Современная электронная библиотека ModernLib.Net

Диетология: Руководство

ModernLib.Net / Медицина / Коллектив авторов / Диетология: Руководство - Чтение (Ознакомительный отрывок) (стр. 11)
Автор: Коллектив авторов
Жанр: Медицина

 

 


Так, атрофия тканей при соблюдении постельного режима приводит к утрате 0,3 кг белка тела. К этому количеству может прибавиться потеря до 0,4 кг белка при резекции желудка, 0,7 кг при переломе бедренной кости и 1,2 кг после 35 % ожога. Существуют различные мнения о необходимости увеличения белкового компонента в питании во время пика метаболической реакции организма на повреждение, но усиленное восполнение белковых потерь в период выздоровления однозначно является необходимым (табл. 5.3).

Таблица 5.3

Белковые и энергетические потребности взрослого больного в зависимости от степени метаболического стресса (по Levin М., 1985)



Потребности в белке в зависимости от заболевания при искусственном питании приведены в табл. 5.4.


Таблица 5.4

Потребности в белке при некоторых заболеваниях при энтеральном питании (приказ № 330 М3 РФ от 5.08.03)


При некоторых заболеваниях потребление белка необходимо ограничивать, например, при уремии (когда ограничена экскреция азотсодержащих соединений) или печеночной недостаточности (для избежания печеночной комы). Тогда возникает проблема: необходимо избежать белкового истощения тканей и, в то же время, не превысить способность организма справиться с белковой нагрузкой. Установлено, что потребление больным с хронической почечной недостаточностью 0,5–0,6 г белка на 1 кг массы тела позволяет организму лучше справляться с вторичными инфекционными осложнениями, чем ранее рекомендовавшиеся минимальные дозы (см. главу 31). При онкологических процессах пищевая реабилитация позволяет раковому больному восстановить утраченные функции клеточного иммунитета и способствует лучшей переносимости химио– и лучевой терапии (см. главу «Лечебное питание в профилактике и лечении онкологических и гематологических заболеваний»).

В клинической практике достаточность получаемой квоты белка можно оценить путем определения азотного баланса, на основании разницы между поступающим и выводимым азотом:


Азотистый баланс = поступление N – выведение N. [1]


Для подсчета азотного равновесия определяют количество вводимого белка в сутки и азот мочевины (или, что является более точным, общий азот) в суточной моче. Выводимый азот складывается из азота мочевины, немочевинного азота и потерь азота через кишечник, кожные покровы и т. п. Учитывая, что белки содержат примерно 15 % азота, уравнение [1] приобретает следующий вид:


Азотный баланс (г/сут) = (потребляемый белок/6,25) – (AM + 4), [2]

где AM – азот мочевины, AM = 0,466 x мочевина (г/сут).


Для увеличения массы тела необходим положительный азотный баланс не менее 4–6 г в сутки.

Потребность в энергии

Понятие о потребности в энергии тесно связано с расходом энергии, то есть для сохранения стабильной массы тела поступление энергии должно соответствовать ее расходу. Определение расхода энергии базируется на установлении уровня основного обмена (УОО).

УОО – это энергетические затраты, направленные на поддержание основных жизненных функций организма в условиях состояния покоя в нейтральной температурной среде.

Величина УОО обусловливается рядом факторов, наиболее значимыми из которых являются возраст, пол и масса тела.

Для определения УОО у конкретного человека наиболее точным методом является непрямая калориметрия, связанная с определением объемов вдыхаемого кислорода и выдыхаемого углекислого газа и основанная на известных значениях количества энергии, выделяемой при сгорании белков, жиров и углеводов.


Окисление белков (г) = 6,25 x азот мочи.

Окисление углеводов (г) = (-2,56 x азот мочи)-(2,91 x VO2)+(4,12 x VCO2).

Окисление жиров (г) = (-1,94 x азот мочи) + (1,69 x VO2) – (1,69 x VCO2),

где VO2 – потребление 02, л/сут; VCO2 – выделение СO2 л/сут;

ОAM – общий азот суточной мочи, г/сут.


Респираторный коэффициент (RQ) – отношение выделенной углекислоты к потребленному организмом кислороду за единицу времени (VCO2 / VO2) – величина, характеризующая процессы окисления энергетических субстратов в организме. Поэтому расчет респираторного коэффициента позволяет при непрямой калориметрии получить данные о преимущественном использовании источников энергии организмом. Так, при значении RQ >1 – преобладает липогенез, RQ = 1 – в основном происходит утилизация углеводов, при RQ < 0,7 – утилизируются жиры.

Суммарное уравнение непрямой калориметрии (уравнение Вейра) для определения основного обмена имеет следующий вид:


УОО (ккал/сут)= (3,941 x VO2) + (1,106 x VCO2) – (2,17 x OAM).


Методика может использоваться для установления потребности в калориях у больных с резко измененным весом при значительной задержке жидкости или гиперкатаболических процессах.

Удобным является использование формул уровня УОО, принятых ВОЗ (табл. 5. 5).

Для расчета расхода (а, соответственно, и потребности) энергии требуется прибавить к количеству энергии, потраченной на поддержание основного обмена, затраты, связанные с физической активностью организма, а у больного человека – и обусловленные патологическими метаболическими изменениями.


Таблица 5.5

Уровень основного обмена в зависимости от возраста, пола и массы тела

(ВОЗ, 1985)


Примечание: МТ – масса тела.


ВОЗ (1985) рекомендует определять потребность в энергии здоровых лиц на основании следующих расчетов (рис. 5.1).

1. Определение возраста, роста, пола.

2. Определение уровня основного обмена (УОО) (по табл. 11).

3. Определение расхода энергии (РЭ).

3.1. Определение времени (t), расходуемого на:

– сон и отдых в постели (tt);

– физическую активность (t2), в том числе профессиональную, обязательную (служебная и домашняя работа) (t1,2) и активность «по собственному усмотрению», «желаемую» (t2,2);

– остального времени («прогулочное время») (t3).

3.2. Определение коэффицентов расхода энергии (К):

– сон и отдых в постели, К1 = 1,0;

– физическая активность (К2) в зависимости от типа активности, времени, затрачиваемого на ее совершение, и физических характеристик индивидуума: профессиональная К2,1 = 1,7–3,8, желаемая – К2,2 = 3–6;

– «прогулочное время», К3 = 1,4.


Рис. 5.1. Определение потребности в энергии здоровых лиц.


3.3. Определение расхода энергии:

P9 = K1t1 + K21t21, + K21t21 + K3t3.

Средние суточные потребности в энергии в зависимости от возраста и пола по ВОЗ (1990) приведены выше.


Таблица 5.6

Коэффиценты (К) определения энергетической потребности для взрослых лиц в зависимости от классификации их профессиональной деятельности как легкая, умеренная, тяжелая (ФАО/ВОЗ, 1985)

РЭ (расход энергии) = К х УОО



ФАО/ВОЗ рекомендует также коэффиценты определения энергетической потребности для взрослых лиц в зависимости от физической активности, связанной с их профессиональной деятельностью (табл. 5.6).

В РФ установлены «Суточные нормы физиологических потребностей для взрослого населения» (1991). Для лиц с массой тела, близкой среднестатистической, энергоемкость и химический состав рациона можно определить по данной нормативной таблице. При работе с работоспособными контингентами также можно умножать рассчитанную базовую величину УОО на коэффициент физической активности (КФА), принятый у нас в стране (см. Приложение 2).

Потребности здорового человека в энергии составляют в среднем 35 ккал/кг массы тела и преимущественно зависят от величины уровня физической активности. Потребности в энергии больного определяются также степенью метаболического стресса и наличием лихорадки. На величину основного обмена оказывает влияние ряд лекарственных препаратов: так аспирин, кофеин и адреналин повышают обменные процессы, адреноблокаторы, анестетики и наркотические анальгетики, наоборот, снижают их.

Наиболее удобным методом подсчета метаболических потребностей в клинической практике является расчет базальных энергетических показателей по формуле Харриса – Бенедикта с последующими поправками (см. Приложение 1). Именно он рекомендован для использования в ЛПУ приказом № 330 М3 РФ.


УОО = 66,5 + (13,7 x МТ) + (5 x Р) – (6,8 x В) – для мужчин;

УОО = 65,5 + (9,6 x МТ) + (1,8 x Р) – (4,7 x В) – для женщин;


где УОО – уровень основного обмена (ккал/сутп); МТ – масса тела (кг); Р – рост (см); В – возраст (лет).


РЭ = УОО x ФА x ТФ x ПФ.


Коэффициенты данных факторов указаны в приложении 1.


Приводим пример расчета потребности в энергии. Пациент – мужчина 40 лет, масса тела 70 кг, рост 175 см, диагноз – «сепсис», температура тела – 39 °C, находится на постельном режиме.


УОО = 66,5 + (13,7 x 70) + (5 x 175) – (6,8 x 40) = 1628,5 (ккал),

РЭ = 1628,5 x 1,1 x 1,5 x 1,2 = 3224,5 (ккал).


Таким образом, потребность пациента в энергии составляет 3224,5 ккал.

В зависимости от нутриционных показателей, скорости метаболических процессов и выраженности азотистых потерь потребности больного человека в энергии колеблются от 25 до 45 ккал на 1 кг массы тела в сутки.


Энергетический компонент рациона обеспечивается углеводами и жирами. Отношение белковых калорий к общей калорийности рациона значительно различается в разных странах. В российских рекомендациях он достигает 10–15 %.

ВОЗ в последние годы провела ряд исследований, позволивших выработать рекомендации по питанию различных групп населения («Fats and oils in human nutrition», «Preparation and use of food-based dietary guidelines», «Carbohydrates in human nutrition»).

Рекомендации ВОЗ, направленные на профилактическое питание (предотвращение хронических неинфекционных заболеваний), приведены в табл. 5. 7. Следует учитывать, что они имеют популяционную, а не индивидуальную направленность.

Хотя углеводы не являются незаменимым компонентом питания, их минимальное количество в рационе не должно быть менее 50–60 г. В отчете ВОЗ «Углеводы в питании человека» (1997) отмечается, что углеводы должны обеспечивать 55 % энергии рациона, причем менее 10 % приходится на простые сахара.


Таблица 5.7

Рекомендации ВОЗ по содержанию нутриентов при питании,

направленном на предотвращение неинфекционных заболеваний

(2002)



Потребность в пищевых волокнах точно не установлена, ориентировочно она находится в пределах 20–40 г/сут.

При поступлении в организм достаточного количества углеводов они оказывают «белоксберегающий» эффект – то есть экзогенные аминокислоты используются в основном на пластические, а не на энергетические нужды. При резком снижении углеводов в диете происходит усиление окисления липидов, сопряженное с интенсивным кетогенезом, увеличение катаболизма белка. Избыток поступления углеводов приводит к интенсификации липогенеза с возможным развитием ожирения. В РФ оптимальным для здорового человека считается потребление углеводов в количестве 50–65 % от энергетической ценности рациона. Поступающие углеводистые продукты должны обеспечивать не только калорийность пищи, но и достаточное количество необходимых организму растительных волокон.

При оценке состава рациона необходимо учитывать жирнокислотный состав продуктов. Согласно рекомендациям ВОЗ пропорция насыщенных жиров не должна превышать 10 % от общего жира рациона. По принятым в РФ нормативам рекомендуется потребление насыщенных жиров 25 г/сут, полиненасыщенных жирных кислот – 11 г/сут.

Данные о потребности в энергоемких нутриентах при различных состояниях приводятся в соответствующих главах.

Глава 6 Роль витаминов в питании и коррекция нарушений витаминного обмена

Витамины – низкомолекулярные органические соединения различного строения, необходимые для поддержания жизненных функций организма. Человек и животные не синтезируют их или синтезируют в недостаточном количестве. В отличие от других незаменимых факторов питания (полиненасыщенные жирные кислоты, незаменимые аминокислоты) витамины не являются пластическим материалом или источником энергии. Водорастворимые витамины, как правило, входят в состав ферментов (энзимовитамины), жирорастворимые – выполняют сигнальные функции экзогенных прогормонов и гормонов (гормоновитамины).

Клинические проявления авитаминозов врачам известны давно. Так, бери-бери была описана в древнекитайском каноне медицины 2500 лет тому назад. В античной Греции была известна клиническая картина авитаминоза А. Цинга часто возникала среди мореплавателей. Однако витаминология как наука стала развиваться в XIX веке. Большой вклад в ее развитие внес русский ученый Н. И. Лунин. В те годы считали, что для нормального функционирования организма достаточно белков, жиров, углеводов, минеральных солей и воды. В 1880 г. Н. И. Лунин установил, что в пищевых продуктах имеются еще неизвестные факторы питания, необходимые для жизни. Он показал, что белые мыши, получавшие цельное молоко, были здоровы, но погибали, когда их кормили смесью из составных частей молока: казеина, жира, сахара, солей и воды. В 1887 г. голландский врач X. Эйкман установил, что у кур, получавших в пищу полированный рис, развивалось сходное с бери-бери заболевание, однако они выздоравливали после того, как им давались рисовые отруби.

Ф. Дж. Хопкинс (1906,1910) в экспериментах на животных установил, что возникновение бери-бери, скорбута и рахита связано с недостатком в пище незаменимых компонентов неаминокислотного характера.

По предложению польского биохимика К. Функа (1911), работавшего над выделением активного начала рисовых отрубей и обнаружившего в них аминогруппы, все вещества подобного рода стали называть витаминами – «жизненными аминами». В XX веке учеными различных стран были открыты, выделены и синтезированы практически все основные витамины.

Классификация витаминов

Витамины делят на водорастворимые и жирорастворимые (они обозначены как (в) и (ж) в табл. 6.1), кроме того, в настоящее время выделяют энзимовитамины (В1, В2, РР, В6, В12, Н, пантотеновая и фолиевая кислота), гормоновитамины (А, Д, К), а также витамины-антиоксиданты или редокс-витамины (А, С, Е, липоевая кислота, биофлавоноиды, полифенолы).


Таблица 6.1


Причины неадекватной обеспеченности организма витаминами

I. Алиментарная недостаточность витаминов.

1. Недостаточное содержание витаминов в суточном рационе питания.

2. Разрушение витаминов при неправильной кулинарной обработке и хранении пищи.

3. Действие антивитаминных факторов, содержащихся в продуктах.

4. Нарушение соотношений между витаминами и другими нутриентами, а также между отдельными витаминами в рационе.

5. Анорексия.

6. Пищевые извращения, религиозные запреты на ряд продуктов.

II. Угнетение нормальной кишечной микрофлоры.

1. Заболевания желудочно-кишечного тракта.

2. Длительные курсы антибактериальной терапии.

III. Нарушения ассимиляции витаминов.

1. Нарушение всасывания витаминов в желудочно-кишечном тракте:

– врожденные дефекты транспортных и ферментных механизмов всасывания;

– заболевания желудка, кишечника, гепатобилиарной системы;

– конкурентные отношения с всасыванием других витаминов и нутриентов.

2. Утилизация поступающих с пищей витаминов кишечными паразитами и патогенной кишечной микрофлорой.

3. Нарушение образования биологически активных и транспортных форм витаминов:

– наследственные аномалии;

– приобретенные заболевания, действие токсических и инфекционных агентов.

4. Антивитаминное действие лекарственных веществ.

IV. Повышенная потребность организма в витаминах.

1. Дети, подростки.

2. Беременные женщины и кормящие матери.

3. Интенсивная физическая нагрузка.

4. Стрессовые состояния.

5. Особые климатические условия.

6. Заболевания внутренних органов и желез внутренней секреции.

7. Инфекционные заболевания и интоксикации.

Авитаминозы развиваются при отсутствии поступления не синтезируемых эндогенно витаминов и характеризуются яркой клинической картиной (например, цинга при отсутствии аскорбиновой кислоты). Гиповитаминозы встречаются при недостаточном поступлении витаминов, при этом имеют место менее специфичные и яркие клинические проявления.

Коррекция гиповитаминозов только витаминными препаратами иногда не дает должного эффекта без введения в рацион достаточного количества белков, а также тех или иных макро– или микроэлементов. Микроэлементы присутствуют в структуре многих витаминзависимых коферментов, поэтому симптомы витаминной недостаточности часто зависят от дефицита апофермент-витамин-минерального комплекса. Имеет значение взаимодействие самих витаминов. Так, синергистами являются витамины-антиоксиданты (Е, С, А), аскорбиновая кислота и тиамин. Антагонизм присущ тиамину и пиридоксину, ретинолу и филлохинонам, пиридоксину и токоферолам. Существует прямой химический антагонизм витамина С и цианокобаламина, в связи с чем их нельзя назначать в одном шприце. Из-за взаимодействия нескольких витаминов и микроэлементов в одной биохимической цепочке (например участие в биологическом окислении витаминов В1, В2, РР, В15, железа и меди) одни и те же клинические симптомы могут встречаться при дефицитах различных нутриентов. Поражение высокоаэробных эпителиальных клеток кожи и слизистых, изменения волос и ногтей наблюдаются при недостаточном поступлении различных нутриентов, участвующих в биологическом окислении.

Водорастворимые витамины

<p>Витамин В<sub>1</sub> (тиамин)</p>
<p>Метаболизм витамина В<sub>1</sub></p>

Тиамин, содержащийся в пищевых продуктах, биологически неактивен. В печени под действием фермента тиаминкиназы он фосфорилируется, превращаясь в тиаминдифосфат, тиаминмонофосфат, тиаминтрифосфат.

Биологическая роль тиамина связана с его участием в построении коферментов ряда ферментов:

– пируватдегидрогеназы, которая катализирует окисление пировиноградной кислоты до ацетил-КоА;

– ?-кетоглутаратдегидрогеназы, которая участвует в цикле Кребса, превращая ?-кетоглутаровую кислоту в сукцинил-КоА;

– транскетолазы, которая участвует в пентозофосфатном цикле.

Перечисленные три фермента обеспечивают метаболизм различных нутриентов, но прежде всего углеводов, а следовательно энергетический обмен (углеводы – основной поставщик энергии). При избытке углеводов в рационе увеличивается потребность в тиамине, и может развиться относительная недостаточность витамина В1. При авитаминозе имеется понижение дыхательного коэффициента, накопление продуктов недоокисления пирувата, которые токсически действуют на ЦНС. Возникающий метаболический ацидоз и энергодефицит ухудшает работу градиентных насосов клеток, в том числе нервных, сердечных и мышечных. В условиях нарушения окисления углеводов организм вынужден использовать белки и жиры, что ведет к мышечной атрофии, задержке физического развития у детей. Нарушается превращение углеводов в жиры и синтез жирных кислот.

Тиамин необходим для биосинтеза важнейшего нейромедиатора – ацетилхолина. При дефиците тиамина затруднено образование ацетил-КоА из пирувата и ацетилирование холина, что приводит к нарушению синтеза ацетилхолина и соответствующей клинической симптоматике (атонические запоры, снижение желудочной секреции, неврологические расстройства).

<p>Дефицит витамина В<sub>1</sub></p>

При авитаминозе В1 развивается болезнь бери-бери, для которой характерны следующие признаки:

– головная боль, раздражительность, ослабление памяти, периферические полиневриты, в тяжелых случаях параличи;

– тахикардия, боли в сердце, расширение границ сердца, приглушенность тонов, одышка, отеки;

– снижение аппетита, боли в животе, тошнота, снижение тонуса кишечника, запоры.

Название «бери-бери» происходит от индийского beri (ножные оковы) из-за неуверенной шатающейся походки больных.

Гиповитаминоз В1 встречается довольно часто в цивилизованных странах вследствие избыточного употребления рафинированных углеводистых продуктов и сладостей. Тиаминовая недостаточность имеется у каждого четвертого алкоголика. Недостаточность витамина В1 может развиваться в результате потребления пищи, содержащей значительное количество тиаминазы (фермента, разрушающего тиамин) и других антивитаминных факторов, которыми богата сырая рыба (карп, сельдь и др.) и морские животные. Сочетание морских продуктов с полированным рисом послужило причиной возникновения бери-бери у японских матросов адмирала К. Такаки. Адмирал снизил заболеваемость бери-бери, обогатив рацион моряков овощами, молоком и мясом.

Тиамин разрушается при продолжительной варке, особенно в щелочной среде, теряется при рафинировании зернопродуктов (мюсли, крупы быстрого приготовления и др.) Всасывание витамина В1 ухудшают табак, алкоголь, кофе и продукты питания, содержащие углекислые соли и соли лимонной кислоты.

<p>Потребности в витамине В<sub>1</sub> и его источники</p>

Суточная потребность в тиамине составляет 0,4 мг на каждые 1000 ккал, или 1,1–2,1 мг (здесь и далее суточная потребность указана согласно «Суточным нормам физиологических потребностей в пищевых веществах и энергии для различных групп населения», приложение 2). Запасы тиамина находятся в скелетных мышцах (50 %), сердце, печени, почках, мозге.

Пищевые источники тиамина (мг/100 г): свиная вырезка (1,45), мясо поросят (1,40), горох лущеный (0,9), свинина беконная (0,60), дрожжи (0,60), овсяная (0,49), гречневая (0,43) и пшенная (0,42) крупы, субпродукты (0,38), хлеб из муки грубого помола (0,25). Овощи и фрукты, а также молоко бедны витамином В1.

<p>Витамин В<sub>2</sub> (рибофлавин)</p>
<p>Метаболизм витамина В<sub>2</sub></p>

Биологическая роль рибофлавина определяется его участием в построении двух важнейших коферментов – флавинмононуклеотида (ФМН) и флавинадениндинуклеотида (ФАД), входящих в состав окислительно-восстановительных ферментных систем, так называемых флавопротеидов. ФАД участвует в построении флавопротеидов, катализирующих янтарную кислоту (метаболит цикла Кребса) и жирные кислоты. Кроме того, ФАД входит в состав моноаминоксидазы (МАО) – основного фермента разрушения катехоламинов, ?-глицерофосфатдегирогеназы (обеспечивает метаболизм глицерина и фосфотриоз), ксантиноксидазы (катализирует окисление пуринов до мочевой кислоты) и ряда других ферментов. Таким образом, рибофлавин участвует в процессах биологического окисления и энергетического обмена. Наряду с этим он необходим для построения зрительного пурпура, защищающего сетчатку от избыточного воздействия ультрафиолетового облучения. Витамин В2 нужен для эритроцитарной глутатионредуктазы, предохраняющей эритроциты от аутоокисления.

<p>Дефицит витамина В<sub>2</sub></p>

При гипо– и авитаминозе В2 страдают высокоаэробные эпителий кожи и полости рта. Наблюдаются поражения слизистой оболочки губ с вертикальными трещинами и десквамацней эпителия (хейлоз), ангулярный стоматит (заеды), глоссит (язык отечен, «географический», с отпечатками зубов, гипертрофия сосочков), себорейный дерматит носогубного треугольника, ушей, шеи, мошонки. Имеются васкуляризация роговицы (интерстициальный кератит), блефарит и конъюнктивит, нарушается темновая адаптация и ухудшается цветовое зрение. Снижается детоксикационный потенциал печеночных оксидаз при метаболизме ряда лекарств. Арибофлавиноз может сопровождаться, особенно часто у детей, нормохромной гипорегенераторной анемией и лейкопенией. Проявления авитаминоза усугубляются жировой и углеводной нагрузкой.

Основные причины гиповитаминоза В2 – это резкое снижение потребления молочных продуктов, хронические заболевания желудочно-кишечного тракта, прием медикаментов, являющихся антагонистами рибофлавина (акрихин и его производные). Табак и алкоголь снижают всасывание рибофлавина, он разрушается в сочетании с пищевой содой и на свету.

<p>Потребности в рибофлавине и его источники</p>

Суточная потребность в витамине В2 составляет 1,3–2,4 мг.

Пищевые источники рибофлавина (мг/100 г): печень (2,60), почки (1,8), сердце (0,75) дрожжи (0,68), миндаль (0,65), сыры (0,32-0,50), овсяная крупа (0,49), яйца (0,44), грибы (0,30-0,45), язык (0,37), творог жирный (0,30), хлеб (0,25), говядина (0,23), соя (0,22) греча (0,20), халва (0,20). Витамин устойчив к тепловой обработке.

<p>Витамин РР (ниацин)</p>

Основными представителями ниацина являются никотиновая кислота и никотинамид. Биологическая активность этих соединения одинакова, но никотиновая кислота оказывает более выраженное сосудорасширяющее действие. В животных тканях ниацин содержится в основном в виде никотинамида.

<p>Метаболизм ниацина</p>

Ниацин является коферментом в Н АД-зависимых дегидрогеназах (обеспечение тканевого дыхания, метаболизма углеводов и аминокислот), НАДФ-зависимых ферментах пентозного цикла и синтеза липидов, НМН-зависимых энзимах (алкогольдегидрогеназа, маликфермент). Функция дегидрогеназ заключается в первичном дегидрировании (отнятии ионов водорода и электронов) различных нутриентов и их метаболитов и поставке ионов водорода и электронов в цепь биологического окисления, сопряженного с фосфорилированием.

<p>Дефицит ниацина</p>

При авитаминозе развивается пеллагра – заболевание, протекающее с поражением желудочно-кишечного тракта, кожи, ЦНС (три «Д» – диарея, дерматит, деменция). Название болезни происходит от итальянского pelle agra – шершавая кожа. Пеллагрой болело малообеспеченное сельское население тех стран, где в питании большую роль играла кукуруза. Лейцин кукурузы ингибирует превращение триптофана в ниацин.

Основные клинические проявления дефицита ниацина:

– сухость и бледность губ. Язык обложенный, отечный, бороздчатый или сухой, ярко-красный. Возможен афтозный стоматит, с гиперсаливацией, эзофагит, эрозии и язвы желудочно-кишечного тракта. Эритема на тыльной части кистей рук и стоп («пеллагрические перчатки и носки»), на шее, груди, шелушение, гиперкератоз, гиперпигментация. Дерматит в области шеи («ожерелье Казаля») – это эритема, связанная с облучением, с последующей гиперпигментацией, шелушением и вторичной инфекцией. Может развиться уретрит, вагинит, проктит;

– неврастенический синдром (раздражительность, бессонница, подавленность, заторможенность, нервно-мышечные и головные боли, парестезии), психозы, в тяжелых случаях – деменция;

– поносы без слизи и крови, обусловленные атрофией слизистой оболочки кишечника и желудка, снижение желудочной секреции. Дегидратация вследствие мальабсорбции при острой форме пеллагры может привести к смерти за 2–3 недели;

– анемия, миастения, миокардиодистрофия.

Никотинамид как акцептор метильных групп участвует в регуляции синтеза в печени Л ПОНП. Прием ниацина уменьшает синтез ЛПОНП и уменьшает скорость деградации ЛПВП, что используется при лечении и профилактике гиперлипопротеинемии. Но большие дозы витамина РР при длительном применении способствуют обратимому стеатозу печени. Метильные донаторы (холин, метионин, бетаин) при совместном применении с ниацином препятствуют этому процессу.

Никотиновая кислота может освобождать гистамин из мастоцитов неспецифически, по типу аллергоидной реакции. При этом возникает крапивница, зуд, гиперемия кожи, жар, повышение желудочной секреции, иногда – коллапс.

<p>Потребности в ниацине и его источники</p>

Как уже говорилось выше, развитие пеллагры может быть связано с односторонним питанием кукурузой, в которой ниацин находится в связанной форме и почти не усваивается. Кроме того, в кукурузе содержится мало триптофана, который в организме превращается в ниацин (из 60 мг триптофана образуется 1 мг ниацина). В связи с этим существует понятие «ниациновый эквивалент» — это 1 мг ниацина или 60 мг триптофана. Потребность взрослого человека в ниацине составляет 6,6 ниацинового эквивалента на 1000 ккал в сутки (14–28 мг/сут). Адекватный уровень потребления при диетическом питании для витамина РР – 20 мг, безопасности —60 мг.

К дефициту ниацина могут привести: мальабсорбция, алкоголизм, белковое голодание, длительная терапия противотуберкулезными препаратами (фтивазид, циклосерин, изониазид), которые являются антагонистами пиридоксина, необходимого для превращения триптофана в ниацин. В составе ниацинзависимых ферментов часто имеются цинк, магний, марганец, молибден и кобальт, дефицит которых способствует манифестации гиповитаминоза РР. Вторичная пеллагра встречается при болезни Хартнупа (ниацин плохо абсорбируется из кишечника) и карциноидном синдроме из-за нарушения метаболизма ниацина.


  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18