Большая Советская Энциклопедия (ПО)
ModernLib.Net / Энциклопедии / БСЭ / Большая Советская Энциклопедия (ПО) - Чтение
(стр. 83)
Автор:
|
БСЭ |
Жанр:
|
Энциклопедии |
-
Читать книгу полностью
(4,00 Мб)
- Скачать в формате fb2
(24,00 Мб)
- Скачать в формате doc
(1 Кб)
- Скачать в формате txt
(1 Кб)
- Скачать в формате html
(22,00 Мб)
- Страницы:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127
|
|
Еи
Нвыделяют (отсюда указанное выше неравноправие) определённые направления в пространстве, занятом волной. Кроме того,
Еи
Нпочти всегда (об исключениях см. ниже) взаимно перпендикулярны, поэтому для полного описания состояния П. с. требуется знать поведение лишь одного из них. Обычно для этой цели выбирают вектор
Е.
Световой импульс, испускаемый каким-либо отдельно взятым элементарным излучателем (атом, молекула) в единичном акте излучения, всегда поляризован полностью. Но макроскопические
источники света
состоят из огромного числа таких частиц-излучателей; пространственная ориентации векторов
Е(и моменты актов излучения) световых импульсов отдельных частиц в большинстве случаев распределены хаотически (это не относится, например, к
лазерам
)
.Кроме того, поляризация меняется в результате процессов взаимодействия между частицами-излучателями. Поэтому в общем излучении подавляющего большинства источников направление
Ене определено (оно непрерывно и беспорядочно меняется за чрезвычайно малые промежутки времени). Подобное излучение называется неполяризованным, или естественным, светом.
Е,как и всякий вектор, всегда можно представить в виде суммы его проекций на 2 взаимно перпендикулярных направления (выбираемых в плоскости, поперечной направлению распространения света). В естественном свете разность
фаз
между такими проекциями непрерывно и хаотически меняется. В полностью поляризованном свете эта разность фаз строго постоянна, т. е. взаимно перпендикулярные компоненты
Екогерентны (см.
Когерентность
)
.Создав определённые условия на пути распространения естественного света, можно выделить из него поляризованную (полностью или частично) составляющую. Кроме того, полная или частичная (о смысле этого понятия см. ниже) П. с. возникает в ряде природных процессов испускания света и его взаимодействия с веществом.
Полную поляризацию
монохроматического света
характеризуют проекцией траектории конца вектора
Е(
рис. 1
) в каждой точке луча на плоскость, перпендикулярную лучу. В самом общем случае т. н. эллиптической поляризации такая проекция - эллипс, что легко понять, учитывая постоянство разности фаз между взаимно перпендикулярными компонентами
Еи одинаковость частоты их колебаний в монохроматической волне. Для полного описания эллиптической П. с. необходимо знать направление вращения
Епо эллипсу (правое или левое), ориентацию осей эллипса и его
эксцентриситет
(см., например,
рис. 2
, б, г, е)
.Наибольший интерес представляют предельные случаи эллиптической П. с. - линейная П. с. (разность фаз 0,
kp
,где
k -целое число,
рис. 2
, а и д)
,когда эллипс вырождается в отрезок прямой, и круговая, или циркулярна я, П. с. [разность фаз ±(2
k+ 1)p/2], при которой эллипс поляризации превращается в окружность. Определяя состояние линейно- или плоскополяризованного света, достаточно указать положение
плоскости поляризации
света, поляризованного по кругу,- направление вращения (правое -
рис. 2
, в
,или левое). В сложных неоднородных световых волнах (например, в металлах или при
полном внутреннем отражении
) мгновенные направления векторов
Еи
Нуже не связаны простым соотношением ортогональности, и для полного описания П. с. в таких волнах требуется знание поведения каждого из этих векторов по отдельности.
Если фазовое соотношение между компонентами (проекциями)
Еменяется за времена, много меньшие времени измерения П. с., нельзя говорить о полной П. с. Однако может случиться, что в составляющих пучок света монохроматических волнах
Еменяется не совершенно хаотически, а между взаимно перпендикулярными компонентами
Есуществует некоторый преимущественный фазовый сдвиг (фазовая корреляция), сохраняющийся в течение достаточно длительного времени. Физически это означает, что в поле световой волны амплитуда проекции
Ена одно из взаимно перпендикулярных направлений всегда больше, чем на другое. Степень подобной фазовой корреляции в таком - частично поляризованном - свете описывают параметром
р -степенью П. с. Так, если преимущественный фазовый сдвиг равен 0, свет частично линейно поляризован; ± p/2 - частично поляризован по кругу. Частично поляризованный свет можно рассматривать как «смесь» двух крайних видов - полностью поляризованного и естественного. Их соотношение и характеризуют параметром
р,который часто (но не всегда) определяют как
,где индексы 1 и 2 относятся к интенсивностям
Iсвета двух «ортогональных» поляризаций, например линейных во взаимно перпендикулярных плоскостях или соответствующих правой и левой круговым поляризациям;
рможет меняться от 0 до 100%, отражая все количественные градации состояния П. с. (Следует иметь в виду, что свет, проявляющийся в одних опытах как неполяризованный, в других может оказаться полностью поляризованным - с П. с., меняющейся во времени, по сечению пучка или по спектру.)
В квантовой оптике электромагнитное излучение рассматривают как поток
фотонов
(см.
Излучение,
Квантовая механика,
Оптика)
.Состояния П. с. с квантовой точки зрения определяются тем, каким
моментом количества движения
обладают фотоны в потоке. Так, фотоны с круговой поляризацией (правой или левой) обладают моментом, равным ±
(
-
Планка постоянная
)
.Любое состояние П. с. может быть выражено всего через два т. н. базисных состояния. При описании П. с. выбор пары исходных базисных состояний неоднозначен - ими могут служить, например, любые две взаимно-ортогональные линейные П. с., правая и левая круговые П. с. и т.д., причём в каждом случае от одной пары базисных состояний можно по определённым правилам перейти к др. паре.
Эта неоднозначность имеет в квантовом подходе принципиальный характер, однако «произвол» обычно ограничивают конкретные физические условия: наиболее удобно выбирать за базисную пару такие состояния П. с., которые преобладают в актах испускания фотонов элементарными излучателями либо определяют рассматриваемый процесс взаимодействия света и вещества. (Определение состояния П. с. на опыте осуществляется с помощью такого взаимодействия; по общим правилам квантовой механики подобный эксперимент всегда меняет - иногда пренебрежимо мало, иногда существенно - исходную П. с.) Базисные состояния и состояния, описываемые любой линейной комбинацией базисных (суперпозицией, см.
Суперпозиции принцип
)
,называются чистыми. Они соответствуют полной П. с., со степенью П. с. 100%. Фотоны могут находиться не только в чистых, но и в т. н. смешанных состояниях, в которых степень их поляризации меньше 100% и может доходить до нуля (естественный свет). Смешанные состояния также выражаются через базисные, но более сложным образом, чем линейная суперпозиция (их называют некогерентной смесью чистых состояний). Взаимодействие света и вещества может в определённых условиях приводить к полному или частичному «выделению» чистых состояний из смешанных (за счёт упомянутого выше изменения П. с. при таком взаимодействии).
Это явление используется для получения полностью поляризованного света или увеличения степени П. с. во многих
поляризационных приборах.Если за базисные состояния П. с. выбраны две круговые (правая и левая) П. с., то при их наложении (когерентной суперпозиции) в равных долях наблюдается линейная П. с.; суперпозиции их в различных др. соотношениях дают эллиптические П. с. со всевозможными характеристиками. Через эти же базисные состояния могут быть выражены любые смешанные состояния. Т. о., тот или иной выбор всего двух базисных состояний даёт возможность описать все состояния П. с.
Эксперименты подтверждают теоретический вывод о том, что каждый фотон, поляризованный по кругу, обладает моментом количества движения
=
h/2p (см.
Оптическая ориентация,
Садовского эффект)
.Характер поляризации фотонов определяется законом сохранения момента количества движения системы элементарный излучатель - испущенный фотон (при условии, что взаимодействием отдельных излучателей между собой можно пренебречь).
Кроме особенностей элементарных актов излучения, к частичной (а иногда и полной) П. с. приводит множество физических процессов. К ним относятся, например,
отражение света
и
преломление света,при которых П. с. обусловлена различием оптических характеристик границы раздела двух сред для компонент светового пучка, поляризованных параллельно и перпендикулярно плоскости падения (см.
Брюстера закон
)
.Свет может поляризоваться при прохождении через среды, обладающие естественной или вызванной внешними воздействиями (индуцированной)
оптической анизотропией
(вследствие неодинаковости коэффициентов
поглощения света
при различных состояниях П. с., например при правой и левой круговых П. с. - т. н. круговой дихроизм, являющийся частным случаем
плеохроизма;вследствие различия
преломления показателей
среды для лучей различных линейных поляризаций -
двойного лучепреломления,см.
также
Кристаллооптика)
.Очень часто полностью поляризовано излучение
лазеров;одной из основных (но не единственной!) причин П. с. в лазерах является специфический характер
вынужденного излучения,при котором поляризации испускаемого фотона и фотона, вызвавшего акт испускания, абсолютно тождественны; т. о. при лавинообразном умножении числа испускаемых фотонов в лазерном импульсе их поляризации могут быть совершенно одинаковыми. П. с. возникает при
резонансном излучении
в парах, жидкостях и твёрдых телах. П. с. при рассеянии света столь характерна, что её исследование - один из основных способов изучения как особенностей и условий самого рассеяния, так и свойств рассеивающих центров, в частности их структуры и взаимодействия между собой (см., например,
Атмосферная оптика
,
Комбинационное рассеяние света
,
Поляризация небесного свода
)
.(При рассеянии поляризованного света происходит и его деполяризация - уменьшение степени П. с.) В определённых условиях сильно поляризовано люминесцентное свечение (см.
Люминесценция
)
,особенно при возбуждении его поляризованным светом. П. с. весьма чувствительна к величине напряжённости и ориентации электрических и магнитных полей; в сильных полях компоненты, на которые расщепляются
спектральные линии
испускания, поглощения и люминесценции газообразных и
конденсированных систем,оказываются поляризованными (см.
Зеемана эффект.
Магнитооптика,
Штарка эффект)
.
Одним из эффектов интерференции поляризованных лучей света является хроматическая П. с.
Характерная для всех интерференционных явлений зависимость от длины волны («цвета») излучения приводит при этой «П. с.» (как показывает само название) к окрашиванию интерференционной картины, если исходный поток был
белым светом.Обычная схема получения картины хроматической П. с. в параллельных лучах приведена на
рис. 3
. В зависимости от
разности хода
обыкновенного и необыкновенного лучей, приобретаемой в двулучепреломляющей пластинке, наблюдатель видит эту пластинку (в свете, выходящем из анализатора) тёмной или светлой в монохроматическом свете либо окрашенной - в белом. Если пластинка неоднородна по толщине или по показателю преломления, её участки, в которых эти параметры одинаковы, видны соответственно одинаково тёмными или светлыми либо одинаково окрашенными. Линии одинаковой цветности называют изохромами. Схема для наблюдения хроматической П. с. в сходящихся лучах показана на
рис. 4
, а получаемые при этом картины - на
рис. 5
.
На многих из перечисленных явлений основаны принципы действия разнообразных
поляризационных приборов,с помощью которых не только анализируют состояние П. с., испускаемого внешними источниками, но и получают требуемую П. с. и преобразуют одни её виды в другие.
Особенности взаимодействия поляризованного света с веществом обусловили его исключительно широкое применение в научных исследованиях кристаллохимической и магнитной структуры твёрдых тел, строения биологических объектов (например, поляризационная микроскопия, см.
Микроскоп
)
,состояний элементарных излучателей и их отдельных центров, ответственных за
квантовые переходы,для получения информации о чрезвычайно удалённых (в частности, астрофизических) объектах. Вообще, П. с. как существенно анизотропное свойство излучения позволяет изучать все виды анизотропии вещества - поведение газообразных, жидких и твёрдых тел в полях анизотропных возмущений (механических, звуковых, электрических, магнитных, световых), в кристаллооптике - структуру кристаллов (в подавляющем большинстве - оптически анизотропных), в технике (например, в машиностроении) - упругие напряжения в конструкциях (см.
Поляризационно-оптический метод исследования
напряжений) и т.д. Изучение П. с., испускаемого или рассеиваемого
плазмой,играет важную роль в
диагностике плазмы.Взаимодействие поляризованного света с веществом может приводить к
оптической ориентации
или т. н. выстраиванию атомов, генерации мощного поляризованного излучения в лазерах и пр. Напротив, исследование деполяризации света при
фотолюминесценции
даёт сведения о взаимодействии поглощающих и излучающих центров в частицах вещества, при рассеянии света - ценные данные о структуре и свойствах рассеивающих молекул или иных частиц, в др. случаях - о протекании
фазовых переходов
и т.д. П. с. широко используется в технике, например при необходимости плавной регулировки интенсивности светового пучка (см.
Малюса закон
)
,для усиления контраста и устранения световых бликов в
фотографии,при создании
светофильтров,модуляторов излучения (см.
Модуляция света
)
,служащих одними из основных элементов систем
оптической локации
и
оптической связи,для изучения протекания химических реакций, строения молекул, определения концентраций растворов (см.
Поляриметрия,
Сахариметрия) и мн. др. П. с. играет заметную роль в живой природе. Многие живые существа способны чувствовать П. с., а некоторые насекомые (пчёлы, муравьи) ориентируются в пространстве по поляризованному (в результате рассеяния в атмосфере) свечению голубого неба. При определённых условиях к П. с. становится чувствительным и человеческий глаз (т. н. явление Хайдингера).
Лит.:Ландсберг Г. С., Оптика, 4 изд., М., 1957 (Общий курс физики, т. 3); Шерклифф У., Поляризованный свет, пер. с англ., М., 1965; Борн М., Вольф Э., Основы оптики, пер. с англ., 2 изд., М., 1973; Феофилов П. П., Поляризованная люминесценция атомов, молекул и кристаллов, М., 1959; Ахиезер А. И., Берестецкий В. Б., Квантовая электродинамика, 3 изд., М., 1969.
В. С. Запасский.
Рис. 2. Примеры различных поляризаций светового луча (траекторий конца электрического вектора Е в какой-либо одной точке луча) при различных разностях фаз между взаимно перпендикулярными компонентами Е
хи Е
у. Плоскость рисунков перпендикулярна направлению распространения света: а и д - линейные поляризации; в - правая круговая поляризация; б, г и е - эллиптические поляризации различной ориентации. Приведённые рисунки соответствуют положительным разностям фаз d (опережению вертикальных колебаний по сравнению с горизонтальными). l - длина волны света.
Рис. 5а. Интерференционные картины хроматической поляризации в сходящихся лучах при условии, что оптические оси анализатора и поляризатора скрещены (N
1^N
2, см. рис. 4). Cрез кристаллической пластинки К перпендикулярен её оптической оси. Если падающий на анализатор свет - белый, картины приобретают сложную характерную окраску.
Рис. 5б. Интерференционные картины хроматической поляризации в сходящихся лучах при условии, что оптические оси анализатора и поляризатора скрещены (N
1^N
2, см. рис. 4). Срез параллелен оптической оси. Если падающий на анализатор свет - белый, картины приобретают сложную характерную окраску.
Рис. 4. Схема для наблюдения хроматической поляризации в сходящихся лучах. N
1- поляризатор, N
2- анализатор; К - пластинка толщиной l, вырезанная из одноосного двулучепреломляющего кристалла параллельно его оптической оси; L
1, L
2- линзы. Лучи разного наклона проходят в К разные пути, приобретая разности хода (различные для обыкновенного и необыкновенного лучей). По выходе из анализатора они интерферируют, давая характерные интерференционные картины, показанные на рис. 5.
Рис. 3. Схема наблюдения интерференции поляризованных лучей (хроматической поляризации) в параллельном световом потоке. Поляризатор N
1пропускает лишь одну линейно поляризованную (в направлении N
1N
1) составляющую исходного пучка. В пластинке К, вырезанной из двулучепреломляющего одноосного кристалла параллельно его оптической оси ОО и установленной перпендикулярно пучку, плоскополяризованный луч разделяется на составляющую А
ес колебаниями электрического вектора, параллельными ОО (необыкновенный луч), и составляющую А
о, колебания электрического вектора которой перпендикулярны ОО (обыкновенный луч). Показатели преломления материала пластинки К для этих двух лучей (n
eи n
o) различны, а следовательно, различны скорости их распространения в К, вследствие чего эти лучи, распространяясь по одному направлению, приобретают разность хода. Разность фаз их колебаний при выходе из К равна d = (
1/
l) Ч2 pl(n
о- n
e), где l - толщина К, l - длина волны падающего света. Анализатор N
2пропускает из каждого луча только его слагающую с колебаниями, лежащими в плоскости его главного сечения N
2N
2. Если N
1^N
2(оптические оси анализатора и поляризатора скрещены), амплитуды слагающих А
1и А
2равны, а разность их фаз D = d + p. Они когерентны и интерферируют между собой. В зависимости от величины D на каком-либо участке пластинки К наблюдатель увидит этот участок тёмным [D = (2k+ 1) p, k - целое число] или светлым (D = 2kp) в монохроматическом свете и окрашенным - в белом свете.
Рис. 1. Колебания проекций электрического вектора Е световой волны на взаимно перпендикулярные оси х и у (z - направление распространения волны, перпендикулярное как х, так и у), б и в - моментальные изображения колебаний и соответствующей огибающей концов полного вектора Е в разных точках волны для случая, когда вертикальные (по оси х) колебания на четверть периода (90° ) опережают горизонтальные (по оси у). В каждой одной точке конец Е в этом случае описывает окружность. Стрелки на в нанесены лишь для того, чтобы яснее показать вид правого винта. Винтовая поверхность отнюдь не вращается вокруг z при прохождении волны. Напротив, следует представлять, что вся винтовая поверхность как целое, не вращаясь, переносится вдоль z со скоростью волны.
Поляризация частиц
Поляриза'ция части'ц, характеристика состояния частиц, связанная с наличием у них собственного момента количества движения -
спина.Понятие П. ч. близко к понятию
поляризации света.Последнее означает, в частности, что плоские световые волны с определёнными частотой, направлением распространения и интенсивностью могут отличаться расположением векторов напряжённостей электрического и магнитного полей в пространстве, т. е. поляризацией. Это свойство сохраняется и при квантовом описании света:
фотон
может обладать поляризацией.
Частица с ненулевой массой покоя (электрон, ядро и др.) и спином
J(в единицах постоянной Планка
) имеет 2
J+ 1 квантовых состояний, отвечающих различным ориентациям спина (различным значениям проекции спина на некоторое направление). Состояние частицы представляет собой суперпозицию этих состояний. Если коэффициент суперпозиции полностью определены («чистое» квантовое состояние), то говорят, что частица полностью поляризована. Если коэффициент суперпозиции определены не полностью, а заданы только некоторыми статистическими характеристиками («смешанное» состояние), то говорят о частичной поляризации. В частности, частица может быть полностью неполяризованной; это означает, что её свойства одинаковы по всем направлениям, как у бесспиновой частицы (с
J= 0). В общем случае П. ч. определяет степень симметрии (или асимметрии) частиц в пространстве. Частицу называют поляризованной (в узком смысле слова), если характеристика её симметрии включает винтовую ось (как у вращающегося твёрдого тела или у циркулярно поляризованного света). Если такой оси нет, но нет и сферической симметрии, то П. ч. называют выстроенностью (пример - линейно поляризованный свет). П. ч. определяется в общем случае числом параметров, равным (2
J+ 1)
2
-1.
Частица с нулевой массой, например фотон, обладает только двумя состояниями, определяемыми её спином, а её поляризация определяется в общем случае тремя параметрами. Нейтрино с нулевой массой обладают особым свойством - они всегда полностью поляризованы в форме правой или левой циркулярной поляризации (см.
Нейтрино
)
.
В. Б. Берестецкий.
Поляризация электрохимическая
Поляриза'ция электрохими'ческая, отклонение
электродного потенциалаЕот стационарного потенциала
Е
ст
,который электрод приобретает в отсутствие внешнего тока. П. э. измеряется в вольтах (милливольтах). Если отклонение отрицательно (вызвано подводом электронов, которые должны расходоваться в реакциях, идущих в катодном направлении), то П. э. называют катодной; при противоположном направлении тока - анодной. Графики функциональной связи между П. э. и плотностью тока
iназывают соответственно катодными и анодными поляризационными кривыми и широко используют при описании и исследовании электрохимических и коррозионных процессов.
В общем случае связь между
iи П. э. криволинейна, однако в интервале отклонений ± 10-15
мвот
Е
стона, как правило, прямолинейна. Угловой коэффициент этого участка (т. е. отношение приращения П. э. к приращению
i) имеет размерность сопротивления единицы поверхности (
омЧ
см
2) и называется поляризационным сопротивлением электрода
R
п
.Электроды с большим
R
п
называются сильнополяризуемыми, т.к. уже при очень малых
iих потенциалы сильно отклоняются от
Е
ст
.Электроды с малым
R
п
-слабополяризуемые. Существует обратная пропорциональность между
R
п
и интенсивностью того обмена электрическими зарядами, который происходит между электродом и электролитом при
Е
ст
.На коррелирующем электроде эта интенсивность обычно совпадает с плотностью коррозионного тока, и потому измерение
R
п
иногда используют для определения скорости электрохимической
коррозии.Если на электроде возможна лишь одна электродная реакция, то
Е
стсовпадает с равновесным потенциалом
Е
рэтой реакции, П. э. - с её
перенапряжением,a
R
п
оказывается обратно пропорциональным равновесному току обмена.
Термином «концентрационная поляризация» обозначают те изменения
Е,которые связаны с замедленным переносом исходных или конечных компонентов протекающей на электроде реакции. В зоне реакции концентрация первых (
с
исх) понижается, а вторых (
с
кон) - увеличивается. Это повышает тенденцию реакции протекать в обратном направлении, что и должно компенсироваться приложением дополнительной разности потенциалов. Последняя особенно резко растет, когда скорость реакции достигает предельно возможной скорости диффузионных потоков, так что либо
с
исхснижается практически до 0, либо конечные продукты кристаллизуются, закрывая электродную поверхность. Эту предельную диффузионную плотность тока можно повысить, улучшив массоперенос, например, путём перемешивания. Вместо термина «концентрационная поляризация» также пользуются термином «концентрационное перенапряжение», т.к. обозначаемое им отклонение
Едолжно фактически отсчитываться не от
Е
ст
,а от
Ерсоответствующей индивидуальной реакции.
Явления П. э. могут быть и вредны, и полезны. Например, при электролизе они повышают расход электроэнергии, а при работе гальванического элемента понижают отдачу электроэнергии; зато при коррозии могут вести к торможению нежелательных процессов. См. также ст.
Пассивирование.
Лит.:Кинетика электродных процессов, М., 1952 (авт. колл. под рук. А. Н. Фрумкина); Скорчеллетти В. В., Теоретическая электрохимия, Л., 1959; Феттер К., Электрохимическая кинетика, пер. с нем., М., 1967; Антропов Л. И., Теоретическая электрохимия, 2 изд., М., 1969.
В. М. Новаковский.
Поляризованные нейтроны
Поляризо'ванные нейтро'ны, совокупность нейтронов,
спины
которых имеют преимущественную ориентацию по отношению к какому-либо выделенному направлению в пространстве, обычно направлению магнитного поля. Т. к.
нейтрон
обладает спином
1/
2, то в магнитном поле
Нвозможны 2 ориентации его спина: параллельно или антипараллельно
Н.Нейтронный пучок поляризован, если он содержит разное количество
Nнейтронов со спинами, ориентированными вдоль (N
+) и против поля (N
-). Степень поляризации характеризуют величиной
P= (
N
+-
N
-)
/(
N
++
N
-)
.
Впервые П. н. были получены при пропускании пучка нейтронов через намагниченную до насыщения железную пластину (метод предложен Ф.
Блохом
в 1936 и исследован Д. Юзом с сотрудниками в 1947, США). Нейтроны, спины которых параллельны направлению намагниченности ферромагнетика, сильнее рассеиваются и выбывают из пучка. В результате пучок нейтронов, прошедший через пластину, обогащается нейтронами со спинами, антипараллельными намагниченности. Метод требует сильных намагничивающих полей. В полях
H~10000
энаибольшая степень поляризации
P= 0,6.
Более эффективен дифракционный метод (разработан К. Шаллом, Е. Воланом и В. Колером, США, 1951), основанный на дифракции нейтронов от определённых плоскостей намагниченных ферромагнитных монокристаллов (см.
Дифракция частиц
)
,например сплава Со - Fe. Меняя величину намагниченности и семейства отражающих плоскостей кристалла, можно изменять амплитуду когерентного магнитного рассеяния от 0 до некоторой максимальной величины. Это означает, что для ферромагнитного монокристалла можно подобрать такое брэгговское отражение и величину намагниченности, чтобы ядерная
bи магнитная
f
mамплитуды оказались равными. Тогда для нейтронов со спином, антипараллельным направлению намагниченности, суммарная амплитуда рассеяния равна 0, т. е. под углом Брэгга отразится пучок нейтронов со спинами, параллельными намагниченности. Дифракционный метод позволяет получить монохроматический пучок П. н. тепловых и резонансных энергий (см.
Медленные нейтроны
) со степенью поляризации до 0,99.
Часто для получения П. н. пользуются методом отражения нейтронов от намагниченных ферромагнитных зеркал (например, из Со). При определённых условиях полное отражение испытывают нейтроны со спинами, параллельными намагниченности ферромагнетика. Метод позволяет получить интенсивные отражённые поляризованные пучки нейтронов. Поляризатором нейтронов может служить также неоднородное магнитное поле. Пучок нейтронов, проходя через такое поле, расщепляется на 2 пучка, т.к. на нейтроны с двумя разными ориентациями спинов действуют противоположно направленные силы (см.
Штерна - Герлаха опыт
)
.
Одним из методов получения П. н. является рассеяние нейтронов на
ориентированных ядрах.Для этого нейтроны пропускают через поляризованную ядерную мишень. Амплитуда ядерного рассеяния зависит от ориентации спина нейтрона относительно спина ядра. Максимальное рассеяние соответствует параллельности спинов нейтрона и ядра, минимальное - их антипараллельности. Особенно эффективна мишень, содержащая ориентированные протоны. Т. к. сечение рассеяния медленных нейтронов на протонах не зависит от их энергии, то удаётся получить П. н. в интервале от 10
-2
эвдо 10
4-10
5
эв. Впервые этот метод был осуществлен Ф. Л.
Шапироссотрудниками в 1963. П. н. с энергией > 10
6
эвобразуются при рассеянии нейтронов на ядрах за счёт спин-орбитального взаимодействия.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127
|
|