Большая Советская Энциклопедия (ПО)
ModernLib.Net / Энциклопедии / БСЭ / Большая Советская Энциклопедия (ПО) - Чтение
(стр. 82)
Автор:
|
БСЭ |
Жанр:
|
Энциклопедии |
-
Читать книгу полностью
(4,00 Мб)
- Скачать в формате fb2
(24,00 Мб)
- Скачать в формате doc
(1 Кб)
- Скачать в формате txt
(1 Кб)
- Скачать в формате html
(22,00 Мб)
- Страницы:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127
|
|
Объёмная модель часто исследуется с применением метода «замораживания» деформаций. Модель из материала, обладающего свойством «замораживания» (отверждённые эпоксидные, фенолформальдегидные смолы и др.), нагревается до температуры высокоэластического состояния, нагружается и под нагрузкой охлаждается до комнатной температуры (температуры стеклования). После снятия нагрузки деформации, возникающие в высокоэластическом состоянии, и сопровождающая их оптическая анизотропия фиксируются. Наглядно описать это явление можно при помощи условной двухфазной модели материала. При нагреве до 80-120 °С (высокоэластическое состояние) одна часть материала размягчается, другая остаётся упругой. Нагрузке, приложенной к нагретой модели, противостоит неразмягчающийся скелет. При охлаждении нагруженной модели до комнатной температуры размягчающаяся часть снова застывает («замораживается») и удерживает деформацию в скелете после снятия нагрузки. «Замороженную» модель распиливают на тонкие пластинки (срезы) толщиной 0,6- 2
мм,которые исследуют в обычном полярископе.
Применяется также метод рассеянного света, при котором тонкий пучок параллельных лучей поляризованного света пропускается через объёмную модель и даёт в каждой точке на своём пути рассеянный свет, который наблюдается в направлении, перпендикулярном к пучку. Состояние поляризации по линии каждого луча от точки к точке меняется соответственно напряжениям в этих точках. Существует метод, при котором в изготовленную из оптически нечувствительного к напряжениям прозрачного материала (специальные органические стекла) объёмную модель вклеивают тонкие пластинки из оптически чувствительного материала. Измерения во вклейках проводят, как на плоской модели, - с просвечиванием нормально или под углом к поверхности вклейки.
Описанный П.-о. м. и. применяется для изучения напряжений в плоских и объёмных деталях в пределах упругости в тех случаях, когда применение вычислительных методов затруднено или невозможно. П.-о. м. и. напряжений используется для изучения пластических деформаций (фотопластичность), динамических процессов, температурных напряжений (фототермоупругость), для моделирования при решении задач ползучести (фотоползучесть) и др. нелинейных задач механики деформируемого тела.
Разработан также метод оптически чувствительных наклеек (слоев), наносимых на поверхности натурных деталей. Слой оптически чувствительного материала наносится на поверхность металлической детали или её модели в жидком виде и затем подвергается полимеризации или наклеивается на деталь в виде пластинки; это обеспечивает равенство деформаций нагруженной детали и покрытия. Деформации в покрытии определяются по измеренной в нём разности хода в отражённом свете при помощи односторонних полярископов.
Так как П.-о. м. и. напряжений ведутся на моделях, то они заканчиваются переходом от напряжений в модели к напряжениям в детали. В простейшем случае s
дет= s
модb/a
2, где a и b - масштабы геометрического и силового подобий.
Лит.:Пригоровский Н. И., Поляризационно-оптический метод исследования распределения напряжений, в кн.: Справочник машиностроителя, т. 3, М., 1962; Александров А. Я., Ахметзянов М. Х., Поляризационно-оптические методы механики деформируемого тела, М., 1973.
В. И. Савченко
Рис. 2. Схема кругового полярископа: S - источник света, Р - поляризатор; D - пластинка; l/4 - компенсирующие пластинки; А - анализатор; Э - экран.
Рис. 1. Схемы: а - пластинки, нагруженной в своей плоскости; б - элемента объёма в напряжённом состоянии; s - нормальные; t - касательные напряжения.
Рис. 3. Картина полос при равномерном растягивании пластинки с круглым отверстием.
Поляризационные приборы
Поляризацио'нные прибо'ры,предназначаются для обнаружения, анализа, получения и преобразования поляризованного
оптического излучения
(света), а также для различных исследований и измерений, основанных на явлении
поляризации света.К 1-й из двух категорий, на которые разделяют П. п., относятся простейшие устройства для получения и преобразования поляризованного света - линейные и циркулярные
поляризаторы
(П), фазовые пластинки,
компенсаторы оптические
, деполяризаторы и пр. 2-я категория П. п. - более сложные конструкции и установки для количественных поляризационно-оптических исследований. В качестве элементов в них входят П. п. 1-й категории, а также
приёмники света,
монохроматоры,вспомогательные электронные устройства и многие др.
Простейшие поляризационные устройства.В П для получения полностью или частично поляризованного света используется одно из трёх физических явлений: 1) поляризация при
отражении света
или
преломлении света
на границе раздела двух прозрачных сред; 2) линейны и дихроизм - одна из форм
плеохроизма;3)
двойное лучепреломление.Свет, отражённый от поверхности, разделяющей две среды с разными
преломления показателями
n,всегда частично поляризован. Если же луч света падает на границу раздела под углом, тангенс которого равен отношению абсолютных
n2-й и 1-й сред (их относительный
n)
,то отражённый луч поляризован полностью (см.
Брюстера закон
)
.Недостатки отражательных П - малость коэффициента отражения и сильная зависимость степени поляризации
рот угла падения и длины световой волны. Преломленный луч также частично поляризован, причём его
рмонотонно возрастает с увеличением угла падения. Пропуская свет последовательно через несколько прозрачных плоскопараллельных пластин, можно достичь того, что
рпрошедшего света будет значительна (см.
Стопа
в оптике).
Среды, обладающие
оптической анизотропией,по-разному поглощают лучи различных поляризаций. В частности, в областях собственных и примесных полос
поглощения света
двулучепреломляющие среды неодинаково поглощают обыкновенный и необкновенный лучи (см.
Кристаллооптика
)
;это и есть их линейный дихроизм. Если толщина пластинки, вырезанной из анизотропного кристалла (с полосами поглощения в нужной области спектра) параллельно его
оптической оси,достаточна, чтобы один из лучей поглотился практически нацело, то прошедший через пластинку свет будет полностью поляризован. Такие П называют дихроичными. К дихроичным П относятся и
поляроиды,поглощающее вещество которых может быть как кристаллическим, так и некристаллическим. Важные преимущества поляроидов - компактность, большие рабочие апертуры (максимальные углы раствора сходящегося или расходящегося падающего пучка, при которых прошедший свет ещё поляризован полностью) и практически полное отсутствие ограничений в размере.
П, действие которых основано на явлении двойного лучепреломления, подробно описаны в ст.
Поляризационные призмы.Их апертуры меньше, чем у поляроидов, а габариты, вес и стоимость больше; однако они всё же незаменимы в ультрафиолетовой области спектра и при работе с мощными потоками оптического излучения.
Пластинки из оптически анизотропных материалов, вносящие сдвиг
фазы
между двумя взаимно перпендикулярными компонентами электрического вектора
Епроходящего через них излучения (соответствующими двум линейным поляризациям), называют фазовыми, или волновыми, пластинками (ФП) и предназначены для изменения состояния поляризации излучения. Так, циркулярные или эллиптическимие П обычно представляют собой совокупность линейного П и ФП. Для получения света, поляризованного по кругу (циркулярно), применяют ФП, вносящую сдвиг фазы в 90° (пластинка четверть длины волны, см.
Компенсатор оптический
)
.Двулучепреломляющие ФП изготовляют как из материалов с естественной оптической анизотропией (например, кристаллов), так и из веществ, анизотропия которых индуцируется приложенным извне воздействием - электрическим полем, механическим напряжением и пр. (см.
Керра ячейка,
Фотоупругость,
Электрооптика)
.Применяются также отражательные ФП (например, ромб Френеля,
рис. 1
); принцип их действия основан на изменении состояния поляризации света при его
полном внутреннем отражении.Преимуществом отражательных ФП перед двупреломляющими является почти полное отсутствие зависимости фазового сдвига от длины волны.
Все П (линейные, циркулярные, эллиптические) могут использоваться не только как П в собственном смысле слова (для получения света требуемой поляризации), но и для анализа состояния поляризации света, т. е. как
анализаторы.Анализ эллиптически поляризованного света производят с помощью компенсаторов
разности хода,простейшим из которых является упомянутая выше четвертьволновая ФП. Часто возникающую проблему деполяризации частично поляризованного излучения обычно решают не истинной деполяризацией (это - исключительно сложная задача), а сводят её к созданию тонкой пространственной, спектральной или временной поляризационной структуры светового пучка.
Приборы
для поляризационно-оптических исследованийотличает чрезвычайное разнообразие сфер применения, конструктивного оформления и принципов действия. Их используют для фотометрических и пирометрических измерений, кристаллооптических исследований, изучения механических напряжений в конструкциях (см.
Поляризационно-оптический метод исследования
напряжений), в микроскопии, в
поляриметрии
и
сахариметрии,в скоростной фото- и киносъёмке, геодезических устройствах, в системах
оптической локации
и
оптической связи,в схемах управления
лазеров,для физических исследований электронной структуры атомов, молекул и твёрдых тел и др. Описанию многих из этих приборов посвящены отдельные статьи. Поэтому ниже следует лишь краткий обзор некоторых основных классов подобных приборов.
Элементом большинства П. п. является схема, состоящая из последовательно расположенных на одной оси линейного П и анализатора. Если их
плоскости поляризации
взаимно перпендикулярны, схема не пропускает света (установка на гашение). Изменение угла между этими плоскостями приводит к изменению интенсивности проходящего через систему света по
Малюса закону
(пропорционально квадрату косинуса угла). Особое удобство этой схемы для сравнения и измерения интенсивностей световых потоков обусловило её преимущественное применение в фотометрических П. п. -
фотометрах
и
спектрофотометрах
(как с визуальной, так и с фотоэлектрической регистрацией). П. п. представляют собой основные элементы оборудования для кристаллооптических и иных исследований сред, обладающих оптической анизотропией - естественной или наведённой. При таких исследованиях широко применяются поляризационные микроскопы (см.
Микроскоп
)
,позволяющие на основе визуальных наблюдений делать выводы о характере и величине оптической анизотропии вещества. Для прецизионного анализа оптической анизотропии и её зависимости от длины волны излучения применяются автоматические приборы с фотоэлектрической регистрацией. Практически всегда при количественном анализе анизотропии требуется сопоставить оптические свойства среды для двух ортогональных поляризаций - линейных, если измеряется линейный дихроизм или линейное двулучепреломление, и круговых при измерении циркулярного (кругового) дихроизма или
вращения плоскости поляризации
. Это сопоставление в электронной схеме прибора производится на достаточно высокой частоте, удобной для усиления сигнала и подавления шумов. Поэтому П. п. такого назначения часто включают поляризационный модулятор (см.
Модуляция света
)
.
П. п. служат для обнаружения и количественного определения степени поляризации частично поляризованного света. Простейшими из таких П. п. являются полярископы - двулучепреломляющие пластинки, в которых используется
интерференция света
в сходящихся поляризованных лучах (хроматическая поляризация, см.
Поляризация света
)
.Типичный полярископ - пластинка Савара - показан на
рис. 2
. Самые точные из полярископов позволяют обнаружить примесь поляризованного света к естественному, составляющую доли процента.
Чрезвычайно существенную роль в химических и биофизических исследованиях играет обширный класс П. п., служащий для измерения вращения плоскости поляризации в средах с естественной или наведённой магнитным полем
оптической активностью-
поляриметры-и дисперсии этого вращения - спектрополяриметры. Относительно простыми, но практически очень важными П. и. являются
сахариметры-приборы для измерения содержания сахаров и некоторых др.
оптически-активных веществ
в растворах.
Лит.:Шишловский А. А., Прикладная физическая оптика, М., 1961; Меланхолин Н. М., Грум-Гржимайло С. В., Методы исследования оптических свойств кристаллов, М., 1954; Васильев Б. И., Оптика поляризационных приборов, М., 1969.
В. С. Запасский.
Рис. 1. Ромб Френеля, вырезанный из оптического стекла. При близком к нормальному падении луча света, поляризованного линейно под углом 45° к плоскости падения, линейные составляющие луча, поляризованные параллельно и перпендикулярно этой плоскости, при каждом из двух полных внутренних отражений приобретают разность фаз в
1/
8периода световой волны. Итоговая разность фаз в
1/
4периода (90°) даёт луч, поляризованный по кругу (циркулярно).
Рис. 2. Полярископ Савара состоит из двух склеенных пластинок кристаллического кварца одинаковой толщины d, вырезанных так, что их оптические оси составляют с осью полярископа углы в 45°, и жестко связанного с пластинкой Савара анализатора, плоскость поляризации которого направлена под 45° к главным сечениям этой пластинки. На рис. изображена только пластинка Савара. При падении частично поляризованного света в поле зрения наблюдаются интерференционные полосы. В случае полностью неполяризованного света полосы отсутствуют при любой ориентации полярископа.
Поляризационные призмы
Поляризацио'нные при'змы, один из классов
призм оптических.П. п. служат линейными
поляризаторами-с их помощью получают линейно поляризованное
оптическое излучение
(см.
Поляризация света
)
.Обычно П. п. состоят из 2 или более трёхгранных призм, по меньшей мере одна из которых вырезается из оптически анизотропного (см.
Оптическая анизотропия
) кристалла. Конструктивно П. п. выполняют так, что проходящее через них излучение должно преодолеть наклонную границу раздела 2 сред, на которой условия
преломления света
для компонент светового пучка, поляризованных в 2 взаимно перпендикулярных плоскостях, резко различаются. В частности, для одной из этих компонент на границе раздела могут выполняться условия
полного внутреннего отражения,в результате чего через П. п. проходит лишь др. компонента. Таковы, например, широко распространённые П. п. Николя (часто называют просто николями,
рис. 1
) и Фуко (
рис. 2
), в которых пропускается необыкновенный луч
е(см.
Двойное лучепреломление,
Кристаллооптика)
,а отсекается - поглощается или выводится в сторону - обыкновенный луч
о.Подобные П. п. называют однолучевыми. Двухлучевые П. п. пропускают обе взаимно-перпендикулярно линейно поляризованные компоненты исходного пучка, пространственно разделяя их. Чаще всего П. п. изготовляют из исландского шпата СаСОз, прозрачного в диапазоне длин волн l = 0,2-2
мкм,и кристаллического кварца SiO
2, прозрачного при l
= 0,185-3,5
мкм.
Трёхгранные призмы, из которых состоят однолучевые П. п., часто склеивают прозрачным веществом с
преломления показателем
(ПП)
n,близким к среднему значению ПП обыкновенного (
n
o) и необыкновенного (
n
e) лучей. Клеющими веществами служат канадский бальзам, глицерин, касторовое и льняное масла и др. Во многих П. п. их части разделены не клеем, а воздушной прослойкой, что снижает потери на поглощение при высоких плотностях излучения и даёт ряд преимуществ при работе в ультрафиолетовой (УФ) области спектра. Используют также прослойки из плавленого кварца. Применяют П. п., в которых кристаллическая пластинка вклеена между двумя призмами из стекла, ПП которого близок к большему ПП кристалла (
рис. 3
). В таких П. п. проходит обыкновенный луч, а отражается необыкновенный. Для того чтобы один из лучей претерпевал на границе раздела (склейки) полное внутреннее отражение, выбираются определённые значения преломляющих углов трёхгранных призм и, как правило, определённые ориентации оптических осей кристаллов, из которых они вырезаны. Такое отражение происходит, если углы падения лучей на П. п. не превышают некоторых предельных углов
I
1и
I
2(см., например,
рис. 4
- П. п. Глана - Томсона). Сумма
l
1+
I
2называется апертурой полной поляризации П. п.; её величина существенна при работе с П. п. в сходящихся пучках излучения.
В П. п. со скошенными гранями (Николя, Фуко и др.) проходящий луч испытывает параллельное смещение, поэтому при вращении призмы вокруг луча последний также вращается. От этого и некоторых иных недостатков таких П. п. свободны П. п. в форме прямоугольных параллелепипедов: Глана - Томсона, Глана (
рис. 5
), Глазебрука (
рис. 6
), Франка - Риттера (
рис. 7
) и пр.
Из двухлучевых П. п. наиболее распространены П. п. Рошона, Сенармона, Волластона и некоторые др. (
рис. 8
). Один из двух пропускаемых лучей в П. п. Рошона и Сенармона не меняет своего направления, другой (необыкновенный) отклоняется на угол q (его величина ~5-6°), сильно зависящий от длины волны света: q = (
n
0-
n
e) tga, где a - преломляющий угол трёхгранных призм. П. п. Волластона даёт удвоенный угол расхождения лучей 2q (около 10°), причём при перпендикулярном падении отклонения лучей симметричны; эта П. п. применяется в поляризационных
фотометрах,
спектрофотометрахи
поляриметрах.Угол а в П. п. из исландского шпата близок к 30°, из кристаллического кварца - к 60°.
Для П. п., как правило, характерны незначительная апертура полной поляризации, высокая стоимость и относительно большие размеры. Они требуют аккуратного обращения, но практически лишены
хроматической аберрации,незаменимы при работе в УФ области спектра и в мощных потоках оптического излучения и позволяют получать однородно поляризованные пучки, степень поляризации которых лишь на ~10
-5отличается от 1.
Лит.см. при ст.
Поляризационные приборы,
Поляризация света.
В. С. Запасский.
Рис. 5. Поляризационная призма Глана. А В - воздушный промежуток. Точки на обеих трёхгранных призмах указывают, что их оптические оси перпендикулярны плоскости рисунка. Обозначения при лучах те же, что и на рис. 1.
Рис. 2. Укороченная поляризационная призма Фуко с воздушным промежутком. Обозначения те же, что и на рис. 1.
Рис. 7. Поляризационная призма Франка - Риттера (клей - канадский бальзам): а - вид сбоку; б - вид по ходу луча. Оптические оси кристаллических прямоугольных призм направлены под углом 45° к плоскости рисунка а и под углом 90° к плоскости колебаний электрического вектора необыкновенного луча (его плоскости поляризации).
Рис. 4. Предельные углы падения I
1и l
2лучей на поляризационную призму Глана - Томсона. Обозначения при лучах те же, что и на рис. 1. Клеем служит канадский бальзам (апертура полной поляризации e = l
1+ I
2= 27,5°) или льняное масло (e = 41°). Угол a = 76,5°.
Рис. 1. Призма Николя. Штриховка указывает направление оптических осей кристаллов в плоскости чертежа. Направления электрических колебаний световых волн указаны на лучах стрелками (колебания происходят в плоскости рисунка) и точками (колебания перпендикулярны плоскости рисунка). O и е - обыкновенный и необыкновенный лучи. Чернение на нижней грани призмы поглощает полностью отражаемый от плоскости склейки обыкновенный луч. Клей - канадский бальзам.
Рис. 8. Двухлучевые поляризационные призмы: а - призма Рошона; б - призма Сенармона; в - призма Волластона; г - призма из исландского шпата и стекла; д - Аббе. Штриховка указывает направление оптических осей кристаллов в плоскости рисунка. Точки означают, что оптическая ось перпендикулярна плоскости рисунка. Стрелки и точки на лучах указывают направления колебаний электрического вектора.
Рис. 6. Поляризационная призма Глазебрука. Обозначения при лучах те же, что и на рис. 1. При склейке в плоскости АВ канадским бальзамом угол a = 12,1°, льняным маслом - 14°, глицерином - 17,3°. Оптические оси кристаллов обеих прямоугольных призм перпендикулярны плоскости рисунка (помечено точками).
Рис. 3. Линейный поляризатор (поляризационная призма) из стекла и исландского шпата. Точки в прослойке шпата указывают, что его оптическая ось перпендикулярна плоскости рисунка. Остальные обозначения те же, что и на рис. 1.
Поляризация
Поляриза'ция(франц. polarisation, первоисточник: греч. pуlos - ось, полюс) биоэлектоическая, возникновение двойного электрического слоя на границе между наружной средой и содержимым живой клетки; при этом наружная поверхность клетки в состоянии покоя заряжена положительно по отношению к её содержимому, имеющему отрицательный заряд.
Постоянная биоэлектрическая П. обусловлена особенностями строения биологических мембран, а также неравномерным распределением неорганических ионов (в первую очередь К
+, Na
+, Cl
-) в содержимом клетки и в окружающей её среде (электрохимические градиенты).
Потенциал покоя-непосредственное следствие П. У-большинства живых клеток концентрация ионов К
+в протоплазме в 20-50 раз выше, чем во внеклеточной жидкости. Поверхностная мембрана этих клеток в состоянии покоя более проницаема для ионов К
+, чем для др. катионов. Поэтому ионы К
+, диффундируя из клетки наружу, приводят к накоплению избытка положительных зарядов на наружной стороне мембраны, на внутренней же образуется избыток отрицательных зарядов (см.
Мембранная теория возбуждения
)
.Для ионов Na
+, Ca
2+и Cl
-мембрана в покое мало проницаема, но в активированном состоянии происходит избирательное повышение проницаемости для каких-либо из этих ионов, что приводит к изменению П. (см.
Биоэлектрические потенциалы
)
.Так, мембрана возбуждённого участка нерва становится на короткое время проницаемой для ионов Na
+, вход которых в клетку приводит к
деполяризации
мембраны. Если эта деполяризация достигает критического уровня, возникает
потенциал действия.Нисходящая фаза потенциала действия, в течение которого П. мембраны возвращается к уровню покоя, называется фазой реполяризации мембраны. При увеличении потенциала покоя выше нормального уровня происходит гиперполяризация мембраны. Относительное постоянство уровня П. живой клетки обеспечивается постоянством электрохимических градиентов, что, в свою очередь, поддерживается работой ионных насосов (см.
«Натриевый насос»
), затрачивающих энергию на противоградиентный перенос ионов через мембрану (см.
Активный транспорт ионов
)
.
Лит.см. при ст.
Биоэлектрические потенциалы,
Мембранная теория возбуждения,
Проницаемость биологических мембран.
Л. Г. Магазаник.
Поляризация вакуума
Поляриза'ция ва'куумав квантовой теории поля, изменение в распределении виртуальных пар заряженных частиц-античастиц под воздействием электромагнитного поля. П. в., предсказанная
квантовой электродинамикой,приводит к появлению эффектов, которые могут быть обнаружены на опыте: поправкам к значениям энергий электронов в атоме, поправкам к сечению упругого рассеяния на большие углы, ещё не наблюдённому рассеянию света на свете и кулоновском поле и т.п. См.
Квантовая теория поля.
Поляризация волн
Поляриза'ция волн, нарушение осевой симметрии распределения возмущений (например, смещений и скоростей в механической волне или напряжённостей электрических и магнитных полей в электромагнитных волнах) в поперечной волне относительно направления её распространения;
см.
Волны.Наибольшее значение П. в. имеет в случае электромагнитных волн оптического диапазона. Подробнее см.
Поляризация света.
Поляризация диэлектриков
Поляриза'ция диэле'ктриков, 1) смещение положительных и отрицательных электрических зарядов в
диэлектриках
в противоположные стороны. П. д. происходит под действием электрического поля или некоторых др. внешних факторов, например механических напряжений в пьезоэлектриках (см.
Пьезоэлектричество
)
.Возможна и спонтанная (самопроизвольная) П. д. у
пироэлектриков,в частности у
сегнетоэлектриков.
2) Электрический дипольный момент единицы объёма диэлектрика.
Поляризация небесного свода
Поляриза'ция небе'сного сво'да, одно из оптических явлений атмосферы, наблюдаемое при безоблачной погоде днём, а также ночью при лунном свете. Заключается в том, что лучистый поток, поступающий на земную поверхность в виде рассеянного толщей воздуха света неба, частично поляризован (см.
Поляризация света
)
.П. н. с. была открыта французским учёным Д. Араго в 1809. Невооружённым глазом она не может быть замечена и обнаруживается при помощи полярископа (см.
Поляризационные приборы
)
.Поляризация в данной точке неба количественно характеризуется прежде всего двумя величинами: степенью поляризации, которая представляет собой отношение полностью поляризованного потока лучистой энергии ко всему потоку, поступающему от данного участка неба, и положением плоскости поляризации, определяемой двугранным углом, составляемым последней с плоскостью
вертикала.Наиболее полно П. н. с. изучена для вертикала, проходящего через Солнце. Максимум степени поляризации, как правило, наблюдается в точке вертикала, отстоящей от солнечного диска на 90°, где доля поляризованных лучей может доходить до 85%, а плоскость поляризации совпадает с плоскостью вертикала. От этой точки П. н. с. уменьшается в обе стороны и достигает нуля в т. н. нейтральных точках неба - точках Араго и Бабине. П. н. с. имеет суточный и годовой ход и зависит от условий погоды, географического положения местности и др. факторов. Свет, рассеиваемый крупными частицами, совсем не поляризован, поэтому даже небольшая облачность сильно снижает П. н. с. Увеличение мутности атмосферы за счёт пыли, дыма, вулканического пепла и тому подобных примесей также влечёт за собой резкое снижение П. н. с., поэтому степень П. н. с. может служить косвенным признаком
прозрачности атмосферы.
Лит.:Соболев В. В., Рассеяние света в атмосферах планет, М., 1972.
Поляризация света
Поляриза'ция све'та, одно из фундаментальных свойств
оптического излучения
(света), состоящее в неравноправии различных направлений в плоскости, перпендикулярной световому лучу (направлению распространения световой волны). П. с. называются также геометрические характеристики, которые отражают особенности этого неравноправия. Впервые понятие о П. с. было введено в оптику И.
Ньютоном
в 1704-06, хотя явления, обусловленные ею, изучались и ранее (открытие
двойного лучепреломления
в кристаллах Э. Бартолином в 1669 и его теоретическое рассмотрение Х.
Гюйгенсом
в 1678-90). Сам термин «П. с.» предложен в 1808 Э.
Малюсом.С его именем и с именами Ж.
Био,О.
Френеля,Д.
Араго,Д.
Брюстера
и др. связано начало широкого исследования эффектов, в основе которых лежит П. с.
Существенное значение для понимания П. с. имело её проявление в эффекте
интерференции света.Именно тот факт, что два световых луча, линейно поляризованных (см. ниже) под прямым углом друг к другу, при простейшей постановке опыта не интерферируют, явился решающим доказательством поперечности световых волн (Френель, Араго, Т.
Юнг,1816-19). П. с. нашла естественное объяснение в электромагнитной теории света Дж. К.
Максвелла
(1865-73) (см.
Оптика
)
.
Поперечность световых волн (как и любых др.
электромагнитных волн
) выражается в том, что колеблющиеся в них векторы
напряжённости электрического поляЕи
напряжённости магнитного поляНперпендикулярны направлению распространения волны.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127
|
|