ станицы Зеленчукской на Кавказе,- шесть метров. Это, видимо, почти предел того, что можно сделать из стекла. При изготовлении таких огромных зеркал возникают сложнейшие проблемы с подготовкой стеклянной отливки, ее охлаждением, обработкой, шлифовкой, алюминированием, установкой зеркала... Достаточно сказать, что телескоп-гигант создавался 15 лет. Изготовление, да и работа такого телескопа сильно затрудняются большим весом зеркала. Правда, до недавнего времени считалось, что значительно более крупные зеркала все равно уже не имеют смысла: оптические неоднородности атмосферы, течения воздуха, вызывающие мерцание изображения, кладут предел разрешающей способности, и при дальнейшем увеличении диаметра изображение светил уже не улучшится, а вот недостатки, помехи будут усугубляться. Однако бурно развивающаяся в последние годы техника электронной обработки изображений позволяет как бы "отфильтровывать" эти оптические помехи. Так что есть смысл строить и более крупные телескопы. И для этого можно призвать в союзники ту же силу гравитации, которая мешает увеличивать размер стеклянных зеркал. Идея возникла уже давно: зеркало телескопа можно сделать жидким. Еще английский физик Д. Брюстер, известный, среди прочего, как изобретатель калейдоскопа, в 1857 году предложил вращать чашу, наполненную ртутью, вокруг вертикальной оси. Поверхность жидкого металла в результате взаимодействия силы тяжести и вращения примет параболическую форму - как раз такую, какая необходима для собирательного зеркала. Правда, у такого телескопа будет существенный недостаток: его нельзя наклонять, так что наблюдать с его помощью удастся лишь те объекты, которые находятся над обсерваторией прямо в зените, а следить за ними при их движении вместе с небесной сферой будет невозможно. Эту систему испытал в начале нашего века американский физик Р. Вуд, отметил высокое качество получаемой таким образом поверхности, но неподвижный зенитный телескоп не удовлетворил астрономов. Сейчас с ртутным телескопом работает группа канадских ученых под руководством Э. Борра в университете Лаваля (Квебек). Исследователи изготовили зеркало диаметром 165 сантиметров и предполагают, что нетрудно будет создать ртутное зеркало диаметром 30 метров. Вернуться к идее жидкого телескопа позволила та же электроника. Пусть вертикальная ось вращающейся чаши со ртутью должна быть неподвижной. Но ведь она все же движется, так как чаша стоит на вращающейся Земле. Не наклоняясь, такой телескоп осмотрит за ночь некоторую полосу неба. Эта полоса может иметь ширину вдвое больше видимого диаметра полной Луны, а площадь - в 2000 раз более крупную. Если в фокус телескопа поставить не человеческий глаз или фотопластинку, а телекамеру, то сигналы от нее можно подать в память ЭВМ. За несколько ночей машина накопит информацию от просматриваемой полосы, и ей можно будет заказать синтезировать из сигналов от интересующего нас объекта его неподвижное изображение. Кроме того, жидкостные телескопы, стоящие в разных широтах Земли, будут наблюдать разные полосы неба, и это тоже в какой-то степени компенсирует неподвижность одного такого телескопа. Коэффициент отражения ртути несколько ниже, чем у алюминия, которым покрывают сейчас астрономические зеркала. Зато ртуть в отличие от алюминиевого покрытия не тускнеет со временем, не боится царапин и загрязнений. Чтобы качество изображения было высоким, на ртутном параболоиде не должно быть неровностей более 0,000005 миллиметра в высоту. Для этого требуются полное отсутствие вибраций и высокое постоянство скорости вращения. Оба требования выполняются с помощью подшипника на воздушной смазке и прямого привода от синхронного электродвигателя (такой привод используется в высококачественных проигрывателях). Большая масса зеркала упростит стабилизацию вращения. Но рост диаметра за пределы 30 метров вряд ли возможен - искажения в форму параболоида начнет вносить сила Кориолиса. Ртуть - тяжелый и дорогой металл, ее литр весит 13,6 килограмма и стоит на мировом рынке 280 долларов. Поэтому лучше использовать чашу, уже близкую по форме к параболоиду вращения с небольшим количеством ртути для создания отражающей поверхности. Достаточно слоя в 3 миллиметра, тогда пятиметровый телескоп потребует тонну жидкого металла, а тридцатиметровый - 30 тонн. Вместе с необходимой электроникой и зданием обсерватории такой гигант будет стоить столько же, сколько обычный зеркальный телескоп диаметром 2 метра. Ориентир - солнечный "зайчик" Расстояние, с которого видны солнечные "зайчики", поистине поражает: в крупный телескоп зеркало площадью всего в один квадратный метр можно заметить даже на орбите Плутона. И ученые предложили воспользоваться этим в космической навигации, в первую очередь при полетах к другим планетам, астероидам и кометам. Солнечный "зайчик" от зеркала, установленного на спускаемом аппарате или на самом корабле, будет пойман на Земле. Он поможет определить координаты и точно покажет относительное расположение объектов в пространстве. Пока с помощью локаторов это можно сделать лишь приблизительно. Нейтрино в разведке Ускорители элементарных частиц - основной инструмент исследования фундаментальных свойств материи. Однако с течением времени они стали применяться не только в ядерной и атомной физике. Так, ускорители малых энергий используются в медицине, в геологической разведке, для поиска и обнаружения дефектов в различных материалах, для дистанционного контроля атомных реакторов и т. п. А вот мощные ускорители, разгоняющие частицы до больших скоростей (высоких энергий, как говорят специалисты), в технике и производстве до сих пор не применялись. Поэтому большой интерес вызвал проект использования протонных ускорителей (точнее, создаваемых ими пучков высокоэнергетических нейтрино) для изучения структуры Земли и, в частности, для разведки полезных ископаемых. Поскольку частицы для этой цели надо ускорять до очень высоких энергий (триллионов электрон-вольт), то длина окружности такого ускорителя - геотрона - составит десятки километров. Кроме того, для "просвечивания" Земли надо иметь возможность менять направление пучка нейтрино (вплоть до поворота на 90 градусов), поэтому необходимо специальное устройство (так называемый "хобот") в виде цепочки сверхпроводящих магнитов, заключенных в гибкую трубу. Размеры "хобота" также могут достигать нескольких километров. Нейтрино обладают способностью проникать сквозь любые вещества. Если пучок этих частиц направить в землю под небольшим (4-5 градусов) углом к горизонту, то он "прошьет" земную кору на расстояние в 1000 километров от геотрона, при этом максимальное углубление его трассы от поверхности Земли составит 20 километров (отметим, что буровая техника такой глубины еще не достигала). По пути нейтрино взаимодействует с горными породами, слагающими земную кору - с каждой по-своему,- и по особенностям этого взаимодействия можно судить о тех веществах, которые встретились нейтрино. Так можно вести поиск полезных ископаемых. Для просвечивания земного шара с целью уточнения его структуры целесообразно построить плавающий в море ускоритель с "хоботом", направленным к центру Земли (угол поворота 90 градусов). При необходимой в этом случае энергии нейтринного пучка длина "хобота" должна быть примерно 6 километров. Осуществление проекта в целом наталкивается на определенные научные и технические трудности, но его окончательное решение - дело будущего. Цифровое телевидение: новые возможности, заманчивые перспективы Как полагают специалисты, телевидение пересечет рубеж XX и XXI веков двумя большими скачками. Сначала его прогресс будет связан с развитием спутниковых телекоммуникаций. Затем наступит эра обширных плоских экранов с очень четким изображением. Трамплином для обоих этих скачков станет переход телевидения к качественно новой форме представления и обработки сигналов - цифровой. Значение телевидения в современном мире трудно переоценить. Только у нас в стране около 90 миллионов телевизионных приемников. Возникает почти парадокс: телевизоры есть практически в каждой семье, а спрос на них продолжает расти. Этому способствует и развитие телекоммуникаций радиорелейных,кабельных,космических. Телепрограммы в нашей стране ретранслируют 7 искусственных спутников Земли, работающих через 10 каналов связи. 90 приемных станций "Орбита", 300 станций "Москва" и более 3000 "Экран" обслуживают радиомосты Земля - космос - Земля. Выпускаются простые и недорогие приставки к домашним телевизорам, позволяющие вести прием непосредственно с борта спутника "Экран". Телевидение сегодня продолжает совершенствоваться. Во всем мире идет поиск новых его систем, все более удовлетворяющих взыскательные вкусы миллионов и миллионов телезрителей. Появились экспериментальные образцы систем так называемого "сверхчеткого" телевидения с улучшенной цветопередачей. По качеству изображения оно ненамного уступает проекции цветного слайда. Наметилась тенденция к переходу на крупноформатное изображение на плоском экране. Кроме того, произошла переоценка возможностей телевидения как информационной системы, причем не только в региональных, но и в глобальных масштабах. Однако практическая реализация этих и других интересных проектов наталкивается на почти непроходимый барьер, в основе которого принципиальные недостатки, свойственные широко распространенным во всем мире аналоговым телевизионным системам. В чем суть проблемы? Аналоговые системы обработки информации имеют дело с непрерывными сигналами - своеобразными электрическими слепками оригинала, например речи или музыки. В цветном телевидении электронные лучи фиксируют все нюансы сцены, и каждый из них должен быть передан без искажений. По существу, вся история аналогового телевидения была борьбой за высокую точность передачи и воспроизведения изображений. Увы, как раз его-то даже самая совершенная аппаратура обеспечить не может. На сложном пути от зрачка телекамеры до кинескопа телевизора каждое звено неизбежно вносит пусть небольшую, но вполне определенную лепту искажений. Постепенно они накапливаются и, случается, настолько портят сигнал, что неопытный телезритель кидается регулировать аппарат, думая, что тот вышел из строя. Цифровые системы обладают одним важнейшим преимуществом. Язык цифр это родной язык вычислительной техники. Недаром среди инженеров популярна шутка: использование в телевидении микропроцессорной техники открывает возможности, ограниченные лишь воображением разработчика и отпущенными финансовыми средствами. Суть цифровой системы в телевидении заключается в том, что здесь традиционный непрерывный сигнал заменяется цифровым кодом, который содержит подробную информацию обо всех деталях изображения - яркости, цветности, месте в кадре и т. д. Импульсы в форме цифровых кодов из студии телецентра поступают на ретрансляторы и далее - в эфир, а телевизионные приемники снова преобразуют их в изображение высокого качества. Такой способ передачи видеоинформации весьма надежен. Инженеров уже не будут заботить проблемы всякого рода искажений. Имея в своем распоряжении цифровой код, легко обнаружить возможную пропажу импульса и восстановить на его месте точно такой же. Вместе с тем у передачи изображения в цифровой форме есть и свои сложности: она порождает информационные потоки огромной емкости. Достаточно сказать, что каждую секунду нужно передавать около 200 миллионов импульсов, а для телевидения высокой четкости еще больше. Советским ученым, взявшимся за решение этой проблемы, помогла бионика. В основе созданной у нас в стране сложнейшей системы бионического кодирования телевизионных сигналов лежит принцип восприятия и обработки изображения человеческим глазом. Мы не можем пожаловаться на этот уникальный аппарат, созданный природой. Наш глаз выворочен в восприятии информации, но и объективно точен. Именно выборочность и точность отличают электронные системы бионического кодирования, которые без потери качества позволили снизить цифровой поток почти в семь раз. Работы советских специалистов в области цифрового телевидения получили сегодня всеобщее признание и легли в основу международного стандарта по цифровому кодированию для аппаратных телецентров, рекомендованного Исследовательской комиссией Международного консультативного комитета по радио (МККР). Отмечая исключительную важность этих работ, Академия искусств и наук США присудила МККР золотую медаль. На IV Всемирной выставке средств связи впервые в мире был представлен комплекс цифрового оборудования для телецентров, авторы которого - советские инженеры. И эта аппаратура соответствовала требованиям международного стандарта. Попробуем, руководствуясь наметками специалистов, представить себе телевизор будущего. При желании вы смотрите на миниэкранах несколько программ одновременно и затем любую из них выводите на полный формат. Если надо, аппарат автоматически запишет на видеомагнитофон передачи, идущие и в ваше отсутствие. Звук непременно стереофонический, а возможно, телевизор заговорит и сам, причем в прямом смысле этого слова. На вопрос о времени он ответит вам синтезированным голосом. На команду "Тише!" отреагирует, снизив громкость. Такие диалоговые системы уже существуют. Стоит набрать на особой приставке буквенный или цифровой код, как телеэкран превращается в домашнее справочное бюро. Информация по самому широкому кругу интересующих вас вопросов мгновенно возникает на вашем экране. Таким образом, вы становитесь не только телезрителем, но и абонентом информационной системы. Надежная камера хранения На железнодорожных вокзалах и в аэропортах получили широкое распространение автоматические камеры хранения ручной клади. Удобство их для пассажиров бесспорно: сам положил вещи в просторный сейф, сам придумал и установил шифр на замке, закрыл, а когда вещи потребуются вновь, достаточно набрать шифр, вращая специальные ручки, и "личный сейф" распахнет дверцу. Однако с распространением таких камер хранения возникла проблема защиты отдельных ячеек от злоумышленников, которые, подсмотрев тем или иным способом шифр при запирании ячеек с багажом, вскрывали сейфы. Организация специальных постов наблюдения, увеличив расходы на содержание хранилищ, принципиально проблемы не решила. Чтобы совершенно исключить случаи пропажи личных вещей пассажиров из автоматических камер хранения ручной клади, работники Московского вокзала в Ленинграде несколько лет назад ввели в эксплуатацию камеры хранения с электронной защитой. Пассажир, выбрав ячейку, укладывает в нее свой багаж, устанавливает придуманный шифр, опускает 15-копеечную монету в специальную щельмонетоприемник и закрывает дверцу - сейф надежно заперт. Затем пассажир подходит к контрольной кассе у выхода из помещения и называет порядковый номер ячейки, в которой он закрыл багаж,- этот номер, как известно всем путешествующим, написан крупными цифрами на дверце ячейки. Контролер набирает названный номер на клавиатуре кассового аппарата и выдает пассажиру чек с отпечатанным номером. Аппарат, похожий на кассовый, набором номера включил электронную блокировку. С этого момента автоматический сигнал тревоги сработает, если будет предпринята попытка вскрыть любым способом сейф. Чтобы вынуть из камеры хранения свой багаж, пассажир должен сдать контрольный чек, и только после того, как дежурный отключит блокировку, он сможет отпереть, набрав шифр, дверцу ячейки. За годы экспериментальной эксплуатации высоконадежных камер хранения ручной клади случаев пропажи в них вещей не зарегистрировано, и, как показал опрос пассажиров, эти камеры предпочитаются любым другим. Круглый год в одном наряде Возможно, в скором будущем появится легкая и удобная одежда, согревающая нас в холод и охлаждающая в жару. Производство ткани, которая способна приноравливаться к температуре окружающей среды, станет возможным благодаря найденным недавно двум новым химическим соединениям. Речь идет о так называемой пластично-кристаллической ткани, которая может менять свою структуру при изменении температуры внешней среды, сохраняя при этом свою постоянную форму. Как же это происходит? Когда температура воздуха повышается, кристаллы принимают форму регу лярной пространственной сетки и поглощают тепло. Если же температура падает, кристаллы обретают свой первоначальный вид, отдавая тепло. Ткани из волокон с примесью новых соединений могут служить изоляционным материалом, охраняющим растения и животных от внезапных скачков температуры. Изобретением заинтересовались также швейники, которые предполагают создавать из новых волокон защитную одежду для полярников и металлургов. Не исключено, что одежда из универсальной ткани появится когда-нибудь и в обычных магазинах. "Всевидящие" очки Специалисты создали новые очки, которые позволяют пилоту видеть контрольно-измерительные приборы в самолете, не глядя на них. Так, он может следить за скоростью полета, высотой, компасом и искусственным горизонтом, смотря прямо перед собой. Информация со шкал контрольноизмерительных приборов передается с помощью оптических волокон на миниатюрное зеркало в центре одного из стекол очков. Зеркала этого, имеющего диаметр всего один миллиметр, не видно, но оно отражает изображение в глаз летчика, создавая иллюзию, что показания приборов проектированы в пространство. Специальные очки, созданные первоначально для летчиков, наверняка найдут и другое применение. Например, хирурги могут следить за показаниями различных приборов, не поворачивая головы и не теряя драгоценных секунд, инженеры - проверять данные приборов, не прерывая своей работы. Болты и гайки... из сапфира Представьте себе уличный фонарь... из сапфира. Ну пусть не весь фонарь, только светящаяся трубочка, заполненная парами натрия. Но все-таки сделана она из настоящего сапфира, подобного тому, который сверкает в сережках, перстнях, колье. Фантазия? Нет. Расточительство? Тоже нет. Многие читатели видели эти "драгоценные" светильники - вспомните газоразрядные лампы, излучающие мягкий желто-оранжевый свет, которые появились на городских улицах взамен старых ламп "дневного" освещения. Чтобы осветить большой город, наверное, не хватило бы всех сокровищ мира - если использовать природные сапфиры. Но трубочки для ламп делают из искусственных кристаллов. Новые светильники, разработанные советскими учеными, на 10 процентов экономичнее ламп, сделанных по американской технологии из спеченного порошка кристаллической окиси алюминия - поликора. Сапфир обладает уникальными свойствами. Температура его плавления свыше 2000 градусов. Теплопроводность при комнатной температуре - как у стали. Он великолепный диэлектрик, устойчив к радиации, даже при высоких температурах химически инертен. Его неокрашенная разновидность лейкосапфир, что называется, прозрачнее стекла: пропускает свет в диапазоне от инфракрасного до ультрафиолетового. И наконец, по твердости он уступает только алмазу. Ученые давно научились синтезировать сапфир естественной формы. Чтобы из такого кристалла получить разнообразные изделия, заготовку надо обрабатывать алмазным инструментом, Но его хватает ненадолго. А главное до 90 процентов материала превращается в отходы... Сотрудники ВНИИЭТО разработали новую технологию выращивания искусственного сапфира для получения профилированных кристаллов. В основу ее положен метод члена-корреспондента АН СССР А. Степанова, позволяющий формировать геометрию растущего кристалла. Промышленное оборудование дает монокристаллические изделия самой разнообразной формы. И эти изделия уже не нуждаются в дополнительной обработке, они сразу идут в дело. Как, например, те трубочки, с которых начался наш рассказ. Мы привыкли к тому, что термин "растущий кристалл" понимается в прямом смысле. Правильнее было бы сказать, что кристалл вытягивается из расплава. Процесс ведется в вакуумной электропечи при температуре более двух тысяч градусов. Над тиглем виден лишь формообразователь - тугоплавкий стержень с шестигранным отверстием. Вот к нему подводят затравку, касаются ею расплава и начинают вытягивать из него жидкий столбик, который поднимается вверх, удерживаемый силами поверхностного натяжения. Получается маленькая призма, в основании которой - шестигранник. Охлаждаясь, она затвердевает и вот вам кристалл с заданной геометрией. Таким способом в печи можно получить самую разную продукцию. На лабораторном столе своеобразная выставка изделий из искусственного сапфира. Чего здесь только нет - призмы и стержни различного сечения, герметизирующие узлы, тигельки! Эти изделия могут применяться в металлургии, электронике, полупроводниковой технике, часовой и ювелирной промышленности, оптике. К примеру, те же колпачки для термопар используются в датчиках для быстродействующих регуляторов температуры, где особенно важна уникальная прозрачность сапфира. А в твердотельных лазерах конструктивные элементы из него на порядок увеличивают мощность, значительно повышают КПД и срок работы приборов. Раньше такие элементы вытачивали из целого сапфирового кристалла алмазными резцами, а потом с двух сторон высверливали стержень алмазными сверлами. Дорогостоящий инструмент быстро выкрашивался, да и хрупкие стержни часто ломались. И если прежде стоимость небольшой трубки из сапфира измерялась тысячами, то теперь - рублями. Сейчас ВНИИЭТО создает промышленные установки, на которых можно вытягивать и более сложные изделия. В лаборатории уже получены из сапфира трубки с поперечными перегородками и спиральные теплообменники, которым не страшны химически активные вещества. Спираль из сапфира - скажи такое лет десять назад огранщику драгоценных камней, он в ответ бы только рассмеялся. А возьмите сделанные в лаборатории изделия переменного по длине сечения - болты и гайки, трубки с резьбой... Вот уж поистине грани творческого научного поиска сверкают куда ярче мишурного блеска драгоценных камней!
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27
|