Современная электронная библиотека ModernLib.Net

Физические эффекты и явления

ModernLib.Net / Неизвестен Автор / Физические эффекты и явления - Чтение (стр. 15)
Автор: Неизвестен Автор
Жанр:

 

 


      В основе явления лежит совместное действие на частицу светового давления и термофоретических сил. Преобладание одного из этих факторов определяет тип Ф.Ф. Так, для мелких частиц основным фактором является световое давление, оно и обуславливает в данном случае положительный фотофорез.
      19.2.1. Интенсивное явления обнаружено в аэрозолях селеновой и железной пыли. В этих системах под влиянием светового потока аэрозольные частицы начинают двигаться в направлении перпендикулярном направлению распространения света.
      19.3. Стробоскопический эффект.
      Если быстро вращающееся тело освещать импульсами света, частота следования которых совпадает с круговой частотой вращения, то наблюдатель будет видеть тело как бы неподвижным. Это позволяет рассматривать особенности его поверхности или какие-либо ее изменения, не останавливая вращения тела.
      А.с. 515 936: Способ определения окружных люфтов трансмиссий с ведомым и ведущими валами, заключающийся в том, что на ведомом валу наносят базовую метку и вращают его с определенной и постоянной угловой скоростью, отличающийся тем, что с целью повышения точности определения люфтов, освещают базовую метку стробоскопическими импульсами с частотой при которой метка кажется неподвижно изменяют синхронно скорость вращения ведущего вала и частоту импульсов и определяют угол отклонения метки от первоначального ее положения, по которому судят о люфтах трансмиссий.
      Если частоты световых импульсов и вращения тела несколько отличаются, то будет наблюдаться кажущееся вращение тела, скорость которого гораздо меньше действительной скорости вращения. Сказанное справедливо и для поступательного (колебательного) движения тел.
      Стробоскопический эффект лежит в основе кино. Отдельные изображения последовательных стадий движения, быстро сменяя друг друга, создают иллюзию непрерывного движения. При этом важную роль играет особенность нашего светового восприятия инерционность, глаз как бы "видит" изображение предыдущего кадра некоторое время после того, как экран погас.
      Движение в кинофильме может быть ускоренным или замедленным в зависимости от соотношения частот сьемки и воспроизведения, что используется для визуализации быстро - или медленно - протекающих процессов.
      Несмотря на свою простоту, стробоскопический метод может являться основой многих тонких исследований.
      А.с. 255 684: Фазовый способ измерения длины волны ультразвука, основанный на использовании стробоскопического эффекта при помощи бегущих ультразвуковых волн, отличающийся тем, что с целью повышения точности, модулируют одну из бегущих ультразвуковых волн, освещаемых пучком света, по фазе, наводят последовательно ось фотоэлектрического микроскопа на максимум освещенности видимого изображения и по расстоянию между соседними максимумами судят о длине ультразвуковой волны.
      В заключении отметим, что стробоскопический эффект является ярким проявлением закона согласования ритмики частей системы.
      19.4. Муаровый эффект.
      При наложении двух систем контрасных полос возникает узор, образованный их сгущениями в местах, где полосы одной системы попадают в промежутки между полосами другой системы. Возниконовения таких узоров называют муаровым эффектом.
      Простейший муаровый узор возникает при пересечении под небольшим углом двух систем равноудаленных параллельных полос (линий). Небольшое изменение угла поворота одной из систем ведет к значительным изменениям расстояния между элементами муарового узора.
      19.4.1. Муаровый узор образуется также при наложении двух непересекающихся систем равноудаленных параллельных линий, когда величина шага одной из систем слегка отлична от другой. При этом, чем меньше разница в шаге, тем больше расстояние между муаровыми полосами. Это позволяет получить колоссальное увеличение (в миллионы раз) разницы в ширине промежутков между линиями. Иначе говоря муаровый эффект дает возможность визуально без применения оптических систем, обнаруживать ничтожные отклонения в почти одинаковых периодических структурах. В настоящее время метод муара широко применяют при контроле точности делительных устройств для изготовления дифракционных решеток.
      19.4.2. Муар возникает на электронной микрофотографии двух кристаллов, наложенных таким образом, что их атомные решетки почти совпадают. Любой деффект нарушающий регулярность структуры кристалла, четко проявляется в муаровом узоре. Увеличение при этом таково, что позволяет видеть смещения атомов, величины которых меньше диаметра самого атома.
      19.4.3. Если две решетки из равноудаленных параллельных прямых, несколько отличных по вельчине шага, двигать одну относительно другой в направлении, перпендикулярном линиям, то полосы муарового узора будут двигаться со скоростью гораздо большей, чем относительная скорость движения самих решеток. При этом направление их движения совпадает с направлением относительного смещения решетки с меньшим шагом. Таким образом, малое перемещение одной из решеток приводит к значительному перемещению полос муара, которое легко обнаружить и измерить.
      А.с. 297 861: Способ определения деформаций по картине муаровых полос, отличающийся тем, что с целью повышения точности измерения деформаций, определяют отношение скоростей взаимного премещения деформированной и эталонной сеток и скорости перемещения муаровой полосы и по величине этого отношения судят о величине деформаций.
      Описанное проявление муарового эффекта издавна используется во всех измерительных приборах, обладающих нондусом, таких, как микрометр или штангенциркуль.
      19.4.4. С помощью эффекта муара можно визуализировать ничтожные изменения показателя преломления прозрачных сред, помещая их между решетками. Так, например, можно визуально изучить динамику расстворения двух веществ.
      19.4.5. Этот же принцип позволяет производить экспресс-анализ качества оптических деталей. Линзы помещают между решетками, наличие выпуклой линзы увеличивает элементы муарового узора, вогнутой - уменьшают. При этом обе линзы поворачивают узор в противоположных направлениях на угол, пропорциональный фокусному расстоянию. В местах неоднородностей структуры или формы линз линии узора искажаются.
      Еще пример контроля оптики!
      А.с. 515 937: Интерференционный способ измерения клиновидности оптических прозрачных пластин, заключающийся в том, что пучок света от лазера фокусирует с помощью обьектива в плоскость отверстия в экране, за которым установливают контролируемую пластину, отличающийся тем, что с целью повышения точности и производительности измерений, от контролируемой пластины при ее фиксированном положении получают прозрачную копию интерференционных колец, поворачивают пластину в ее плоскости на 180, накладывают интерференционную картину на копию и по ширине муаровых полос, образовавшихся от наложения, измеряют клиновидность платины.
      Множество муаровых узоров можно получить, совмещая решетки, образованные самыми различными линиями, например концентрическими окружностями, спиралевидными волнообразными или радиально исходящими из точки линиями и даже семействами равномерно расположенных точек. Таким образом можно моделировать многие сложные физические явления, такие, как взаимодействие электростатических полей, интерференция волн и другие. Подобными методами решаются некоторые задачи архитектурной акустики.
      В Японии предложено использовать муаровый эффект для составления топографических карт предметов. Обьект фотографируют через решетку из тонких нитей, сбрасывающую на него четкую тень. Тень деформируется в соответствии с рельефом обьекта и при взаимодействии ее с реальной решеткой возникает муаровый узор, наложенный на изображение обьекта. На фотографии расстояние между линиями муара соответствует глубине рельефа. Такой метод очень эффективен, например, при изучении деформации быстровращающихся деталей, при анализе обтекания тел поверхностным слоем жидкости в медицинских исследованиях анатомического характера.
      Универсальность метода муара, простота преобразования с его помощью различных величин, близка к ИКР, высокая разрешающая способность - все это говорит о том, изобретатели еще не раз обратятся в своей практике к муаровому эффекту.
      19.5. Высокодисперсные структуры.
      Одной из тенденций развития технических систем является увеличение степени дисперсности входящих в них веществ. При этом наблюдаются качественные изменения свойств дисперсной структуры по сравнению со свойствами монолитного нераздробленного вещества.
      Высокодисперсные структуры подразделяются на сыпучие, консолидированные и коллоидные. Из сыпучих порошков особый интерес представляют ферромагинтные порошки, так как ими легко управлять магнитным полем (1), и их можно вводить ввиде индикаторных добавок в немагнитные вещества с целью выяснения условий действующих внутри исследуемого вещества (температуры, давления и т.п.).
      А.с. 239 643: Способ определения степени затвердевания полимерного состава. В полимер в небольшом колличестве вводят ферромагнитный порошок. Полимер затвердевая сдавливает частицы порошка, который при этом меняет свои магнитные свойства, что легко обнаружить.
      19.5.1. Консолидированные тела - это тела, полученные путем прессования или спекания мелкого порошка (размеры частиц от 10 до 100 мкм). Консолидированные тела обнаруживают много интересных свойств (2), отличающих их от сплошного тела, состоящего из того же вещества. Например, при консолидировании порошка путем прессования можно получить анизотропные тела, несмотря на то, что вещество, составляющее частицы вещества, изотропно. Параметры такого консолидированного тела (электропроводность, теплопровоность, распространение звука, модуль упругости и т.п.) в направлении прессования выше, чем в сплошном теле из того же вещества, причем все свойства изменяются практически на один и тот же масштабный коэффициент пропорциональности. Зная, в каком масштабе искажена одна из условных характеристик пористого образца (например, электропроводность), можно легко определить масштабы искажения и других характеристик этого образца (теплопроводности, скорости звука, модуля сжатия, коэффициента Пуассона и т.д.), а значить легко можно определить и сами характеристики данного образца. Контролируя какую-нибудь из легкоизмеряемых характеристик пористого тела в процессе его консолидации можно однозначно определить изменения интересующих нас других его характеристик.
      19.6. Электрореологический эффект.
      Электрореологическим эффектом называется быстрое обратимое повышениеэффективной вязкости неводных дисперсных систем в сильных электрических полях (3).
      Электрореологические супсенции состоят из неполярной дисперсной среды и твердой дисперсной фазы с достаточно высокой диэлектрической проницаемостью. Дисперсными средами могут служить неполярные или слабополярные органические жидкости с достаточно высоким электрическим сопротивлением (порядка 10 ом.см). Например, светлые масла (валелиновое, трансформаторное, растительные мала (косторовое), диэфиры (дибутилсебацинат), нефтановые углеводороды (циклогексан), керосин, загущенный малыми добавками полиизобутилена. В качестве дисперсной фазы широко применяется кремнезем в различных модификациях. Размеры частиц не более 1 мкм.
      Электрореологический эффект не проявляется заметно вплоть до некоторой пороговой напряженности электрического поля. Величина ее зависит от состава суспензии и температуры. После достижения значения Eкр эффективная вязкость растет приблизительно квадратично, но не до бесконечности, а до ее насыщения.
      Эффект наблюдается и в постоянных и в переменных полях. При увеличении частоты поля кажущаяся вязкость вначале остается неизменной, затем падает. Вид зависимости эффекта от частоты зависит от состава дисперсной системы.
      Электрореологические суспенсии весьма чувствительны к изменениям температуры. Нагрев снижает абсолютную величину эффективной вязкости системы. С ростом температуры влияние электрического поля постепенно невилируется.
      19.7. Реоэлектрический эффект.
      Под действием сдвига в так называемых электрочувствительных дисперсных системах происходят изменения диэлектрической проницаемости, электропроводности и тангенса угла диэлектрических потерь. Такие изменения диэлектричеких параметров предложено называть реоэлектрическим эффектом. Важное значение реоэлектрического эффекта для практики связано с возможностью получения на его основе электрически анизотропных материалов, в частности электронов. Если частицы дисперсной фазы несут заряд преимущественно одного знака, в концентрированных системах при наложении электрического поля наблюдается электросинерезис - сжатие структурного каркаса в целом у одного электрода и выделение дисперсной среды у другого.
      В суспезиях, если частички несут положительный или отрицательный заряд, под влиянием электрического поля протекает электрофорез (см.12) и соответственно на катоде или на аноде осаждается слой дисперсной фазы. Это свойство используется для создания информационных табло и экранов отображения плоских устройств для показа картин с помощью дисперсных систем, прозрачность которых изменяется под влиянием электрического поля.
      Области возможного практического применения электрореологического эффекта чрезвычайно разнообразны и широки:
      1. регулирование движения жидкости, прокачиваемой через узкий канал;
      2. конструкции муфт сцепления, тормозов и других фрикционных устройств;
      3. зажимные и фиксирующие устройства ( если пленку электросвязкой жидкости нанести на тонкую пластину диэлектрика, с другой стороны которого располагаются электроды, соединенные с источником одно или трехфазного тока, то электропроводный эффект, установленный на пластине, будет жестко зафиксирован "затвердевший" пленкой при наложении достаточно интенсивного электрического поля);
      4. жидкие электрогенераторы, преобразователи тока;
      5. электрокинетические весы, примеры использования электрореологического эффекта подробно рассмотрены в (3).
      19.8. Жидкие кристаллы.
      Представим себе жидкость, молекулы которой имеют удлиненную палочкообразную форму. Силы взаимодействия "выстраивают" их параллельно друг другу и ведут они себя как обычные молекулы жидкости, но с учетом единственного ограничения при всех перемещениях должно сохраняться (в целом) некоторое выделенное направление длинных осей. У такой жидкости будут различные оптические и другие характеристики (например, теплопроводность) в различных направлениях, т.е. они будут анизотропной. А ведь анизотропия всегда считалась отличительной чертой кристаллического состояния!
      Жидкость, описанного выше типа, принадлежит обширному классу веществ, называемых нематическими жидкими кристаллами. Слово "немос" по-гречески "нить", и, действительно, молекулы таких жидких кристаллов напоминают бусинки, укрепленные на нити.
      Возможны и другие типы молекулярной архитектуры, создающие анизотропию. Укладка молекул слоями и пачками приводит к еще одному классу жидких кристаллов - сметическим. Такая упаковка молекул создает анизотропию не только оптических, но и механических свойств, посколько слоя легко смещаются относительно друг друга. Название этой группы связано с греческим словом "смектос" (мыло). Такое расположение молекул характерно для мыльных растворов, эмульсий и т.д.
      Третьим распространенным типом жидких кристаллов являются холестерические, в которых молекулы укладываются в плоскостях подобно описанным выше нематическим кристаллам, но сами плоскости повернуты друг относительно друга. Вектор, связанный с длинной осью, так называемой "директор", описывает в пространстве спираль. Названием этот класс жидких кристаллов обячзан печально известному холестирину, у которого впервые были обнаружены подобные свойства.
      19.8.1. Прежде всего было найдено, что воздействие электрического поля на жидкие кристаллы приводит к электрооптическим эффектам, не имеющих аналогов среди прочих оптических сред. Электрооптическая ячейка состоит из двух стекол, между которыми находится тонкий слой жидкого кристалла. Окрашенные поверхности стекол обработаны таким образом, что они, оставаясь прозрачными, пропускают электрический ток. Таким образом получают как бы прозрачный конденсатор, диэлектриком внутри которого служит слой жидкого кристалла.
      19.8.2. Первым из открытых и, пожалуй наиболее впечатляющих эффектов стало динамическое рассеяние. При определенном значении приложенного поля жидкость между электродами как бы становится мутной. Свет, до сих пор беспрепятственно приходивший через жидкий кристалл, рассеивается, и участки с повышенной напряженностью поля становятся видны.
      Этот простой эффект имеет большую практическую ценность.
      Электропроводящие участки поверхности стекла могут быть выполнены ввиде букв или любых геометричеких фигур. Подавая на них соответствующие напряжения, можно формировать различным образом прозрачные и непрозрачные участки, то есть с ничтожными затратами энергии создавать подвижные и неподвижные картины. Использование динамического рассеяния на слое жидкого кристалла толщиной в несколько микрометров позволяет получить изображение, затрачивая мощность порядка микроваттов. При этом из-за тонкости слоя жидкого кристалла необходимое напряжение на ячейке составит всего несколько вольт.
      19.8.3. Удивительные превращения происходят с лучом света при взаимодействии с колестерическим жидким кристаллом, т. е. периодической спиралью. Освещенный белым светом, он кажется окрашенным и при поворотах (при изменении угла наблюдения) начинает переливаться всеми цветами радуги. Этот эффект возникает потому, что в различных направлениях чешуйки кристалла, отражающие свет, расположены на различных расстояниях и отражают из белого цвета лишь волны с определенной длинной.
      Такой простой и красивый эффект дает ошеломляющую
      возможность.
      Например, пусть какой-то участок поверхности нагрет на сотые доли градуса выше окружающих. Приложим к этой поверхности пленку с нанесенным слоем холестерического жидкого кристалла. В "горячей" точке шаг спирали чуть-чуть увеличится и на пленке появится точка иного цвета. Покрыв готовое изделие (это может быть интегральная схема или деталь двигателя) слоем холестерического вещества, можно получить цветную картину тепловых направлений, на который контрастными пятнами поступают любые дефекты, и неоднородности, даже скрытые далеко в стуктуре, благодаря неодинаковой их теплопроводности.
      19.8.4. Цвет окраски жидкого кристалла однозначен с температурой нагретой поверхности. Этот эффект лежит в основе разработанного преобразователя инфракрасного изображения в видимое.
      Основным элементом этого устройства является пленка холестерического жидкого кристалла, повешенная на тонкую черную мембрану. Мембрана поглощает сфокусированное на ней инфракрасное излучение и передает тепло слою жидкого кристалла. Цвет жидкокристаллической пленки (в отраженном свете) зависит от температуры, поэтому при освещении пленки белым светом получается видимое изображение инфракрасного излучения. Напомним, что для преобразования инфракрасного излучения в видимое обычно используют преобразователи на основе фотоэмиссионных или фосфороресцирующих устройств с весьма сложной и дорогостоящей электроникой. Предельная простота и малая стоимость делает жидкокристаллические преобразователи несравненно более выгодными.
      Из смеси холестерических веществ можно изготавливать температурные индикаторы в интервале температур от 20 до 250 C. Индикаторы представляют собой тонкую гибкую пленку жидкого кристалла, заключенную между двумя полимерными пленками. Такую пленку можно накладывать на поверхности деталей для регистрации температурных градиентов в различных направлениях.
      19.8.5. Жидкие кристаллы холестерического типа (или их смеси) весьма чувствительны к присутствию паров различных химических веществ. Присутствие крайне малого количества пара может изменить структуру жидкого кристалла. С помощью жидкого кристалла удается установить присутствие в воздухе пара при его концентрации - несколько частей на миллион. Этот способ имеет большую практическую ценность.
      19.9. О смачивании.(к 3.3.2.)
      19.9.1. Эффект растекания жидкости под окисными пленками металлов. Обычно окисные пленки затрудняют смачивание твердых металлов из-за резкого различия химической природы окисла и металла. Тем не менее во многих системах, несмотря на наличие окисной пленки, жидкие металлы смачивают поверхность твердого металла. Смачивание происходит вследствие проникновение расплава под окисный слой с последующим растеканием в своеобразном капиллярном "зазоре" между окисной пленкой и твердым металлом.
      Растекание может может происходить не только под окисными пленками, но и под некоторыми твердыми покрытиями. Эффект зависит от напряжений, сжимающих тело или окисную пленку.
      Используется при пайке, сварке и склеивании.
      19.9.2.Эффект капилярного "клея" - сцепление частиц, плстин и т.д.,разделенных тонкой прослойкой смачивающей жидкости. Капилярное давление способствует повышению прочности тонкодисперсных пористых структур.
      19.9.3.Теплота смачивания - выделяется при смачивании (в том числе и рпи избирательном смачивании). Является характеристикой имерсионного смачивания(в том числе смачивания порошков).
      Используется для получения информации о свойствах тела (подложки).
      19.9.4. Магнитотепловой эффект смачивания - изменение теплоты смачивания между твердым телом и жидкостью,прошедшей магнитную обработку.Например,теплота смачивания при контакте с углем воды,прошедшей через магнитное поле,возрастает на 30%. Изменения смачивания ,вызванные действием магнитного поля, нестабильны;они исчезают через некоторое время(от нескольких часов до несколькихсуток).
      Л И Т Е Р А Т У Р А .
      Сумм Б.Д.,Горюнов Ю.В. Физико-химические основы смачивания и растекания.М.,"Химия",1976
      Дерягин Д.В. Свойства тонких жидких слоев и их роль в дисперсных системах.М.,Издат-во Всесоюзного совета научно-инж. и техн.о-в,1973.
      19.10. Если взять бумажную ленту,облизить ее противоположные концы так,чтобы получилось кольцо,а затем развернуть один из концов на 180 градусов и склеить ее друг с другом,то мвы получим т.н. кольцо Мебиуса,тело,обладающее очень интересным свойством. Можно ли одновременно находится и снаружи и внутри кольца? Явное физическое противоречие . Однако,оно легко преодолевается , если это кольцо - кольцо Меблуса, это тело имеет лишь одну неверность, и потому, например,муравей, ползущий по внутренней поверхности нашего бумажного кольца, не переползая через край полоски, может оказаться на "наружной" поверхности кольца. Кольцо Меблуса не одинаково среди подобных тел, так, например, сущесвует и "одноповерхностная" бутылка.
      А.С.N.444682 Устройство для формирования детали из полимерных материалов, например,мембран из провинилта,содержащее замкнутую ленту с формирующими элементами, натянутую на барабан,ведущий из которых снабжен нагревателем и напрвляющее ролики, отличающееся тем,что,с целью повышения долговечности ленты , они выполнены в виде ленты Меблуса с формирующими элентами на двух ее сторонах.
      см.так же А.С.N 446011
      19.11. Обработка магнитными электрическими полями.
      Омагничивание воды.Это словосочетание прочно вошло в изобретательскую практику.И неважно,что до сих пор нет четкого объяснения изменения свойств воды после наложения на нее магнитьного поля(1-3). Важно что применение этого эффекта позволяет интенсифицировать многие процессы.
      А.С.N 511644. Способ изготовления лиминесцентного экрана путем осаждения люминафора из водной суспезии, содержащей силикат калия, отличающийся тем,что, с целью увеличения яркости свечения экрана, воду для приготовления суспенции предварительно пропускают через постоянное магнитное поле.
      Некоторые изобретатели предпочитают использовать вращающее магнитное поле.
      А.С.N 423767. Способ обработки воды затворения строительной смеси, например, при производстве бетонных изделий,заключающийся в воздействии на нее магнитным полем, отличающийся тем,что с целью повышения и стабилизации прочности изделий, на воду затворения воздействуют вращающимся магнитным полем с напряженностью 100-2000А (СМ.при промышленной частоте эл.тока и скорости протекания воды 0,5-2,5 м/сек.)
      Начали обрабатывать магнитным полем и др. вещества .
      А.С.N427953. Способ обработки композиций на основе латекса, обработанного переменном или постоянном магнитном полем, отличающийся тем,что с целью улучшения физико-мех. и тех -ких свойств мастик и клеев на основе латекса , латикс пропускают через магнитное поле напряженностью от 400 до 2000 в перпендикуляно его силовым линиям со скоростью 0,1-5,0 м/сек
      В некоторых случаях в изображениях одинаково хорошо работает и магнитное, и электрическое поле.
      А.С.N 484245. Способ обработки смазочно-охлаждающей жидкости, отличающейся тем,что с целью повышения стойкости режущего инструмента и повышения смазочных свойств жидкости, последнюю подвергают воздействию эл. или магн.поля.
      Л И Т Е Р А Т У Р А .
      1. В. Классен .Перспективы применения магнитной обработки водных систем химической промышленности."Химическая промышленность" N1,1974.
      2. Н.И.ЛЫШАГИН К изменению свойств омагниченной воды."Изв.высш. учеб.заведений. Физика,1974,нр 2, стр.44-103.
      3. "Изобретатель и рационализатор",1975,нр 10,26.
      4. А.С.NN422562,542526,518553,416047,346553,496253,496146.
      Приложение N.1
      Возможные применения оторых физических эффектов и явлений при решении изобретательских задач.
      ИЗМЕНЕНИЕ ТЕМПЕРАТУРЫ
      Тепловое расширение и вызванное им изменение собственной частоты колебаний (3.1;5,1; ).Фазовые переходы (3.2; 6.6.1,8.1.3.1,8.1.4.1, 7,5.6,8.1.6,8.8).Изменение магнитных, электрических и оптических свойств(6.5, 7.1.1,1, 8.1.2, 13.2. 1,13,3, 13.4, 15.7, 15.8, 16.3.1)Пиро-и термоэлекрические эффекты(5.5, 9.2).Термосртикция (8,3.1).Термокапилярный эффект (3.3.7). Жидкие кристаллы .
      ПОНИЖЕНИЕ ТЕМПЕРАТУРЫ
      Фазовые переходы(3.2, 4.3, )Сорбия(3.4) Механокалорический эффект(4.3.3)Магнитокалорический эффект(8.2).Эффект Джоуля-ТОМСОНА (4.6.1).Излучение (6.11.1; 13.4.3).Термоэлектрические и термомагнитные явления (9.2.2; 10.1.2, 10.2.2). Диффузия(75).
      Повышение температуры
      Трение (1.3)Сорбция(3.4).Механокалорический эффект(4.3.3) Скачок уплотнения(4.4.2)Тепловое действие токов и полей (6.4, 6.9, 6.10.1, 6.10.5, 7.1.3, 8.3)Термоэлектрические и термомагнитные явления (9.2.2, 9.2.3, 10.1.2, 10.2.2)Разряды в газах (11)Излучение (13.1, 13.2, 13.4.3, 13.4.6) Диффузия(3.5) Ультразвуковой нагрев(5.3)
      СТАБИЛИЗАЦИЯ ТЕМПЕРАТУРЫ
      Фазовые переходы (3.2, 7.5.3, 7.6.3, 8.1.3.1, 8.1.4.1)
      ИНДИКАЦИЯ ПОЛОЖЕНИЯ И ПЕРЕМЕЩЕНИЯ ОБЬЕКТА
      Реверберция (5.2.1) Ультразвук (5.3) Эффект Допплера-Физо (5.4.2) Интерференция (5.4.5) Голография (5.4.6) Пьезоэлекьтрический эффект (7.4.2) Оптические методы индикации (13) Механооптические явления (16.2). Поляризация (5.4.3) ЯМР (18.10) Магнитная индукция (6.7) Радиоактивные и другие метки.
      Управление перемещением обьекта
      Гравитация (1.2) Тепловое расширение (3.1) Центробежные силы (1.1.2) Закон Архимеда (4.1.1, 4.2.2,) Подьемная сила (4.5) Резонанс (5.1.3) Звуковое давление . Действие электрических и магнитных полей (6.1.1, 6.3, 6.7, 6.8, 6.10.2, 7.4.1, 7.4.3, 8.1.2, 8.1.3, 8.3, 8.5) Световое давление (13.1.1)
      УПРАВЛЕНИЕ ДВИЖЕНИЕМ ЖИДКОСТИ И ГАЗА
      Центробежные силы (1.1.2).Поверхностные явления,капилярность (3.3) Осмос (3.6) .Течение жидкости и газа (4.2) .Эффект Томса (4.4.1) Эффект Коанда (4.4.3) Волновое движение (5.4) Электрокинетические явления (12).Воздействие электрических и магнитных полей (6.3) (6.7, 6.8, 6.10.2, 7.4.1, 8.1. 2, с ферромагнитными добавками 8.1.3, 8.5) Свеиовое давление (13.1.1) Ионизация (11.1.4)
      УПРАВЛЕНИЕ ПОТОКАМИ АЭРОЗОЛЕЙ
      (ПЫЛЬ,ДЫМ,ТУМАН)
      Центробежные силы (1.1.2).Силы инерции и гравиьтации (1.1, 1.2). Дейсвтие ультразвука (5.3.4) Воздействие электрических и магнитных полей (6.1.1, 6.3, 6.7.2, 9.1.1). Световое давление (13.1.1) фото-и термо-форез,конвекция.
      ПОЛУЧЕНИЕ СМЕСЕЙ.ОБРАЗОВАНИЕ РСТВОРОВ
      Диффузия (3.5) Акустическая кавитация (4.8.2) Колебания , ультразвук (5.1, 5.3.2.5) Электрофорез (12.3)
      РАЗДЕЛЕНИЕ СМЕСЕЙ
      Гравитация.Центробежные силы (1.1, 1.2) Капилярный полуп роводник (3.3.9) Фазовые переходы (3.2) Сорбция (3.4) Диффузия (3.5) Осмос (3.6) Ультразвук.Стоячие волны (5.3.2.7) (5.4.1) Резонанс (5.1, 3, 13.4.3) Трибоэлектричество (9.1.1) Электроосмос и элктрофорез (12.1, 12.3)
      СТАБИЛИЗАЦИЯ ПОЛОЖЕНИЯ ОБЬЕКТА
      Гироскопический эффект (1.1.4) Стабилизация в электрических и магнитных полях (6.3, 6.10.3, 6.10.4, 8.1.1) Вязкоэлектрический эффект (4.2.4) Тепловое расширение (3.1.3)
      СИЛОВОЕ ВОЗДЕЙСТВИЕ.РЕГУЛИРОВАНИЕ СИЛ
      СОЗДАНИЕ БОЛЬШИХ ДАВЛЕНИЙ
      Силы инерции.Гравитация (1.1, 1.2) Тепловое расширение (3.1.1) Фазовые переходы (3.2, 7.6.2) Фотоадсорбционный эффект (3.4.2) Гидростатика и гидродинамика (4.1.2, 4.5, 4.7) Осмост (3.6) Воздействие электрических и других полей (6.7.1, 6.8, 8.1.2, 8.1.3) Пьезоэффект и магнистрикция (7.4.2, 8.3) Световое и звуковое давление (13.1.1) Упругие деформации (2.1.5)
      РАЗРУШЕНИЕ ОБЬЕКТА
      Силы инерции (1.1) Эффект Баушингера (2.1.4) Кавитация (4.8) Гидровлические удары (4.7) Ультразвук.Резонанс (5.3.1, 5.1.3) Пробой диелектриков (7.1.3) Лазеры (13.4.6)
      АККУМУЛИРОВАНИЕ МЕХАНИЧЕСКОЙ
      И ТЕПЛОВОЙ ЭНЕРГИИ
      Инерция (1.1) Фазовые переходы (3.2) Деформации (2) Пьезо эффект (7.4.2) Радиотермолюминисценция (15.4.1) Потенциальная энергия в поле гравитации (1.2)
      ПЕРЕДАЧА ЭНЕРГИИ
      Эффект Александрова (2.2) Тепломассообмен (3.7) Ультразвук (5.3) Волновое движение (5.4) Взаимная индукция (6.9. 1) Электромеханические эффекты (7.4) Взаимодействие электронов с веществом (17.4) Излучение (13.4) Лазеры (13.4.6, 17.6) Сверхпроводимость (6.6) Световоды (13.2.1) Тепловой диод (3.1.3) Гидровлические удары (4.7)

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16