Современная электронная библиотека ModernLib.Net

Физические эффекты и явления

ModernLib.Net / Неизвестен Автор / Физические эффекты и явления - Чтение (стр. 6)
Автор: Неизвестен Автор
Жанр:

 

 


      А.с. 175 265: Резонасный датчик уровня сжижения газов, содержащий колебательный контур, выполненный ввиде стержней с укрепленными токопроводящими элементами, отличающийся тем, что с целью повышения точности измерения, стержни настроены на различные резонансные частоты и расположены относительно друг друга на расстоянии, позволяющем образовать электрическую емкость, достаточную для возбуждения одного из стержней.
      А.с. 271 051: Способ измерения массы вещества в резервуаре, например, жидкого, отличающийся тем, что с целью повышения точности и надежности измерения возбуждают механические резонансные колебания системы резервуар - вещество, измеряют их частоту, по величине которой судят о массе вещества.
      А.с. 275 514: Способ определения химической стойкости пористого материала к воздействию агреесивных сред, отличающийся тем, что с целью повышения точности определения, образец подвергают воздействию механических колебаний, замеряют резонансную частоту его собственных колебаний, затем помещают в агрессивную средуи выдерживают необходимое время, зависящее от материала образца, после чего извлекают, промывают, сушат, снова подвергают воздействию механических колебаний с замером резонансной частоты собственных колебаний, и, по изменению упругих свойств, например, модуля упругости, вычисленного на основании замеренных величин резонансной частоты собственных колебаний образца, определяют его химическую стойкость.
      А.с. 509 798: Способ испытания конструкций без разрушения материалов, заключающийся в том, что в элементе конструкции возбуждают колебания на его собственной частоте и увеличивают эту частоту при определении усилий, отличающийся тем, что с целью повышения точности, длину колеблющейся части элемента ограничивают положением дополнительных механических связей, после чего измеряют собственную частоту элемента под этой нагрузкой, и, сравнивая эти частоты, судят о величине начальных усилий.
      А.с. 519 239: Способ обнаружения налипания металлов в калибрах валков чистовой клети при прокатке, например, арматурной стали, включающей измерения амплитудно частотных характеристик процесса и сравнения их с эталонными, отличающийся тем, что с целью упрощения и повышения надености способа, контролируют колебания раската в вертикальной плоскости на выходе из чистовой клети, из сп выделяют составляющую колебаний полосы с частотой вращения валка и судят о налипании металла по трех-четырех кратному увеличению амплитуды выделенной составляющей колебаний.
      5.1.4. А в т о к о л е б а н и я - незатухающие колебания, которые осуществляются в неконсервативной системе при отсутствии переменного внешнего воздействия /за счет внутреннего источника энергии/, причем амплитуда и период этих колебаний определяются свойствамисамой системы. Классический пример автоколебательной системы - маятниковые часы. Как правило, автоколебательные системы склонны к самовозбуждению.
      А.с. 267 993: Способ определения сроков схватываниябетонн по изменению колебаний натянутой струны, помещенной в исследуемую смесь, отличающийся тем, что с целью автоматизации процесса определения возбуждают в струне электромагнитные колебания и измеряют интервал времени от момента затвердения смеси до момента самовозбуждения струны.
      А.с. 279 214: Способ измерения ускорения путем определения изменения анодного тока в газоразрядной трубке с плазменным шнуром, отличающийся тем, что с целью получения частотного выходного сигнала, в газоразрядной трубке создают неоднороное электрическое поле, вызывающее изменение частоты автоколебаний плазменного шнура при его смещении под действием ускорения относительно электродов, и по частоте колебаний судят о контролируемой величине.
      5.2. Акустика.
      Одним из широко известных колебательных движений является звук - продольные колебания частичек среды, в которых распространяется звуковая волна.
      Акустические /звуковые/ колебания, как и механические колебания, часто используют для интенсификации различных технологических процессов.
      А.с. 442 287: Способ разработки газогидратной залежием превращения газа из твердого /газогидратного/ состояния в газообразное в пласте, отличающийся тем, что с целью повышения эффективности разработки залежи, пласт подвергают воздействию упрцгих колебаний звукового диапозона.
      А.с. 500 817: Способ очистки изделий в жидкости, например, материалов типа лент, при котором на изделие воздействуют движущимися относительно его механичекими очистными средствами, преимущественно щетками и акустическим полем, отличающийся тем, что с целью интенсификации процесса очистки и снижения его энергоемкости акустическое и механическое воздействие на изделие совмещают, для чего механические средства очистки располагают в акустическом поле.
      А.с. 553 419: Способ чистки термочувствительных материалов, например микробных препаратов, путем их предварительного нагрева во взвешенном состоянии, отлежки и последующего охлаждения, отличающийся тем, что с целью интенсификации и повышения качества сушки, охлаждение материала ведут в среде псевдоожиженного сорбента под воздействиемзвукового поля.
      А.с. 553 791: Способ сепарации взвешенных частиц путем воздействия на них акустическими колебаниями, отличающийся тем, что с целью сепарации частиц размерами меньше 0,5 мкм и разделения частиц одинаковых размеров различной плотности, акустические колебания генерируют в виде импульсов с периодом, меньшим времени релаксации сепарируемой частицы и длительностью возрастающей от 0,1 до 1 времени периода следования импульсов.
      Акустические колебания различной частоты по разному воздействуют на животных.
      На основе этого в США /патент N 557 889 / разработаны устройство и способ, предназначенные для разгона животных. С этой целью мозг животных подвергается действию раздражающих колебаний со спектром, лежащим в звуковом диапозоне частот, представляющий собой совокупность многочисленных колебаний, успокаивающих мозг животных. Раздражающие колебания действуют на мозг животного одновременно с успокаивающими колебан при этом осуществляется модуляция раздражающих колебаний успокаивающими.
      Характер звуковых колебаний зависит от свойства источника звука, поэтому, измеряя различные характеристики звуковых колебаний, можно установить характеристики источника звука.
      А.с. 257 084: Способ определения рассовой принадлежности пчел, отличающийся тем, что с целью определения рассы на живых пчелах, сокращение затрат времени и труда и получение более точных данных, рассовую принадлежность определяют по спектральной характеристике издаваемых пчелами звуков, которую сравнивают со стандартными спекторами, полученными на пчелах заведомо чистых расс.
      А зная характеристики звуковой волны, можно по ее изменению при прохождении различных сред установить параметры среды.
      В США разработан автоматический прибор, сортирующий при помощи звука яблоки, так как установлено, что зрелые, незрелые и перезрелые яблоки оказывают различное сопротивление проходящим сквозь них звуковым волнам разных частот.
      Звук распространяется в воздухе с определнной скоростью. Если в какой-то определнной системе координат возникает звуковой импульс, то по времени прохождения его к осям координат, которое может быть зафиксировано приемниками звука, можно определить координаты источника звука. Такой путь и избрали в институте Кибернетики АН БССР.
      При использовании ЭВМ в качестве автоматического проектировщика необходимо вводить в нее графическую информацию. С этой целью графическая информация предоставляется ввиде набора различных кривых, координаты которых вводятся с помощью миниаторной искры, возникающей при соприкосновении специального звукового карандаша (Электроакустического преобразователя) с любой из точек чертежа, звук который достигает системы координатных микрофонов, расположенных по краям чертежа. Одна система выдает координату по Х, другая по У.
      5.2.1. При подходе к приграде акустические волны отражаются (эхо). Поэтому, если в закрытом помещении включить и сразу выключить источник звука, то возникает явление р е в е р б е р а ц и и т.е. послезвучание,обусловленное приходом в определенную точку запоздавших отраженных или рассеянных звуковых волн.
      Измеряя время реверберации (время в течении которого интенсивность звука уменьшается в 1000000 раз) можно определить обьем свободного помещения.
      А.с. 346 588: Акустический способ определения количества вещества в замкнутом сосуде, отличающийся тем, что с целью упрощения, в свободном пространстве сосуда создают акустический импульс и измеряют время реверберации, по которому судят о количестве вещества.
      5.3. У л ь т р а з в у к.
      Ультразвук - продольные колебания в газах, жидкостях и твердых телах в диапозоне частота 20.10 в третьей степени Гц. Применение ультразвука связано в основном с двумя его характерными особенностями: лучевым распространением и большой плотностью энергии.
      Из-за малой длины волны распространение ультразвуковых волн с сопровождающими эффектами:
      отражением
      Патент США 3554 030: Расписан расходомер, используемый для измерения и регистрации величины обьемного расхода крови. Измерения производятся при помощи ультразвукового преобразователя, который применяется как для излучения, так и приема ультразвуковых волн. Отраженные сигналы, принимаемые преобразователем позволяют определить размер поперечного сечения кровеносного сосуда, а также скорость движения крови в сосуде. Измеренные параметры дают возможность получить расчетным путем величину обьемного расхода крови.
      фокусировкой
      А.с. 183 574: Способ газовой сварки и резки, заключающийся в использовании тепла пламени горючей смеси, отличающийся тем,что с целью повышения производительности процесса, в газовую горючую смесь вводят ультразвуковые колебания, фокусируемые в зоне сварного шва или реза.
      образование теней (ультразвуковая дефектоскопия);
      Большая частота ультразвука позволяет сравнительно легко создавать ультразвуковые пучки с большой плотностью энергии, рапространение которых в жидких и твердых телах сопровождается рядом эффектов, часто приводящих к необратимым явлениям. Эти эффекты - радиационное давление (избыточное давление испытуемое препятствием вследствии воздействия на него ультразвуковой волны и определяемое импульсом, передаваемом волной в единицу времени единице поверхности препятствия), акустическая кавитация (см. раздел 4.8) и акустические потоки, носящие вихревой характер и возникающие в свободном неоднородном поле и вблизи препятствий, находящихся в ультразвуковом поле.
      5.3. Пластическая деформация и упрочнение.
      Воздействие ультразвука на процесс пластической деформации обусловлено влиянием его на контактные условия, свойства и структуру деформируемого металла. В этом случае возможны два нелинейных эффекта: "акустическое разупрочнение" и "акустическое упрочнение". Первый наблюдается в процессе воздействия интенсивным ультразвуком и заключается в уменьшении статического напряжения, необходимого для осуществления пластической деформации. Акустическое упрочение металлов достигается после воздействия ультразвуковых волн достаточно высокой интенсивности. Акустическое разупрочнение является результатом активации дислокаций, происходящей в результате поглощения акустической энергии в местах дефектов кристаллической решетки и других структурных несовершенств. Благодаря этому за малое время происходит локальный нагрев вокруг этих источников поглощения, снятие напряжений, разблокировка дислокаций, увеличение их подвижности, что обеспечивает более интенсивный ход платической деформации.
      А.с. 436 750: Способ разбортовки полых изделий из пластических масс путем двустороннего обжатия роликами стенки изделия при его вращении, отличающийся тем, что с целью повышения производительности процесса, область контакта стенки изделия с роликами подвергают воздействию ультразвуковых колебаний.
      А.с. 536 874: Способ профилирования материала типа пруткового путем наложения на заготовку ультразвуковых колебаний в ее пластической деформации, отличающийся тем, что с целью получения на заготовках периодического профиля синусоидального характера, заготовку предварительно подвергают воз ультразвуковых колебаний так, чтобы расположение пучностей и узлов ультразвуковой волны соответствовало выступам и впадинам заданного периодического профиля, после чего осуществляют процесс пластического деформирования заготовки в осевом направлении, перпендикулярном к направлению действия изгибных колебаний, растягивающими усилиями, достаточными для получения заданной глубины профиля.
      Если валики прокатного стана колебать в направлении параллельном осям их вращения, с ультразвуковой частотой, то усилие деформации снижается в 1,5-2 раза, а степень деформации увеличивается на 20-50 %, причем контактное трение резко снижается.
      При достижении определенного уровня акустической энергии, зависящего от свойства облучаемого металла, последний может пластически деформироваться при комнатной температуре без приложения внешней нагрузки.
      5.3.2. Под действием ультразвукав и з м е н я ю т с я о с н о в н ы е ф и з и к о-х и м и ч е с к и е с в о й с т в а р а с п л а в о в: вязкость, поверхностное натяжение на границе "расплав - форма" или "расплав - твердая фаза", температура и диффузия.
      5.3.2.1. В я з к о с т ь, после ультразвуковой обработки расплава вязкость уменьшается на 10-50 %, причем характер изменения вязкости не позволяет считать, что уменьшение вязкости вызывается только тепловым воздействием ультразвука, посколько на ряду с тепловым воздействием наблюдаются и другие эффекты, например, изменение трения между твердыми нерастворимыми примесями, находящихся в расплаве.
      5.3.2.2. П о в е р х н о с т н о е н а т я ж е н и е. Воздействие ультразвука на расплав в процессе кристализации уменьшает поверхностное натяжение между расплавом и кристаллом при двухфазном состоянии, за счет чего уменьшается переохлаждение расплавов и увеличивается количество кристаллических зародышей, а структура расплава получается более мелкозернистой.
      5.3.2.3. Т е м п е р а т у р а. Ультразвуковая обработка металлов в жидком состоянии и во время кристаллизации приводит к изменению характера температурного поля. Возникновение акустических потоков в расплаве под действием ультразвука связано с потерей энергии в расплаве. Эти потери зависят от интенсивности ультразвука и акустических свойств среды. Акустические потоки вызывают интенсивное перемешивание расплава, выравнивание температуры и интенсификацию конвективной диффузии. При выравнивании температуры расплава увеличивается теплообмен со стенками и окружающей средой, в результате чего увеличивается скорость охлаждения, физическая сущность влияния ультразвука на теплообмен при естественной или вынужденной конвекции заключается в проникновении акустических потоков в пограничный и ламинарный подслой, что приводит к деформации этих слоев, их турбулизации и перемешиванию. В результате этого в несколько раз увеличивается коэффициент теплопередачи и скорость теплообмена.
      5.3.2.4. Д и ф ф у з и я.
      Ультразвук ускоряет диффузионные процессы в металлических расплавах и на границе с твердой фазой. В этом случае под действием ультразвука происходит более легкое перемещение атомов из одного устойчивого состояния в другое благодаря образованию кавитационных пузырьков. При этом необходимо учитывать влияние вторичных эффектов акустических потоков, повышение температуры, акустического давления, вызывающих турбулентное перемещение и разрушение пограничного слоя между жидкой и твердой фазой при ускорении диффузии на границе жидкость твердое тело.
      5.3.2.7. Д е г а з а ц и о н н ы й э ф ф е к т.
      Под действием ультразвука растворенный газ сначала выделяется в виде пузырьков в зонах разряжения ультразвуковых волн, после этого пузырьки соединяются и при достижении достаточно большого размера всплывают на поверхность. Эффект можно обьяснить следующим образом, при воздействии ультразвука в расплаве возникает кавитация: в образованные кавитационные пустоты проникает ратворенный газ. При захлопывании кавитационных пузырей этот газ не успевает снова раствориться в металле и образует газовые пузырьки. Зародыши газовых пузырьков образуются и в полупериод разряжения при распространении упругих ультразвуковых колебаний в расплаве, т.к. при уменьшении давления растворимость газов уменьшается. После этого газовые пузырьки под влияниемельных движений коанулируют и, достигая определенных размеров, всплывают. Ускорение диффузии под действием ультразвука тоже может способствовать нарастанию газовых пузырьков.
      5.3.3. Ультразвуковой капиллярный эффект (открытие N109).
      Явление капиллярности заключается в том, что при помещении в жидкость капилляра, смачиваемого жидкостью, в нем под действием сил поверхностного натяжения происходит подьем жидкости на некоторую высоту. Если жидкость в капилляре совершает колебания под влиянием источника ультразвука, то капиллярный эффект резко возрастает, высота столба жидкости увеличивается в несколько десятков раз, значительно во и скорость подьема.
      Экспериментально доказано, что в этом случае жидкость толкает вверх не радиационное давление и капилярные силы, а стоячие ультразвуковые волны. Ультразвук снова и снова как бы сжимает столб жидкости и поднимает его вверх. Открытый эффект уже очень хорошо используется в промышленности, например, при пропитке изоляционными составами обмоток электродвигателей, окраске тканей, в теплвых трубах и т.п.
      А.с. 437 568: Способ попитки капиллярных пористых тел жидкостями и расплавами, например, полимерным связующим, с применением ультразвуковых колебаний, отличающийся тем, что с целью интенсификации процессов пропитки ультразвуковые колебания сообщают пропитываемому телу.
      5.3.4. Трудно перечислить все эффекты, возникающие в результате воздействия ультразвука на вещество, поэтому кратко перечислим основные области прменения ультразвука и приведем в заключение несколько интересных изобретений, показывающих широкие возможности использования ультразвука в изобретательстве.
      Твердые вещества
      ---------------
      - размерная обработка сверхтвердых и хрупких материалов (сверление отверстий сложной формы, шлифование, полирование, наклеп, волочение проволоки, прокатка фольги и т.д.)
      - лужение и паяние металлов, керамики, стекла и т.п.
      - сварка металлов и полимеров.
      А.с. 505 540: Способ сварки трением встык разнородных металлов при котором осуществляют вращение одной заготовки, кроковку стыка и обжатие его при помощи осадочной матрицы, надетой на неподвижную заготовку, отличающийся тем, что с целью повышения стабильности качества сварного шва и стойкости матрицы, проковку и обжатие стыка производят с наложением на осадочную матрицу поперечных звуковых колебаний с пучностью напряжений в очаге деформации при с менее окружной скорости вращающейся заготовки.
      Жидкости (кавитирующие)
      - очистка деталей от жировых и других загрязнений
      А.с. 120 613: Устройство для автоматической очистки деталей, например, сеток радиоламп посредством промывочной жидкости, включающие промывочную ванну, транспортер, укладочное и разгрузочное приспособление, отличающееся тем, что с целью повышения качества очистки, в промывочной ванне установлены ультразвуковые излучатели с концентраторами ультразвуковой энергии, служащие для создания фонтанов промывочной жидкости, омывающих сетки, перемещаемые над промывочной ванной.
      - диспергирование твердых порошкообразных материалов в жидкостях, эмульгирование несмешивающихся жидкостей.
      А.с. 517 294: Способ получения жирового концентрата, включающий смешивание жира с белковым стабилизатором и высушивание, отличающийся тем, что с целью длительного хранения высококилотных жиров, а также удешивления способа, жир перед смешиванием нейтрализуют в присутствии катализатора, смесь жира со стабилизатором эмульгируют с помощью ультразвука в течении 10-15 минут, а в качестве стабилизатора используют дунст.
      - получение аэрозолей.
      - полимиризация или деструкция высокомолекулярных соединений, ускорение массообразных и химических процессов.
      - разрушение биологических обьектов (микроорганизмов).
      Действие ультразвука на жидкость базируется на использовании вторичных эффектов кавитации - высоких локальных давлений и температуры, образующихся при схлопывании кавитационных пузырьков.
      Г а з ы
      - сушка сыпучих, пористых и других материалов.
      - очистка газов от твердых частиц и аэрозолей.
      5.3.5. Акустомагнетоэлектрический эффект.
      Звук способен сортировать не только яблоки, но и электроны. Если поперек направления распространения звука в проводящей среде наложить магнитное поле, то электроны, которые увлекаются звуком, будут отклоняться в этом поле, что приведет к возникновению поперечного тока или, если образец "разомкнуть" в поперечном направлении, электродвижущей силы (ЭДС). Но магнитное поле в соответствии с законом Лоренца отклоняет электроны разных скоростей по разному, поэтому величина и даже знак ЭДС показывают, какие электроны увлекаются звуком, то есть коковы свойства электронного газа в данной среде. В каждом веществе звук увлкает за собой группу электронов характерных именно для дпнного вещества. Если звук проходит через границу двух веществ, то одни электроны должны смениться другими, например, более "холодные", более "горячими". При этом от границы будет тепло, а сама граница охлаждаться. Данный эффект похож на известный эффект Пельтье (см. раздел 9.2.2.).
      Однако принципиальное отличие этого эффекта от эффекта Пельтье состоит в том, что он не исчезает, даже при очень низких температурах и охлаждение может продолжаться до температур, близких к абсолютному нулю. Это открытие зарегистрировано под номером 133 в следующей формулировке:"Установлено неизвестное ранее явление возникновение в телах, проводящих ток, перемещенных в магнитном поле, при прохождении через них звука, электродвижущей силы поперек направления распространениязвука, обусловленной взаимодействием со звуковой волной носителей заряда, находящихся в различных энергетических состояниях". На основе открытия уже сделано ряд изобретений.
      А.с. 512 422: Способ измерения времени релаксации энергии носителей заряда в кристалле, заключающийся в измерении проводимости и разности потенциалов на исследуемом образце, отличающийся тем, что с целью упрощения и повышения точности измерения, в образец вводят ультразвуковую волну, измеряют разность потенциалов в направлении распространения волны и проводимость в перпендикулярном направлении.
      А.с. 543 140: Способ усиления поверхностных звуковых волн в пьезоэлектическом полупроводнике основанный на взаимодействии звуковых волн с электрическим полем, отличающийся тем, что с целью повышения эффективности усиления, дрейфовое напряжение прикладывается в направлении, перпендикулярном распространению поверхностной звуковой волны.
      5.4. Волновое движение.
      Волна - это возмущение, распространяющееся с конечной скоростью в пространстве и несущее с собой энергию. Суть волнового движения состоит в переносе энергии без переноса вещества. Любое возмущение связано с каким-то направлением (вектор электрического поля в электромагнитной волне, напрвление колебаний частиц при звуковых волнах, градиент концентрации, градиент потенциала и т.д.). По взаимоположению вектора возмущения и вектора скорости волны, волны подразделяются на продольные (направление вектора возмущения совпадает с направлением вектора скорости) и поперечные (вектор возмущения перпендикулярен вектору скорости). В жидкостях и газах возможныв только продольные волны, в твердых телах и продольные и поперечные.
      Волна несет с собой и потенциальную и кинетическую энергию. Скорость волны, т.е. скорость распространения возмущения, зависит как от вида волны, так и от характеристик среды, например, от прочности бетона при затвердевании. Измеряя скорость распространения ультразвука можно определить, какую прочность набрал бетон в процессе выпаривания. ("Знание-сила"II,1969)
      В Японии предложено пропускать ультразвук через стальные изделия перпендикулярно тем поверхностям, расстояние между которыми нужно измерить. Стальные изделия помещались в остную ванну, которая просвечивалась ультразвуковыми импульсами. Измерив время необходимое для прохождения импульса от каждого вибратора, определяли внешние разхмеры изделия /заявка Японии N 51-23193/.
      При наличии дисперсии волн (см. раздел 5.4.7.) понятие скорости волны становится не однозначным; приходится различать фазовую скорость (скорость распространения определенной фазы волны) и групповую скорость, являющуюся скорость переноса энергии, что усложняет различные измерительные работы с помощью различного вида колебаний. В случае же когерентного колебания фазовая скорость может нести информацию о свойствах среды.
      А.с. 288 407: Способ измерения паросодержания пароводяных смесей и количества парогазовых включений по а.с. N'131138, отличающийся тем, что с целью повышения точности и чувствительности при измерениях паросодержания в высокочастотных трактах с большими потерями, отраженный сигнал, фаза которого характеризует измеряемый параметр, выделяют из высокочастотного тракта, усиливают, ограничивают по амплитуде и сравнивают его фазу с фазой опорного когерентного высокочастотного колебания.
      А.с. 412 421: Способ измерения скорости ультразвука в средах основанный на определении времени рапространения колебаний с помощью фазового сдвига, отличающийся тем, что с целью повышения точности измерения, модулируют колебания по фазе и одновременно пропускают через исследуемую и эталонную среду, измеряя на границах обеих сред относительную величину фазы колебаний, и по результатам измерения находят скорость ультразвука в исследуемой среде.
      5.4.1. Стоячие волны.
      При наличии каких-либо неоднородностей в среде имеют место явления преломления и отражения волн. Если возбуждаемые в среде волны отражаются от каких-то границ (препятствий), то при определенном сдвиге фаз в результате наложения прямой и отраженной волны может возникнуть стоячая волна с характерным расположением максимумов возмущения (узлов и пучностей). При наличии стоячей волны переноса энергии через углы нет, и в каждом участке между двумя узлами наблюдается лишь взаимопревращение кинетической и потенциальной энергии.
      А.с. 337 712: Способ определения модуля упругости бетона путем ультразвукового прозвучивания образца, отличающийся тем, что с целью повышения точности, фиксируют частоту ультразвуковых колебаний при возникновении стоячей волны и по ней судят о модуле упругости бетона.
      А.с. 488 170: Способ ипытания кабельных изделий на вибростойкость путем создания колебаний в закрепленном по концам образца, находящемся под натяжением, отличающийся тем, что с целью повышения надежности испытаний кабель-буксирных комплектаций, на образце кабеля закрепляют соединитель, идентичный по весу, размерам, и элементам фиксации муфте изделия, концы закрепляют шарнирно, возбуждают в нем стоячие волны, а соединитель размещают в узле стоячей волны.
      5.4.2. Эффект Доплера-Физо.
      Еслирегистрировать колебания в точке, расположенной на каком-либо расстоянии от источника колебаний и неподвижной относнего, то частота регистрируемых колебаний будет равна частоте колебаний источн Если же источник и приемник приближаются друг к другу, то частота регистрируемых колебаний будет выше частоты колебаний источника. При взаимном удалении приемника и источника приемник будет регистрировать понижение частоты колебаний. При этом изменение частоты зависит от скорости взаимного движения источника и приемника. Этот эффект был впервые открыт Доплером в акустике, позже его независимо открыл Физо и рассмотрел его в случае световых колебаний.
      На основе этого эффекта создан прибор для измерения скорости супертанкеров при швартовых операциях,, длина волны использована малая (микроволновый сигнал). Очевидно подобный прибор может быть использован и в других областях техники.
      Патент США 3 555 899: Установка для ультразвукового измерения расхода жидкостей в трубопроводе. Имеется устройство для создания двух траекторий распространения ультразвука между противоположными боковыми стенками трубопровода и устройство, которое направляет эти траектории таким образом, что они располагаются в плоскости, проходящей через параллельно продольные прямые, и наклонены к обоим прямым под взаимно дополняющими углами. Установка имеет устройство, которое посылает ультразвуковые колебания в двух противоположных направлениях по каждой из двух траекторий. Расход определяется путем измерения скорости распространения колебаний по направлению потока и навстречу потоку и вычисления среднего значения разности между указанными различными скоростями. Распространение звуковых колебаний по одной траектории может быть обеспечено путем отражения ультразвуковых колебаний, идущих по другой траектории.
      Патент США 3 564 488: Прибор для измерения скорости движущихся обьектов, например, для измерения скорости движения тела по рельсам. По одному из рельсов пускаются ультразвуковые волны. В приборе имеется пьезоэлектрический преобразователь который служит для обнаружения доплеровской частоты в отраженном сигнале, исходящеи от точки, расположенной вблизи места контакта движущегося тела с рельсом. Частота Допплера используется для измерения скорости движущегося по рельсам обьекта.
      5.4.3. Поляризация.
      Поляризация волн - нарушение осевой симметрии поперечной волны относительно направления распространения этой волны. В неполяризованной волне колебания (векторов смешения и скорости частиц среды в случае упругих волн или векторов напряженностей электрического и магнитного полей в случае электромагнитных волн) в каждой точке пространства по всевозможным направлениям в плоскости, перпендикулярной направлению распрстранения волны, быстро и беспорядочно сменяют друг друга так, что ни одно из этих направлений колебаний не является преимущественным. Поперечную волну называют поляризованной, если в каждой точке пространства направление колебаний сохраняется неизменным (линейнополяризованным) или изменяется с течением времени по определенному закону - (циркулярно или элептическиполяризованной).

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16