Большая Советская Энциклопедия (ПО)
ModernLib.Net / Энциклопедии / БСЭ / Большая Советская Энциклопедия (ПО) - Чтение
(стр. 43)
Автор:
|
БСЭ |
Жанр:
|
Энциклопедии |
-
Читать книгу полностью
(4,00 Мб)
- Скачать в формате fb2
(24,00 Мб)
- Скачать в формате doc
(1 Кб)
- Скачать в формате txt
(1 Кб)
- Скачать в формате html
(22,00 Мб)
- Страницы:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127
|
|
Уравнения, связывающие скорость процесса с концентрациями основных компонентов, могут принимать самый разнообразный вид в зависимости от механизма конкретных процессов. Но общий принцип их вывода во всех случаях одинаков и основан на небольшом числе упрощающих допущений. Важнейшим из них является предположение, что реакционная способность растущих цепей не зависит от их длины, если последняя превышает некоторый предел (3-4 звена). Для расчёта процессов, в которых время жизни растущих цепей мало по сравнению с общим временем развития процесса, часто используют т. н. принцип стационарности, т. е. полагают, что концентрация растущих цепей не изменяется во времени или что скорости инициирования и обрыва цепей равны.
П. может быть осуществлена различными способами, отличающимися по агрегатному состоянию полимеризуемой системы. Наиболее распространённые способы: 1) П. жидкого мономера в отсутствие растворителя (полимеризация в массе) или в растворе под действием инициаторов радикальной или ионной природы либо диспергированных или гранулированных твёрдых катализаторов; 2) П. в водных эмульсиях и суспензиях; 3) П. в твёрдой фазе под действием ионизирующего излучения; 4) П. газообразного мономера под действием ионизирующего излучения или на поверхности твёрдого катализатора.
П. была открыта ещё в середине 19 в., практически одновременно с выделением первых способных к П. мономеров (стирола, изопрена, метакриловой кислоты и др.). Однако сущность П. как своеобразного цепного процесса образования истинных химических связей между молекулами мономера была понята лишь в 20-30-е гг. 20 в. благодаря работам С. В.
Лебедева,Г.
Штаудингера,К.
Циглера,Ф. Уитмора (США) и др.
На долю полимеров, получаемых П., приходится около
3/
4их общего мирового выпуска. Промышленность, базирующаяся на синтезе полимеров методом П., - одна из наиболее мощных и, вероятно, наиболее быстро растущая отрасль промышленности органического синтеза. Для современного этапа этой отрасли типично широкое внедрение координационно-ионной П., характеризующейся высокой эффективностью, высокой стереорегулирующей способностью и возможностью гибкого контролирования свойств получаемых продуктов.
Лит.:Энциклопедия полимеров, т. 1-2, М., 1972-74.
А. А. Арест-Якубович.
Полимеризация органов
Полимериза'ция о'рганов, увеличение числа
гомологичных органов
или
органоидов
в процессе эволюции. Понятие П. о. как важного морфо-физиологического принципа в эволюции простейших было обосновано в 1929 В. А.
Догелем.В отличие от многоклеточных, у которых ведущая роль принадлежит
олигомеризации органов,у одноклеточных во всех прогрессивных филогенетических ветвях (инфузории, фораминиферы, радиолярии и некоторые др.) наблюдается увеличение числа органоидов. Одним из проявлений П. о. служит полиэнергидность, т. е. множественность ядер.
Лит.:Полянский Ю. И., Эволюция простейших и морфо-физиологическне закономерности эволюционного процесса, в кн.: Закономерности прогрессивной эволюции, Л., 1972; Dogiel V., Polymerisation als ein Prinzip der progressiven Entwicklung bei Protozoen, «Biologisches Zentralblatt», 1929, Bd 49, S. 451-69.
Полимерия
Полимери'я, полигения, обусловленность одного сложного признака многими неаллельными
генами,действие которых суммируется в признаке. Такие гены называются полигенами. В условиях неоднородной внешней среды П. приводит к непрерывной, или количественной, изменчивости признака в популяции. Большинство признаков относится к количественным, например размеры и вес особей, их окраска, иногда устойчивость к заболеваниям, многие хозяйственные полезные признаки с.-х. животных (удой и жирномолочность у коров, настриг и окраска шерсти у овец, яйценоскость и размеры яиц у кур и т.д.). П. была открыта в 1909 шведским учёным Г. Нильсоном-Эле, изучавшим наследование окраски зёрен у пшеницы путём анализа расщеплений этого признака. Однако возможности классического менделевского подхода (см.
Менделизм
) к изучению П. крайне ограничены ввиду того, что по изучаемому количественному признаку особи не удаётся разделить на четко различимые типы. Изучение количественных признаков основано на статистических методах (см.
Наследуемость
)
.Теория П., объяснив закономерности наследования количественных признаков, внесла вклад в теорию эволюции и приобрела важное значение в селекции растений и животных.
Лит.:Рокицкий П. Ф., Введение в статистическую генетику, Минск, 1974; Kempthorne О., An introduction to genetic statistics, N. Y. - L., 1957; Mather K., Jinks J. L., Biometrical genetics. Study of continious variation, 2 ed., L., 1971.
Л. А. Животовский.
Полимеров ориентированное состояние
Полиме'ров ориенти'рованное состоя'ние, состояние тел из линейных
полимеров,в котором длинные цепные молекулы, составляющие эти тела, имеют преимущественное расположение своих осей вдоль некоторых направлений. Простейший и наиболее часто встречающийся на практике вид ориентации - одноосная ориентация (например, в волокнах).
Существует 2 основных способа получения одноосно ориентированных полимерных тел: ориентационная вытяжка (зажатое с двух концов тело растягивается, причём степень растяжения может варьировать от нескольких десятков до тысяч процентов); синтез полимера в таких условиях, при которых сразу же образуется тело с ориентированной структурой (например, при твёрдофазной
полимеризации,когда мономер находится в виде монокристалла, или при полимеризации жидкого полярного мономера в постоянном электрическом поле).
Для одноосно ориентированных полимеров характерна высокая прочность при растяжении в сочетании со способностью обратимо растягиваться в направлении оси ориентации. Эти свойства реализуются главным образом в кристаллизующихся полимерах (например, в полиолефинах), которые применяют в виде волокон и плёнок.
Помимо «искусственно» ориентированных полимеров, широко распространены биологические одноосно ориентированные полимерные объекты (растительные волокна, паутина, шёлковые нити, волосы, сухожилия, мышечная ткань и др.).
Полимеры
Полиме'ры(от греч. polymeres - состоящий из многих частей, многообразный), химические соединения с высокой молекулярной массой (от нескольких тысяч до многих миллионов), молекулы которых (
макромолекулы
) состоят из большого числа повторяющихся группировок (мономерных звеньев). Атомы, входящие в состав макромолекул, соединены друг с другом силами главных и (или) координационных валентностей.
Классификация. По происхождению П. делятся на природные (
биополимеры
)
,например
белки,
нуклеиновые кислоты,
смолы природные,и синтетические, например
полиэтилен,
полипропилен,
феноло-формальдегидные смолы.Атомы или атомные группы могут располагаться в макромолекуле в виде: открытой цепи или вытянутой в линию последовательности циклов (линейные П., например
каучук натуральный
)
;цепи с разветвлением (разветвленные П., например
амилопектин
)
;трёхмерной сетки (сшитые П., например отверждённые
эпоксидные смолы
)
.П., молекулы которых состоят из одинаковых мономерных звеньев, называются гомополимерами, например
поливинилхлорид,
поликапроамид,
целлюлоза.
Макромолекулы одного и того же химического состава могут быть построены из звеньев различной пространственной конфигурации. Если макромолекулы состоят из одинаковых стереоизомеров или из различных стереоизомеров, чередующихся в цепи в определённой периодичности, П. называются стереорегулярными (см.
Стереорегулярные полимеры
)
.
П., макромолекулы которых содержат несколько типов мономерных звеньев, называются сополимерами. Сополимеры, в которых звенья каждого типа образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах макромолекулы, называются блоксополимерами. К внутренним (неконцевым) звеньям макромолекулы одного химического строения могут быть присоединены одна или несколько цепей другого строения. Такие сополимеры называются привитыми (см. также
Сополимеры
)
.
П., в которых каждый или некоторые стереоизомеры звена образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах одной макромолекулы, называются стереоблоксополимерами.
В зависимости от состава основной (главной) цепи П. делят на: гетероцепные, в основной цепи которых содержатся атомы различных элементов, чаще всего углерода, азота, кремния, фосфора, и гомоцепные, основные цепи которых построены из одинаковых атомов. Из гомоцепных П. наиболее распространены карбоцепные П., главные цепи которых состоят только из атомов углерода, например полиэтилен,
полиметилметакрилат,
политетрафторэтилен.Примеры гетероцепных П. - полиэфиры (
полиэтилентерефталат,
поликарбонатыи др.),
полиамиды,
мочевино-формальдегидные смолы,белки, некоторые
кремнийорганические полимеры.П., макромолекулы которых наряду с углеводородными группами содержат атомы неорганогенных элементов, называются элементоорганическими (см.
Элементоорганические полимеры
)
.Отдельную группу П. образуют неорганические полимеры, например пластическая сера, полифосфонитрилхлорид (см.
Неорганические полимеры
)
.
Свойства и важнейшие характеристики. Линейные П. обладают специфическим комплексом физико-химических и механических свойств. Важнейшие из этих свойств: способность образовывать высокопрочные анизотропные высокоориентированные волокна и плёнки (см.
Полимеров ориентированное состояние
)
;способность к большим, длительно развивающимся обратимым деформациям (см.
Высокоэластическое состояние
)
;способность в высокоэластическом состоянии набухать перед растворением; высокая вязкость растворов (см.
Растворы полимеров,
Набухание)
.Этот комплекс свойств обусловлен высокой молекулярной массой, цепным строением, а также гибкостью макромолекул. При переходе от линейных цепей к разветвленным, редким трёхмерным сеткам и, наконец, к густым сетчатым структурам этот комплекс свойств становится всё менее выраженным. Сильно сшитые П. нерастворимы, неплавки и неспособны к высокоэластическим деформациям.
П. могут существовать в кристаллическом и аморфном состояниях. Необходимое условие кристаллизации - регулярность достаточно длинных участков макромолекулы. В кристаллических П. возможно возникновение разнообразных
надмолекулярных структур
(фибрилл, сферолитов, монокристаллов и др.), тип которых во многом определяет свойства полимерного материала. Надмолекулярные структуры в незакристаллизованных (аморфных) П. менее выражены, чем в кристаллических.
Незакристаллизованные П. могут находиться в трёх физических состояниях: стеклообразном, высокоэластическом и вязкотекучем. П. с низкой (ниже комнатной) температурой перехода из стеклообразного в высокоэластическое состояние называются эластомерами, с высокой - пластиками. В зависимости от химического состава, строения и взаимного расположения макромолекул свойства П. могут меняться в очень широких пределах. Так, 1,4
-цис-полибутадиен, построенный из гибких углеводородных цепей, при температуре около 20 °С - эластичный материал, который при температуре - 60 °С переходит в стеклообразное состояние; полиметилметакрилат, построенный из более жёстких цепей, при температуре около 20 °С - твёрдый стеклообразный продукт, переходящий в высокоэластическое состояние лишь при 100 °С. Целлюлоза - полимер с очень жёсткими цепями, соединёнными межмолекулярными водородными связями, вообще не может существовать в высокоэластическое состоянии до температуры её разложения. Большие различия в свойствах П. могут наблюдаться даже в том случае, если различия в строении макромолекул на первый взгляд и невелики. Так, стереорегулярный
полистирол-кристаллическое вещество с температурой плавления около 235 °С, а нестереорегулярный (атактический) вообще не способен кристаллизоваться и размягчается при температуре около 80 °С.
П. могут вступать в следующие основные типы реакций: образование химических связей между макромолекулами (т. н. сшивание), например при
вулканизации
каучуков,
дублении кожи;распад макромолекул на отдельные, более короткие фрагменты (см.
Деструкция полимеров
)
;реакции боковых функциональных групп П. с низкомолекулярными веществами, не затрагивающие основную цепь (т. н. полимераналогичные превращения); внутримолекулярные реакции, протекающие между функциональными группами одной макромолекулы, например внутримолекулярная циклизация. Сшивание часто протекает одновременно с деструкцией. Примером полимераналогичных превращений может служить омыление
поливинилацетата,приводящее к образованию
поливинилового спирта.Скорость реакций П. с низкомолекулярными веществами часто лимитируется скоростью диффузии последних в фазу П. Наиболее явно это проявляется в случае сшитых П. Скорость взаимодействия макромолекул с низкомолекулярными веществами часто существенно зависит от природы и расположения соседних звеньев относительно реагирующего звена. Это же относится и к внутримолекулярным реакциям между функциональными группами, принадлежащими одной цепи.
Некоторые свойства П., например растворимость, способность к вязкому течению, стабильность, очень чувствительны к действию небольших количеств примесей или добавок, реагирующих с макромолекулами. Так, чтобы превратить линейный П. из растворимого в полностью нерастворимый, достаточно образовать на одну макромолекулу 1-2 поперечные связи.
Важнейшие характеристики П. - химический состав,
молекулярная масса
и молекулярно-массовое распределение, степень разветвлённости и гибкости макромолекул, стереорегулярность и др. Свойства П. существенно зависят от этих характеристик.
Получение. Природные П. образуются в процессе
биосинтеза
в клетках живых организмов. С помощью экстракции, фракционного осаждения и др. методов они могут быть выделены из растительного и животного сырья. Синтетические П. получают
полимеризацией
и
поликонденсацией.Карбоцепные П. обычно синтезируют полимеризацией мономеров с одной или несколькими кратными углерод-углеродными связями или мономеров, содержащих неустойчивые карбоциклические группировки (например, из циклопропана и его производных). Гетероцепные П. получают поликонденсацией, а также полимеризацией мономеров, содержащих кратные связи углерод-элемент (например, С = О, С є N, N = С = О) или непрочные гетероциклические группировки (например, в окисях олефинов, лактамах).
Применение. Благодаря механической прочности, эластичности, электроизоляционным и др. ценным свойствам изделия из П. применяют в различных отраслях промышленности и в быту. Основные типы полимерных материалов -
пластические массы,
резины,волокна (см.
Волокна текстильные,
Волокна химические)
,
лаки,
краски,
клеи,
ионообменные смолы.Значение биополимеров определяется тем, что они составляют основу всех живых организмов и участвуют практически во всех процессах жизнедеятельности.
Историческая справка. Термин «полимерия» был введён в науку И.
Берцелиусом
в 1833 для обозначения особого вида изомерии, при которой вещества (полимеры), имеющие одинаковый состав, обладают различной молекулярной массой, например этилен и бутилен, кислород и озон. Т. о., содержание термина не соответствовало современным представлениям о П. «Истинные» синтетические полимеры к тому времени ещё не были известны.
Ряд П. был, по-видимому, получен ещё в 1-й половине 19 в. Однако химики тогда обычно пытались подавить полимеризацию и поликонденсацию, которые вели к «осмолению» продуктов основной химической реакции, т. е., собственно, к образованию П. (до сих пор П. часто называли «смолами»). Первые упоминания о синтетических П. относятся к 1838 (
поливинилиденхлорид
) и 1839 (полистирол).
Химия П. возникла только в связи с созданием А. М.
Бутлеровым
теории химического строения (начало 60-х гг. 19 в.). А. М. Бутлеров изучал связь между строением и относительной устойчивостью молекул, проявляющейся в реакциях полимеризации. Дальнейшее своё развитие (до конца 20-х гг. 20 в.) наука о П. получила главным образом благодаря интенсивным поискам способов синтеза каучука, в которых участвовали крупнейшие учёные многих стран (Г.
Бушарда,У.
Тилден,нем. учёный К. Гарриес, И. Л.
Кондаков,С. В.
Лебедев
и др.). В 30-х гг. было доказано существование свободнорадикального (Г.
Штаудингер
и др.) и ионного (американский учёный Ф. Уитмор и др.) механизмов полимеризации. Большую роль в развитии представлений о поликонденсации сыграли работы У.
Карозерса.
С начала 20-х гг. 20 в. развиваются также теоретические представления о строении П. Вначале предполагалось, что такие биополимеры, как целлюлоза, крахмал, каучук, белки, а также некоторые синтетические П., сходные с ними по свойствам (например, полиизопрен), состоят из малых молекул, обладающих необычной способностью ассоциировать в растворе в комплексы коллоидной природы благодаря нековалентным связям (теория «малых блоков»). Автором принципиально нового представления о полимерах как о веществах, состоящих из макромолекул, частиц необычайно большой молекулярной массы, был Г. Штаудингер. Победа идей этого учёного (к началу 40-х гг. 20 в.) заставила рассматривать П. как качественно новый объект исследования химии и физики.
Лит.:Энциклопедия полимеров, т. 1-2, М., 1972-74; Стрепихеев А. А., Деревицкая В. А., Слонимский Г. Л., Основы химии высокомолекулярных соединений, 2 изд., [М., 1967]; Лосев И. П., Тростянская Е. Б., Химия синтетических полимеров, 2 изд., М., 1964; Коршак В. В., Общие методы синтеза высокомолекулярных соединений, М., 1953; Каргин В. А., Слонимский Г. Л., Краткие очерки по физике-химии полимеров, 2 изд., М., 1967; Оудиан Дж., Основы химии полимеров, пер. с англ., М., 1974; Тагер А. А., физико-химия полимеров, 2 изд., М., 1968; Тенфорд Ч., физическая химия полимеров, пер. с англ., М., 1965.
В. А. Кабанов.
Полиметаллические руды
Полиметалли'ческие ру'ды(от
поли...
и
металлы
)
,комплексные
руды,в которых главными ценными компонентами являются свинец и цинк, попутными - медь, золото, серебро, кадмий, иногда висмут, олово, индий и галлий. В некоторых П. р. промышленная ценность представляют барит, флюорит и сера, связанная с сульфидными минералами. Главными рудными минералами П. р. являются
галенит
PbS,
сфалерит
ZnS, часто присутствуют
пирит
FeS
2,
халькопирит
CuFeS
2. иногда
блёклые руды,
арсенопиритFeAsS и
касситерит
SnO
2. Медь входит в состав П. р. обычно в виде халькопирита. Серебро и висмут связаны часто с галенитом. Золото в П. р. находится в свободном состоянии или в виде тонкой примеси в пирите и халькопирите. Кадмий содержится преимущественно в сфалерите. Содержания основных ценных компонентов в промышленных месторождениях П. р. колеблются от нескольких до 10% и более. В зависимости от экономических и горнотехнических условий, а также содержаний полезных компонентов промышленное значение могут иметь месторождения П. р. с небольшими суммарными запасами (100-200 тыс.
т,в пересчёте на металл), средними (200-500 тыс.
т) или крупными (свыше 1 млн.
т)
.Среди крупнейших месторождений П. р. наиболее известны: в Канаде - Пайн-Пойнт (13 млн.
т) и Салливан (8 млн.
т)
,в Австралии - Брокен-Хилл (около 6 млн.
т)
;в последнем содержание Pb составляет 11-13%, Zn 10-13%, Ag 80-230
г/т(данные на начало 1970-х гг.).
П. р. (первичные) формировались в различные геологические эпохи (от докембрия до кайнозоя) путём кристаллизации из гидротермальных растворов. Большей частью они приурочены к геосинклинальным прогибам, наложенным на срединные массивы и, как правило, залегают среди вулканогенных пород кислого состава. При отсутствии заметных количеств меди П. р. обычно локализуются в геоантиклинальных поднятиях, среди карбонатных пород. Породы, вмещающие П. р., обычно интенсивно изменены гидротермальными процессами -
хлоритизацией,
серицитизациейи окварцеванием. Кроме гидротермальных месторождений, некоторое значение имеют также окисленные (вторичные) П. р., образующиеся в результате процессов выветривания приповерхностных частей рудных тел (до глубины 100-200
м)
;они обычно представлены гидроокислами железа, содержащими церуссит PbCO
3, англезит PbSO
4, смитсонит ZnCO
3, каламин Zn
4[Si
2O
7][OH]
2ЧH
2O, малахит Cu
2[CO
3](OH)
2, азурит Cu
3[CO
3]
2(OH)
2. В зависимости от концентрации рудных минералов различают сплошные или вкрапленные П. р. Рудные тела П. р. отличаются разнообразием размеров, имея длину от нескольких
мдо
км,морфологии (пластообразные и линзообразные залежи, штоки, жилы, гнёзда, сложные трубообразные тела) и условий залегания (пологие, крутые, согласные, секущие и т.д.).
Месторождения П. р. разрабатываются подземным и открытым способами, причём удельный вес открытых разработок с каждым годом возрастает и составляет около 30%.
При переработке П. р. получают два основных вида концентратов, содержащих соответственно 40-70% Pb и 40-60% Zn и Cu. В процессе механического обогащения серебро уходит в свинцовый концентрат. При металлургическом переделе, кроме основных, извлекаются остальные (попутные) компоненты.
Месторождения П. р. известны в СССР на Рудном Алтае, в Центральном Казахстане, Восточной Сибири, Средней Азии, Северном Кавказе, Западной Сибири и Приморском крае.
Общие запасы свинца и цинка капиталистических и развивающихся стран оцениваются соответственно в 103 млн.
ти 172 млн.
т(1973). В 1972 в этих странах было добыто около 2,5 млн.
тсвинца и 4,2 млн.
тцинка. Примерно 80% указанных запасов и 70% добычи приходится на США, Канаду, Австралию, Перу, Японию, ФРГ и Испанию. Около 45% добываемого в капиталистическом мире серебра (1973) получают попутно из П. р. (Канада, США, Перу, Мексика, Австралия и Япония).
Лит.:Смирнов В. И., Геология полезных ископаемых, М., 1969; Обзор минеральных ресурсов стран капиталистического мира (капиталистических и развивающихся стран), М., 1974.
Д. И. Горжевский, И. Д. Коган.
Полиметиленовые углеводороды
Полиметиле'новые углеводоро'ды,то же, что
циклоалканы.
Полиметилметакрилат
Полиметилметакрила'т,
,
линейный термопластичный полимер
метилметакрилата.Основной технический продукт известен как
стекло органическое.П. (молекулярная масса до 2Ч10
6) исключительно прозрачен, обладает высокой проницаемостью для лучей видимого и УФ-света, хорошими физико-механическими и электроизоляционными свойствами, атмосферостоек, устойчив к действию разбавленных кислот и щелочей, воды, спиртов, жиров и минеральных масел; физиологически безвреден и стоек к биологическим средам; размягчается при температуре несколько выше 120 °С и легко перерабатывается.
В промышленности П. получают свободнорадикальной
полимеризацией
мономера главным образом в массе (блоке) и суспензии, реже - в эмульсии и растворе. П. выпускают в основном в виде листов и гранулированных материалов, предназначенных для переработки литьём под давлением или экструзией (см.
Пластические массы
)
.П. используется в транспортном машиностроении, авиационной и светотехнической промышленности, строительстве и архитектуре, приборостроении, для изготовления вывесок и реклам, бытовых изделий и др.
Суспензионный П. производится в СССР (различных марок), США (люсайт), Великобритании (диакон), ФРГ (плексигум), Италии (ведрил).
Фирменные названия блочного полиметилметакрилата, выпускаемого в виде листов, приведены в статье
Стекло органическое.
Мировое производство полиметилметакрилата в 1973 составило около 750 тыс.
т.
Лит.см. при ст.
Полимеры.
Е. М. Лунина.
Полиметиновые красители
Полимети'новые краси'тели, органические соединения, содержащие цепь из нечётного числа метиновых групп =СН- с сопряжёнными двойными связями, общей формулы Х (CH=CH)
nCH=Y (где Х и Y - группы с атомами N, О или S;
n= 1-5); часть метиновых групп обычно входит в гетероциклы или ароматические остатки. П. к. прочны, имеют яркие и интенсивные цвета. Они повышают светочувствительность бромида серебра (см.
Сенсибилизирующие красители
) и широко используются в фотографии. Многие катионные П. к. (см.
Основные красители
)
применяют также в крашении полиакрилонитрильных волокон. Один из простейших П. к. для фотографии имеет следующее строение:
Лит.:Чекалин М. А., Пессет Б. В., Иоффе Б. А., Технология органических красителей и промежуточных продуктов, Л., 1972.
М. А. Чекалин.
Полиметрия (в музыке)
Полиметри'яв музыке, сочетание в одновременности двух и более
метров.П. как соединение по вертикали двух-трёх различных тактовых размеров изредка встречалась в 18-19 вв., чаще - в 20 в. Пример - сочетание трёх танцев в сцене бала из оперы Моцарта «Дон Жуан»:
П. как сочетание по вертикали мотивов в различных метрах, записанных в нотах с общей тактовой чертой (мотивная П.), типична для И. Ф. Стравинского.
В. Н. Холопова.
Рис. к ст. Полиметрия.
Полиметрия (в стихосложении)
Полиметри'я(от
поли...
и греч. mйtron - мера, размер) в стихосложении, применение различных
размеров стихотворных
внутри одного произведения. Известна с античных [времён; в новое время была особенно употребительна в поэзии барокко, романтизма и 20 в. Обычно применяется в больших произведениях (поэмах), где размер выдерживается в одном тематически цельном куске и меняется с переходом к другому («Современники» Н. А. Некрасова, «Двенадцать» А. А. Блока), реже - в мелких стихотворениях (например, у В. В. Маяковского, В. Хлебникова и др.).
Полимиксины
Полимикси'ны,группа антибиотиков полипептидной природы (ацилциклопептиды), образуемых некоторыми штаммами бацилл (главным образом Bacillus polymyxa). Молекулы большинства П. содержат остатки треонина, лейцина, a, g-диаминомасляной и 6-метилоктановой кислот. П. активны лишь в отношении грамотрицательных бактерий - синегнойной палочки, возбудителя дизентерии, кишечной палочки, сальмонелл, клебсиелл. Механизм антимикробного действия П. связан с повреждением мембраны бактериальной клетки. П. различаются характером и интенсивностью побочных (преимущественно нейро- и нефротоксических) реакций, ограничивающих использование П. В медицинской практике применяют полимиксины В, М и Е (колистин).
Полиморфизм (в биологии)
Полиморфи'змв биологии, наличие в пределах одного
вида
резко отличных по облику особей, не имеющих переходных форм. Если таких форм две, явление называется
диморфизмом
(частный случай -
половой диморфизм
)
.П. включает различие внешнего облика особей из одной или разных
популяций.П. в пределах генетически однородной популяции известен для колоний многих
гидроидов,у которых на одном столоне могут развиваться гидранты разного строения (например, трофозоиды, дактилозоиды и акантозоиды - у полипов Podocoryne). Имеющие совершенно различный облик полипы и медузы одного вида - пример П., связанного с
чередованием поколений.Такого же типа П. ржавчинных грибов, у которых плодовые тела и споры, развивающиеся на разных хозяевах, резко отличны по облику и по физиологическим особенностям. Такой П., как и многообразие личиночных форм одного вида, например у дигенетических сосальщиков, называется плейоморфозом. П. у раздельнополых животных - наличие особей разного облика в пределах хотя бы одного пола (например, у тлей самки, а у некоторых кокцид самцы бывают крылаты и бескрылы). Для общественных насекомых характерен П., связанный с разделением функций разных особей в семье или колонии (матка и рабочие особи у медоносных пчёл; матки и разные формы «рабочих», а также «солдаты» у муравьев и термитов). К такому же роду П. можно отнести сезонный П., а также связанные с плотностью популяции различия в окраске, пропорциях тела и в поведении у саранчовых (фазовая изменчивость) и гусениц некоторых бабочек. См. также
Генетический полиморфизм,
Модификации.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127
|
|