Современная электронная библиотека ModernLib.Net

Физические эффекты и явления

ModernLib.Net / Неизвестен Автор / Физические эффекты и явления - Чтение (стр. 13)
Автор: Неизвестен Автор
Жанр:

 

 


Этот угол пропорционален длине пути света в веществе и напряженности поля, и обратно пропорционален квадрату длины волны. Зависит он от свойств вещества. Так, он сильно изменяется вблизи линий поглощения данного вещества. особенно сильный эффект наблюдается в тонких прозрачных пленках железа, никеля и кобальта. При прохождении света в прямом и обратном направлении углы поворота вследствии эффекта Фарадея не компенсируются, а суммируются, в отличии от естественного вращения поляризации в некоторых веществах. Диамагнетики в магнитном поле всегда обнаруживают положительное вращения (т.е. вращение по часовой стрелке, если смотреть по направлению поля), пара и ферромагнетики - отрицательные.
      А.с. 491 916: Позиционно-чувствительный датчик с магнитооптической модуляцией, содержащий поляризатор, анализатор и ячейку Фарадея, отличающийся тем, что с целью повышения чевствительности, магнитооптический активный элемент ячейки Фарадея выполнен из составных двух частей, например, призм с противоположным по знаку постоянными Верде, расположенных в симметрично относительно оптической оси системы.
      Природа эффекта обьясняется различным влиянием магнитного поля на скорость распространения в веществе првоциркулярно и левоциркулярно поляризованных световых волн, в результате чего между ними накапливается разность фаз, приводящая при их сложении к возникновению волн с повернутой плоскостью поляризации (8).
      Как обычно, возможные применения вытекают из физической сущности эффекта;управление поворотом плоскости поляризации с помощью магнитного поля или же измерение магнитных полей по углу поворота плоскости поляризации.
      А.с. 412 698: Оптический квантовый генератор, содержащий задающи генератор, оптический квантовый усилитель и установленные между ними согласующее устройство, отличающеесятем, что с целью улучшения однородности пучка без уменьшения его мощности, согласующее устройство выполнено ввиде расположенного между двумя поляризаторами элемента, обладающего измеряющейся по радиусу вращательной способностью.
      2. Устройство по п.1, отличающееся тем, что в качестые названного элемента использован вращатель Фарадея, выполненный ввиде цилиндра из свинцового стекла установленного в соленоиде.
      А.с. 479 147: Устройство магнитооптического воспроизведения информации с магнитного носителя, содержащее источник плоскополяризованного света, анализатор, фотоприемник и магнитную головку, отличающееся тем, что с целью повышения чувствительности, его магнитная головка снабжена магнитооптическим кристаллом установленным на участке заднего зазора, расположенным на одной линии между источником плоскополяризованного света и анализатором пучка этого света.
      Часто эффект Фарадея используют для создания невзаимных элевентов т.е. устройств, пропускающих излучение только в определенном направлении (6).
      Оптический вентель состоит из двух поляризаторов, скрещенных под углом 45 градусов и элемента Фарадея, помещенного между ними. Элемент расчитан так, что вращая плоскость поляризации света на 45 градусов, и свет проходит через второй поляризатор. Луч, идущий в обратном направлении, вращается в ту же сторону, что и прямой луч и оказывается повернутым на 90 градусов относительно первого поляризатора, и значит не пропускается им. В частноссти такие вентили используют в лазерах бегущей волны и и в оптических усилителях.
      В СВЧ-технике для создания вентилей, фазовращателей и циркуляторов широко исполуют эффект Фарадея на ферритах, которые практически прозрачны для электромагнитных волн этого диапазона (дици-санти и миллиметровые радиоволны).
      16.4.2. Существует и так называемый обратный эффект Фарадея - возникновение в среде магнитного поля под действием мощного циркулярнополяризованного света, вызывающего циркулярное движение электронов (1).
      16.4.3. Частным случаем эффекта Фарадея является магнитооптический эффект Керра - при отражении под любым углом, в том числе и по нормали к поверхности, линейнополяризованного света от намагниченного ферромагнитика возникает элептическиполяризованный свет. Фактически, магнитооптический эффект Керра это вращение плоскости поляризации части излучания в тонком поверхностном слое ферромагнитика в магнитном поле.
      Магнитооптическая установка для автоматической записи магнитных характеристик ферромагнетика, в которой использование магнитооптического эффекта Керра позволяет снимать кривые намагничивания и дистеризиса на учатках поверхности размером 1 мк2. (приборы и техника эксперимента, 1973,нр-5, стр. 215-217)
      16.4.4. При распространении света в веществе перпендикулярно магнитному полю возникает двойное лучепреломление, величина которого пропорциональна квадрату напряженности магнитного поля. (ээфект Коттона-Муттона).
      Наложение сильного магнитного поля ориентирует хаотически расположенные молекулы (если последние имеют постоянный магнитный момент), что и приводит к оптической анизотропии. Этот эффект много слабее, чем электрооптических эффект Керра, а в технике применяется редко.
      Механизм всех магнитооптических явлений тесно связан с механизмом прямого и обращенного эффекта Зеемана.
      16.4.5. Прямой (обращенный) эффект Зеемана состоит в расщеплении спектральных линий испускаемого (поглощаемого) излучения под действием магнитного поля на излучающее (поглощающее)вещество. При этом неполяризованное излучение с частотой направления поля расщепляется на два компанета (линии) с частотами и , первая из которых поляризована по левому кругу, а вторая по правому. В направлении же перпендикулярном поля расщепление имеет такой характер: имеется при линейном-поляризованные компоненты с чатотамти.
      Крайние компоненты поляризованны перпендикулярно магнитному полю средние же, с неизхменной частотой поляризованна вдоль поля и по интенсивности вдвое привосходит соседние. Величина смещения частоты пропорциональна индукции магнитного поля. Эффект Зеемана обусловлен расщеплением в магнитном поле энергетических уровней атомов или молекул на подурони, между которыми возможны квантовые переходы.
      ФРГ патент 1 287 836: Кольцевой лазер для определения скорости вращения имеет трубу и отражательные зеркала, которые создают замкнутый оптический контур, включающий ось лазера, а также средства с помощью которых световые лучи обособляются и накладываются, циркулируя в оптическом контуре в противоположных направлениях. Лазер отличается тем, что предусмотрено устройство служащее для воздействия на трубу лазера осевого магнитного поля таким образом, что в соответствие с эффектом Зеемана, создается два луча с противоположной круговой поляризацией. Предусмотрено устройство, которое обеспечивает поступательное движение только одного такого луча в каждом направлении вдоль оптического контура.
      США патент 3 796 499: Аппарат предназначен для реализации способа определения концентрации парамагнитного материала в газовой смеси. Образец смеси подвергают воздействию магнитного поля средней напряженности и освещают лазерным излучением постоянной частоты. Магнитное поле энергетическими уровнями в парамагнитном материале до величины, соответствующей условию резонансас лазерным излучением. Для количественной корреляции вариации интенсивности лазерного излучения, проходящего через смесь, как функция напряженности магнитного поля используют стандартные процедуры детектирования. В случае окиси азота способ достаточно чувствителен, чтобы обнаруживать концентрации, значительно меньше, чем одна часть на миллион.
      В заключении отметим, что механизм эффекта Фарадея, по сути дела, обусловлен обращенным эффектом Зеемана. Им же обьсняется избирательное поглощение радиоволн парамагнитными телами, помещенными в магнитное поле (см. "Электронный парамагнитный резонанс") (1,6,7,9).
      16.5.Существует ряд явлений,при которых оптическая анизотропия в среде вызывается воздействием из нее энергии светового излучения.Кним относится эффект фотодихроизма,а также поляризация люминесценции.
      16.5.1. Дихроизм - это зависимость величины поглощения телами света от его поляризации.Это свойство,в той или иной мере,присуще всем поглощающим свет веществам,обладающим анизотропной структурой.Классический пример такого вещества кристалл турмалина. Он обладает двойным лучепреломлением и, кроме того очень сильно поглощает обыкновенный луч.Поэтому даже из тонкой пластины турмалина естественный свет выходит линейно-поляризованным.Дихроизм обнаруживает не только кристаллы но и многочисленные некристаллические тела,обладающие естественной или искуственно созданной анизотропией (молекулярные кристаллы,растянутые полимерные пленки,жидкости,ориентированные в потоке и т.д.).
      Эффект фотодихроизма состоит в возникновении дихроизма в изотропной среде под действием на эту среду поляризованного света. Свет вызывает фотохимические превращания молекул вещества, изменяя коэффициент их поглощения. Поляризованный свет преимущественно взаимодействует с молекулами определе ориентации ,что и приводит к появлению анизотропии поглощения (1)
      16.5.2. Естественная оптическая активность.Кроме сред с линейным дихроизмом (т.е. с различным поглощением света,обладающего различной линейной поляризацией) существуют среды,обладающие циркулярным дихроизмом,по разному пог правоциркулярнои левоциркулярно-поляризованный свет. Циркулярным дихроизмом как правило обладают вещества с естейственной оптической активностью
      Естественной оптической активностью называют способность вещества поворачивать плоскость поляризации прошедшего через него света. Величугла поворота зависит от длины волны света т. е. имеет место вращательная дисперсия. Кроме того, этот угол пропорционален толщине слоя вещества, а для растворов и концентрации.
      Явление естественной оптической активности используется при определении концентраций различных растворов сахариметрии.
      Естественная оптическая активность объясняется явлением двойного цирулирного лучепреломления,т.е. расщеплением света на две циркулярно-поляризованные компоненты-левую и правую. (следует отметить,что эффект Фарадея объясняется возникновением циркулярного преломления в магнитном поле).Направление вращения плоскости поляризации при естественной оптич. (левостороннее или правостороннее) зависят от пироды вещества. Это связано с существованием веществ в двух зеркальных формах-левой и правой (свойство ассиметрии)(1),(2),(5).
      16.6. Поляризация при рассеивании света.
      Рассеяный на неоднородных средах естественный свет в некоторых направлениях является линейно-поляризованным и, наоборот, линейно-поляризованный свет в некоторых направлениях не рассеивается). В основе этого явления (как и при поляризации света, отраженного под углом Брюстера) лежит природа самой электромагнитной поперечной световой волны (см."Поляризация"), а вовсе не анизотропия и ориентация молекул, что лишь препятствует полной поляризации рассеивания света.
      Поляризация при рассеивании - единственный метод поляризации рентгеновского излучения (1).
      Л И Т Е Р А Т У Р А
      1. Н.Д.Жевандров. Анизотропия и оптика. М., "Наука",1974
      2. Г.С.Ландсберг, Оптика. М., "Наука", 1976
      3. У.Шерклиф, Поляризованный свет. М., "Мир",1965
      4. М.Фрахт, Фотоупругость,т.1-2. М.,1950
      5. А.Вайсбергер, Физические методы в органической химии, пер.
      с англ. т.5, М., 1957
      6. Квантовая электроника, изд. "Советская энциклопедия",
      М.,1969
      7. Р.Дитчберн,Физическая оптика, пер. с англ.,М.,1965
      8. Г.Иос,Курс теоретической физики, "Учпедгиз", М.,1963
      9. М.Борн, Атомная физика, пер. с англ., М.,1965
      10. А.с. 154680, 178905, 243872, 268819, 391672, 416595,
      474724
      США патенты 3588214, 3558215, 3558415, 3588223, 3811778
      Великобритания, заявка 1354509
      ФРГ заявка 2333242
      Франция, заявка 22099357
      17. ЭФФЕКТЫ НЕЛИНЕЙНОЙ ОПТИКИ.
      До сих пор мы рассматривали оптические явления в предположении, что интенсивность (вт. см2) световой волны никак не влияет на физику явления. Так оно и было до тех пор, пока в оптике оперировали со световыми волнами, напряженность электрического поля которых была пренебрежительно мала по сравнению с внутренним электрическим полем (10 в девятой степени в/см), определяющим силы связи оптического электрона с ядром атома. Однако, с появлением лазеров, опыта со световыми пучками, интенсивность которых достигает NNNNN вт.см2,(электрическое поле световой волны соизмерно с внутриатомным, показали, что существует сильная зависимость характера оптических эффектов при достижении некоторых пороговых знаний интенсивности.
      Оптические эффекты, характер которых зависит от интенсивности излучения называют нелинейными. Далее мы приведем некоторые из них.
      17.1. Вынужденное рассеяние света.
      Случайные изменения плотности среды, обусловленные тепловыми движениями молекул (тепловые акустичекие волны), рассеивают световую волну и модулируют ее по частоте, при этом возникают сателлиты с частотами, равными сумме и разности частот световой волны и тепловых акустичеких колебаний (спонтанное рассеяние Мандельштама-Бриллюэна). Однако отношение интенсивности сателлитов интенсивности падающего излучения составляет лишь 10 в минус шестой степени.
      При увеличении интенсивности падающего излучения выше порогового значения происходит следующее. Под действием электрического тока из-за явления электрострикации возникают импульсы избыточного давления, достигающие в поле лазерного луча дес. тыс. атмосфер. Возникает акустическая волна давления (гипарзвук, 10 в 10-ой степени Гц), изменяющая показатель преломления по закону бегущей волны. Эти изменения показателя преломления образуют в среде как бы дифракционную решетку, на которой и происходит рассеяние световой волны. При этом интенсивность сателлитов становися сравнимой с интенсивностью падающей волны, а количество их возрастает. Описанный эффект называется вынужденное рассеяние Мандельштама-Бриллюэна.
      При достаточно больших интенсивностях падающего излучения нелинейная среда стать может генератором звука со световой накачкой. С помощью лазеров удается возбуждать мощные (до 10 квт) гиперзвуковые колебания во многих жидкостях и твердых телах.
      Свой нелинейный аналог и комбинационное рассеяние (см."Поглощение и рассеяние"). При вынужденном комбинационном рассеянии мощное световое излучение возбуждает в среде когерентные колебания молекул, на которых и происходит его рассеяние с образованием суммарных и разностных сателлитов. Частота наиболее мощного из них меньше частотоы падающего света на частоту молекулярных колебаний.
      Так, при рассеянии красного излучения лазеров в камере со сжатым водородом, когда интенсивность достигает пороговой величины около 10 в 8-ой степени вт/см2, число компонентв рассеянном излучении настолько возрастает и их интенсивность настолько высока, что, луч, выходящий из газа, из красного становится белым. Аналогичен опыт по ВКР в жидкостях, например, в нитробензоле. Особенность здесь в том, что рассеянные компоненты с различной длиной волны пространственно разделены и образуют на экране цветные кольца.
      Вынужденное расеяние (ВКР и ВРМБ) применяется, в основном, для последования структуры и свойств вещества, для изучения нелинейных процессов в средах. Используется также для накачки полупроводниковых ОКР, для управления параметрами твердотельных ОКГ. Может использоваться для создания преобразователей частоты мощного когерентного света в ультрафиолетовой, видимой и особено инфракрасной областях спектра
      17.2. Генерация оптических гармоник.
      При рассеянии интенсивного лазерного излучения в жидкостях и кристаллах, помимо описанных выше боковых спектральных компонент, обнаруживаются компоненты с частотами, в точности кратными частоте падающего излучения (двухкратными, трехкратными и т.д.), называемые оптическими гармониками. В некоторых кристаллах эти гармоники могут составлять до 50% рассеянного излучения. Таким образом, если направить красное излучение рубинового лазера (0,69 мкм) на кристалл дигидросфата калия, то на выходе можно получить невидимое ультрафиолетовое излучение (0,345 мкм).
      17.3. Параметрическая генерация света.
      Поместим нелинейный кристалл в оптический резонатор и направим на него мощное световое излучение накачки. Одновременно подадим на кристалл два слабых излучения с чатотами, сумма которых равна частоте излучения накачки. При этом в кристалле возникает генерация двух мощных когерентных световых волн, частота которых равна частотам этих двух слабых излучений. В действительности же, кроме волны накачки, нет необходимости ни в каких дополнительных излучениях, т.к. в кристалле всегда найдутся два спонтанно излучающих фотона с соответствующими частотами. Существенным является то, что при повороте кристалла в резонаторе, частоты генерируемых волн могут плавно перестраиваться, в сумме оставаясь равными частоте волны накачки. Это позволяет создавать оптические преобразователи, квантовые усилители и генераторы, плавно перекрывающие широкий диапазон излучений от видимого до далекого инфракрасного при фиксированной частоте накачки.
      ФРГ патент 1 287 229: Преобразователь частоты содержит неинейный электрооптический двоякопреломляющий кристалл, через который когерентный входной световой сигнал пропускается под таким углом к оптичекой оси кристалла, что внутри кристалла возникают два колебания с другими частотами. Эти колебания согласованы между собой и в кристалле модулируются или регулируются по фазе одновременно.
      Нелинейный кристалл расположен внутри оптического резонатора и подвергается не только электрооптической модуляции, но и регулировке по температуре с целью подстройки частоты.
      17.4. Эффект насыщения.
      Так называют эффект уменьшения интенсивности спектральной линии поглощения (или вынужденного излучения) при увеличении мощности падающего на вещество внешнего электромагнитного излучения. Причиной эффекта насыщения является выравнивание населенности двух уровней энергии, между которыми под действием излучения происходят вынужденные квантовые переходы "вверх" (поглощение) и "вниз" (вынужденное излучение). В случае поглощения при этом уменьшается доля мощности излучения, поглощенного веществом. Абсолютная величина поглощаемой мощности при этом, однако не падает, а увеличивается, стремясь к некоторому пределу. В случае активного вещества с инверсией населенностей эффект эффект насыщения приводит к уменьшению мощности вынужденного излучения, что ставит предел величине усиления в квантовых усилителях.
      Однако эффекту нашли широкое применение в лазерной технике, где он используется для модуляции добротности оптических резонаторов с помощью просветляющихся под действием мощного излучения светофильтров. Кроме того, эффект насыщения используется для создания инверсии населенностей в трехуровневых квантовых системах.
      17.5. Многофотонное поглощение.
      Если эффект насыщения делает среду, непрозрачную для слабого светового поля, прозрачной для сильного, то для оптически прозрачных сред может иметь место обратная ситуация. Здесь интенсивное излучение может поглощаться гораздо сильнее чем слабое. Некая аналогия фотохромному эффекту, однако механизм совершенно иной. Он состоит в том, что при больших плотностях излучения и элементарном акте взаимодействия света с веществом могут одновременно поглощаться два или несколько фотонов, сумма энергий которых равна энергии перехода.
      Эффект многофотонного поглощения используется, в основном, в так называемой многофотонной спектроскопии, дающей дополнительную информацию о строении вещества, недоступную для обычной спектроскопии.
      17.5.1. Многофотонный фотоэффект.
      Эффект состоит в том, что при высокой интенсивности светового поля ионизация атомов может производить под воздействием излучения, для которого энергия кванта меньше энергии ионизации. Это обьясняется тем, что происходит одновременное поглощение нескольких фотонов, сумма энергий которых больше энергии ионизации атомов. Здесь просматривается некая анология с антистоксовской люминесценцией (см."Люминесценция"). Следует отметить, что, например, для двухфотонного фотоэффекта величина тока в фотоэлементе пропорциональна квадрату мощности лазерного излучения.
      17.6. Эффект самофокусировки.
      Известно, что первоначально параллельный пучок света по мере рапространения в среде (включая и вакуум) расплывается за счет дифракционных явлений. Это справедливо при малых интенсивностях света, пока еще среда остается линейной. с увеличением мощности светового пучка его расходимость начинает уменьшаться. При некоторой критической мощности пучок может распространяться, вообще не испытывая расходимости (режим самоканализации), а при мощности, превышающей критическую, пучок скачком сжимается к оси и сходится в точку наа некотором расстоянии от места входа в среду ставшую теперь нелинейной. Происходит пройесс самофокусировки. Это расстояние, называемое эффективной длиной самофокусировки, обратно пропорционально квадратному корню из интенсивности пучка. Оно также зависит от его диаметра и оптических свойств среды. Открытие эффекта самофокусировки пренадлежит Г.А.Аскорьяну (открытие - 67).
      Физические причины этого эффекта заключаются в изменении показателя преломления среды в сильном световом поле. В это изменение вносит свой вклад также эффекты, как электрострикция, высокочастотный эффект Керра и изменение преломления среды за счет ее нагрева в световом пучке. Вследствии этих эффектов, среда в зоне пучка становится оптически неоднородной; показатель преломления среды определяется теперь распределением интенсивности световой волны. Это приводит к явлению нелинейной рефракции, т.е. переферийные лучи пучка отклоняются к его оси, в зону с большей оптической плотностью. Таким образом нелинейная рефракция начинает конкурировать с дифракционной расходимостью. При взаимной компенсации этих процессов и наступает самоканализация, переходящая в самофокусировку при привышении критической мощности пучка. Процесс самофокусировки выделяется среди прочих нелинейных эффектов тем, что он обладает "лавинным" характером. Действительно, даже малое увеличение интенсивности в некотором участке светового пучка приводит к концентрации лучей в этой области, а следовательно и к дополнительному возрастанию интенсивности, что усиливает нелинейную рефракцию и т.д.
      Отметим, что критические мощности самофокусировки относительно не велики (для ниробензола - 25 квт, для некоторых сортов оптического стекла - 1 вт), что создает реальные предпосылки использования описанного эффекта для передачи энергии на значительные расстояния.
      Интересно, что при самофокусировке излучение импульсных лазеров в органических жидкостях пучок после "охлопывания" распространяется не ввиде одного пучка, а распадается на множество короткоживущих (10 в минус 10-ой степени сек.) узких (мкм) областей очень сильного светового поля (около 10 в 7-ой степени в/см) - световых нитей. Это явление обьясняют тем, что при самофокусировке лазерных импульсов нелинейная среда работает как линза с изменяющимися во времени фокусными расстояниями, и быстрое движение фокусов (скорости порядка 10 в 6-ой степени м/сек.) в сочетании с аберрациями "нелинейной линзы" может создать длинные и тонкие световые каналы.
      В нелинейной оптике уже обнаружено множество интереснейших эффектов. Кроме описанных выше, к ним относятся такие эффекты как оптическое детектирование, гетеродинирование света, пробой газов мощным излучением с образованием т.н. "лазерной искры", светогидравлический удар, нелинейное отражение света и другие. Некоторые из эффектов уже нашли применение не только в научных исследованиях, но и в промышленности. Так например, светогидравлический удар (см."Гидравлические удары") применяется при штамповке, упрочнения материалов, для ударной сварки и т.д., что наиболее себя оправдывает в производстве микроэлектроники, в условиях особо чистых поверхностей.
      17.7. Светогидравлический удар (открытие - 65)
      Эффект заключается в том, что при пропускании мощного лазерного излучения через жидкость в ней возникают акустические волны с высоким давлением, достигающим миллиона атмосфер, сопровождающиеся вспышкой белого света и выбросом жмдкости на значительные расстояния, при этом тела, помещенные вблизи удара, подвергались сильным деформациям и разрушению. Точной теории эффекта еще нет, однако уже ясно, что это целый комплекс явлений. Здесь и самофокусировка, увеличивающая интенсивность световой волны в малом обьеме, и первоначальное ее поглощение, связанное с ВРМБ (см. 17.1) и усиленное поглощение света образующейся плазмой, что приводит к возникновению ударной волны и затем к авитации в жидкости. Предварительная фокусировка лазерного пучка и введение в жидкость поглощающих добавок значительно усиливают проявления эффекта.
      17.8. Нелинейная оптика.
      Нелинейная оптика - новая и постоянно развивающаяся наука. Многообразие ее эффектов далеко не исчерпано известными ныне. Так, совсем недавно были предсказания теоретически гистеризисные скачки отражения и преломления на границе нелинейной среды - целый класс новых эффектов нелинейной оптики. (Данных об эксперементальном подтверждении их существования пока нет.)
      Суть эффектов заключается в следующем. Если под небольшим углом скольжения на границу раздела двух сред с близкими значениями диэлектрической проницаемости, одна из которых нелинейна, падает пучок мощного светового излучения, то при изменении интенсивности излучения (угол падения фиксирования), когда она достигает определенного значения, может произойти скачок от прохождения к полному внутреннему отражению, при обратном изменении интенсивности скачок от ПВО к прохождению произойдет уже при другом ее значении. Такие же скачки могут наблюдаться и при изменении угла падения, когда фиксировано значение интенсивности.
      Если существование этих эффектов подтвердится, то они могут быть широко использованы для исследования нелинейных свойств веществаи в лазерной технике. Так, например, гистеризисная оптическая ячейка может служить идеальным затвором в лазере при генерации гигантских импульсов, т.к. в режиме ПВО практически не поглощает энергии; с помощью гистерезисных эффектов можно будет с большой точностью измерять интенсивность излучения, фиксируя скачки и т.д.
      Л И Т Е Р А Т У Р А
      1. Квантовая электроника, Маленькая энциклопедия, изд. Советс
      кая энциклопедия, М., 1966.
      2. Н.Бломберген, Нелинейная оптика, пер. с англ., М., 1966
      3. М.Шуберт, В.Вильгельми, Введение в нелинейную оптику пер. с
      нем. "Мир", М., 1973.
      4. Ф.Цернике, Дж.Мидвинтер, Прикладная нелинейная оптика, пер.
      с англ., "Мир", М., 1976
      5. Ю.П.Конюшая, Открытия и начно-техническая революция, "Мос
      ковский рабочий", М., 1974
      6. Г.А.Аскарьян, ЖЭТФ, 42, 1567, 1962
      7. А.Ю.Каплан, Письма в ЖЭТФ, 9, 58, 1969
      8. А.К.Каплан, Письма в ЖЭТФ, том 24, вып. 3, 1976
      18. ЯВЛЕНИЯ МИКРОМИРА.
      18.1. Радиоактивность.
      Под радиоактивностью обычно понимают самопроизвольное превращение неустойчивых изотопов одного вещества в изотопы другого; при этом происходит испускание элементарных частиц и жесткого электромагнитного излучения. Различают естественную и искуственную радиоактивность. Процессы, происходящие при естественной радиоактивности позволяют судить о структуре и свойствах радиоактивных веществ.В настоящее время все большее значение получают процессы,связанные с искуственной радиоактивностью.Практически все вещества имеют радиоактивные изотопы, поэтому, не изменяя химического строения вещества можно его пометить, сделав часть ядер радиоактивными. Это позволяет с большей точностью следить за перемещением этого вещества или изучать его внутреннюю структуру.
      А.с. 234 740: Способ определения концентрации пылевых частиц с осаждением этих частиц в осадительном устройстве, отличающийся тем, что с целью расширения диапазонав измерения, в исследуемый газ добавляют радиоактивный газ, например, радон, а после осаждения частиц определяют их радиоактивность по величчине которой судят о концентрации пылевых частиц в газе.
      А.с. 242 324: Способ ускоренного определения годности защитно-моющих и лекарственных веществ наружного применения, при котором на кожу наносят слой исследуемого вещества, отличающийся тем, что с целью определения времени проникновения вещества сквозь кожу и времени выполнения им барьерных функций, в исследуемое вещество предварительно вводят радиоизотопы, например, йода, фояфора или серы, и проводят радиометрические измерения исследуемого обьекта.
      18.2. Рентгеновское и гамма излучения.
      Рентгеновское излучение, открыто в 1895 году физиком Рентгеном, имеет ту же электромагнитную природу, что гамма излучение испускаемые ядрами атомов радиоактивных элементов, поэтому оба вида изучения подчиняются одинаковым закономерностям при взаимодействии с веществом. Принципиальная разница между двумя этими видами излучения заключения в механизме их возникновения. Рентгеновское излучение - внеядерного происхождения, гамма излучение - продукт распада ядер.
      18.2.1. Рентгеновское излучение возникает либо при торможении заряженных частиц (электронов) высокой энергии в веществе (сплошной спектр) (см. 18.4.3. "Тормозное излучение"), либо при высоко-энергетических переходах внутри атома (линейчатый спектр). Недавно установлено, что рентгеновское излучение может также возникать в результате явления адгезолюминесценции, которыая наблюдается при очень быстром отрыве от гладкой поверхности липкой ленты. Такой быстрый отрыв может происходить, например, при быстром качени по металлической поверхности цилиндра, покрытого липкой лентой. В этом случае пленка и металлическая поверхность образуют как бы обкладки микроскопического конденсатора, напряженность поля в котором может достигать сотни тысяч электрон вольт. Электроны, разогнанные в миниконденсаторе, тормозятся, затем в веществе, испуская при этом рентгеновское излучение.
      18.2.2. Рентгеновские лучи применяют для просвещения различных веществ с целью выявления скрытых эффектов. При деформации неподвижного микрокристалла, на рентгенограммах наблюдается размытие в определенных направлениях интерференционных пятен (явление астеризма). Появление астеризма обьясняется тем, что монокристалл в процессе деформации разбивается на отдельные участки (фрагменты) размером 1-0,1 мкм. С увеличением деформации монокристалла интерференционные пятна удлиняются. По направлению и степени растяжения пятна можно судить о колличестве размере и форме фрагмента и исследовать характер протекания деформации.

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16