Современная электронная библиотека ModernLib.Net

Инфодинамика, Обобщённая энтропия и негэнтропия

ModernLib.Net / Философия / Лийв Э. / Инфодинамика, Обобщённая энтропия и негэнтропия - Чтение (стр. 5)
Автор: Лийв Э.
Жанр: Философия

 

 


Вероятност-ный компонент содержится во всех в первичной реальности существующих системах. Они имеют бесконечно большую размерность, неопределённость в микромире, во времени и пространстве. Их энтропия приближается к бесконечности. В реальном мире нет абсолютно детерминированных систем. Имеются искусственно изолированные во времени и в прост-ранстве системы, в которых детерминированный компонент превалирует. Например, солнечная система. Движение планет подчиняется законам гравитации, предсказуемо по математи-ческим уравнениям. Однако, и эта система (орбита) изменя-ется по космическим масштабам быстро и солнце само тоже не существует вечно (около 5 млрд. лет). Мысленно можно создать модели, которые абсолютно детерминированные, т.е. исключают все случайности. Вероятность результата такой системы 1,0; ОЭ = 0. Например, система состоит из формулы 2 ? 2 = 4. Вероятность достижения целевой критерии 4 сос-тавляет 1,0; ОЭ = 0. Однако, такая система существует только в голове. В реальной жизни нет четырёх абсолютно одинаковых объектов, а при сложении разноценных систем результат становится неопределённым.
      Почти во всех системах неопределённость есть некото-рое отношение элемента, входящего в множество, к числу всех элементов в множестве. В каждом отношении сочета-ются случайные и неслучайные факторы. Соответственно с этим для уменьшения неопределённости системы необходимо сочетать статистическую теорию информации с использова-нием априорной информации, теорий, гипотез и других мето-дов эвристического моделирования, в том числе с экспе-риментами.
      Стохастичность и случайность можно считать синони-мами, также как и неупорядоченность и беспорядок. Имеются понятия для обозначения неопределённости в отдельных об-ластях: шум - в процессе инфопередачи, непредсказуемость - в прогнозах будущего, деструктивность - в структуре, рассеянность - в пространстве.
      СУЩНОСТЬ ИНФОРМАЦИИ
      Из огромного числа публикаций по проблеме сущности информации можно выделить два её основных значения.
      1. Давно применяемое "обыденное" значение, что сфор-мировал также Н.Винер: "Информация - это обозначение содержания, полученного из внешнего мира в процессе на-шего приспособления к нему и приспосабливания наших чувств [ 21 ]. Здесь информация выступает в роли знания, сообщения.
      2. Кибернетическое понятие информации, которое было сформулировано в основополагающих работах Н.Винера, осо-бенно К.Шеннона в 1948 году [ 25 ]. В теории Шеннона под информацией понимают только те передаваемые сообщения, которые уменьшают неопределённость у получателя инфор-мации. Следовательно информация измеряется разностью энтропий (Н) системы до и после получения информации. Если целевые критерии системы-приёмника информации обо-значить В, а событие в системе-передатчике А, то количество передаваемой информации:
      J (A, B) = H(B) - H(B / A) > - lg2 P(B) + lg2 P(B / A)
      В формуле выражен относительный характер среднего значения информации, как показателя зависимости между двумя событиями. Из формулы следует, что не существует абсолютной информации: есть информация относительно оп-ределённого события (критерия, цели) или объекта, содер-жащаяся в другом событии. Измерение энтропии системы имеет ценность потому, что позволяет оценить влияние собы-тия А на событие В в форме разности
      Н(В) - Н(В / А), т.е. по количеству информации. Последнее является мерой отношения, взаимосвязи между системами, явлениями, процессами, а не показателем состо-яния систем.
      Концепция Шеннона в принципе не вызывает возраже-ний и нашла широкое применение. Однако, существующие формулы теории информации предназначены для обмена ин-формацией между относительно простыми системами и по ка-налам связи с одно-трех-мерными сигналами. При примене-нии формул для расчёта обмена информацией между сложны-ми системами (обладающими высокими ОЭ и ОНГ), необхо-димо их уточнять и дополнять с учётом следующих факторов.
      1. Целевые критерии реальных сложных систем зависят обычно не от одного события или фактора другой системы, а от многих. Последние могут быть зависимыми также между собой. В таком случае приёмник информации получит одно-временно многомерную информацию от многих источников в комплексе.
      2. При уменьшении ОЭ (увеличении ОНГ) системы, принимающего информацию, используются не только пара-метры состояния отправной системы, но и обобщённые поня-тия, символы, формулы, закономерности и т.д. Эта, т.н. априорная информация, может быть получена как от системы приёмника, так и отправителя. Влияние этой априорной ин-формации должно быть учтено при расчётах передачи ин-формации.
      3. Нельзя исключить возможность, что в результате по-лучения информации общая максимально возможная энтро-пия системы-модели увеличивается. Могут появляться ранее неучтённые факторы-размерности или расширены пределы независимых переменных. Если это происходит, необходимо это проверить и учесть.
      Таким образом, практические расчёты передачи инфор-мации значительно сложнее, чем просто оценка уменьшения ОЭ системы, особенно для сложных многофакторных систем. Улучшенную, но не совершенную, формулу для расчёта ин-формации можно представить следующим образом (Н можно заменить на ОЭ):
      J (A, B) = H (B) + DиH (B) - е H (B / Ai), где:
      H (B) - энтропия системы по целевому критерию В,
      DиH(B) - увеличение максимальной энтропии системы В в результате расширения пространства состояния,
      H(B/Ai) - условная энтропия относительно целевого критерия В при выполнении события Ai и связанных с этим закономерностей и зависимых событий,
      Ai - множество событий, закономерностей и факторов, влияющих на критерий В.
      Так как в мире существует неисчислимое количество разных и разнообразно связанных систем, то и информация между ними может иметь огромное количество вариантов. Особенности и степень обобщённости понятий необходимо учитывать при уточнении данных и формул расчёта. Однако, для избежания ошибок при истолковании и анализе инфор-мационных процессов, нельзя отклоняться от их основного содержания, от уменьшения ОЭ. Этот основной постулат наи-более общий и действует для любой системы универсума: как в неорганическом мире, так и в живых организмах, в соз-нании и в космосе. Сущность информации заключается в сле-дующем:
      Обобщённой информацией является любая связь или отношение между системами, в результате которой повы-шается обобщённая негэнтропия (ОНГ) хотя бы одной системы.
      Так как элементы системы можно рассматривать как от-дельные системы, то и связи между элементами внутри систе-мы могут являться информацией. В то же время далеко не все связи или сообщения являются информацией. Если они не повышают ОНГ, они могут являтся шумом, деструктирую-щим действием, в отдельных случаях, в живой природе и дез-информациeй. Слово "обобщённость" включено в дефиницию для того, чтобы подчеркнуть, что универсальность понятия достигается в том случае, если учтены и оптимизированы все влияющие на целевые критерии факторы. К этим относятся и априорные формы информации. В случае упрощённых мо-делей систем и инфопередаче по классическим каналам связи можно применять и упрощённую дефиницию информации:
      Информацией является связь или отношение между системами, в результате которой повышается негэнтропия системы-приёмника.
      Одним из основных показателей состояния и форм су-ществования любых систем является ОНГ (связанная инфор-мация). Каждая система характеризуется обеими показа-телями как ОЭ, так и ОНГ. Их измеряют в одних и тех же единицах. ОНГ имеет отрицательный знак, но абсолютные цифры ОНГ и ОЭф не равны. Для одной системы и одного целевого критерия эти показатели связаны следующей формулой:
      ОЭф + ОНГф = ОЭм , где:
      ОЭф - фактическая ОЭ системы,
      ОНГф - фактическая ОНГ системы,
      ОЭм - максимально возможная ОЭ системы.
      Если известны 2 из трёх показателей, то третий можно рассчитать. Таким образом, каждая система имеет три час-тично зависимые характеристики состояния. Это имеет какую-то аналогию с распределением в системе внутренней энергии.
      U = F + G = F + T . S, где:
      U - внутренняя энергия,
      F - свободная энергия,
      G - связанная энергия,
      S - энтропия,
      T - абсолютная температура.
      ИНФОДИАЛЕКТИКА
      Философская сущность понятия информации до насто-ящего времени полностью не выяснена. Классики теории ин-формации и кибернетики не дали проблеме исчерпывающего объяснения. Н.Винер указал, что информация является ин-формацией, не материей или энергией. Под понятием "ма-терия" он подразумевал вещество и массу. Если под материей подразумевать всю объективную реальность, то информация содержится в этом понятии. Указание того, чем информация не является, не решает проблему. Дефиниция, что инфор-мация является мерой упорядоченности, организованности не решает вопрос, на основании каких критериев устанавли-вается эта мера, и относительно чего?
      Многие заблуждения вызваны т.н. теорией отражения диалектического материализма [46, 47]. Уже это слово - отражение, может вызвать только недоумение. Полное отра-жение мира во всем его многообразии или даже его ма-ленькой части, невозможно. Захламление сознания несущест-венными деталями только затруднила бы процессы обработки информации и моделирования. В действительности как созна-ние, так и органы приёма информации выборочно принимают её, обрабатывают и сохраняют в памяти. В публикациях опи-сано много вариантов т.н. отражательной концепции инфор-мации. И.В.Новик связывает информацию с упорядоченным отражением, тогда как неупорядоченное хаотическое отраже-ние обозначается понятием "шум" [ 36 ]. Информацию старались по разному соединить с отражением. Её определили как сторону (часть) или вид (форма) отражения, категорию отражения, разнообразие отражения, "передаваемую" часть отражения, инвариант отражения, необходимую предпосылку отражения, сторону отражения, допускающая передачу и объективирование, характеристику, аспект отражения, актив-ное, целесообразное отражение. Бросается в глаза, что поня-тие "отражение" не содержит дополнительную информацию и его параллельное информации рассмотрение не имеет смысла.
      В процессе передачи информации решающее значение имеет система принимающая её, точнее ОНГ системы. Дейст-вительно, если не было бы системы приёма с его ОНГ, передача информации не могла бы состоятся. Следовательно основную роль в приеме, выборе и оценке имеет ОНГ или связанная информация в системе. Информация является функцией процесса, ОНГ - функцией состояния системы и имеет свойства инерции и памяти.
      Представляют интерес и взаимосвязи между инфор-мацией, ОНГ и диалектическим методом их исследования. До сих пор недостаточно раскрыто информационное содержание диалектического метода. Уже в античные времена диалектика означала выяснение истины (т.е. подлинной информации) путём проведения диалога, противоборства разных мнений, факторов, идей. Действительно, к истине приближаются только тогда, когда выслушают мнение всех заинтересован-ных сторон. Значит, уже в античные времена косвенно нача-лось применение методов, которые сейчас известны под наз-ванием системного и многофакторного анализа информации.
      Диалектика изучает взаимные связи, взаимообуслов-ленности и процессы развития. Однако, она не дала ещё ис-черпывающего ответа на вопросы об их информационной сущности. Прогрессивное развитие в самом общем виде озна-чает повышение ОНГ системы. На основе этого и по законам термодинамики можно сделать вывод, что прогресс не может протекать во всех областях универсума, а только локально. В окружающем эти места мире (среде) ОНГ должна соот-ветствено или в ещё большей степени уменьшаться. Для оп-ределения путей и локальных мест развития (повышения ОНГ) недостаточно выяснить наличие противоречий и де-структивных процессов. Для этого требуется ещё определение каких-то общих увеличений упорядоченности, возникновение новой структуры, т.е. обработка и хранение полученной ин-формации. Те системы, которые получат повышенное коли-чество информации из окружающей среды, будут более кон-курентоспособными по сравнению с другими системами. Поз-нание, как указал уже И.Кант, является далеко не просто отражением всего существующего, но на него влияет и дея-тельность конструктивного мышления. Это отражает диа-лектическое соединение взаимовлияния субъекта и объекта, передачи информации по концепции целостности у пред-ставителей немецкой классической философии (И.Фихте, Ф.Шеллинг, Г.Гегель).
      Классическая диалектика не раскрыла количественную сторону своих понятий: связь, взаимообусловленность, раз-витие, борьба противоположностей и др. Этим занимается но-вая научная дисциплина - инфодиалектика.
      Инфодиалектика исследует информационную природу всех категорий классической диалектики и возможностей применения диалектических принципов для объяснения и применения информационных процессов, в том числе из-менений ОЭ и ОНГ.
      При совмещении методов диалектики и теории инфор-мации они взаимно обогащают друг друга и проблемы найдут более количественную, т.е. научную оценку. Для объяснения протекания многих информационных процессов в быстро раз-вивающихся, противоречивых, многоцельных и вероятност-ных системах метафизические догмы непригодны. Всё разно-образие систем, целей, свойств, взаимовлияющих факторов, случайностей может охватывать только диалектическое мышление.
      Инфодиалектика внесла ряд изменений и усовершенст-вований в принципы классической диалектики:
      1. Прогрессивное развитие не является общим, все-местным свойством всех систем, но локальным явлением. Оно связано с повышением ОНГ системы, но одновременно с этим сопровождается с повышением ОЭ, вырождением, уменьше-нием упорядоченности окружающей среды.
      2. Познание является не только получением сведений от реального мира, а объективно существующим информационным процессом. Инфодиалектика не признаёт теорию отражения и дуалистический принцип идеальной сущности сознания. Соз-нание, как и все другие информационные процессы, объек-тивно существует в мире, как и вещество и энергия.
      3. Закон "отрицания отрицания" объясняется борьбой двух противоположных процессов. Общее направление повы-шения ОЭ отрицает упорядоченность, организованность. Накоп-ление ОНГ, наоборот, отрицает ликвидирует ОЭ, увели-чивает упорядоченность.
      4. Поскольку ОНГ существует как в микро-, так и в макромире объективно рядом с веществом и энергией, во времени и пространстве, то необходимо определить их соот-ношение, взаимодействие, диалектические единство и про-тиворечия.
      Так как информационные процессы являются основными в явлениях, раньше исследуемых диалектическими методами (развитие, изменение, борьба противоположностей и др.), то их совместное изучение по критериям ОЭ и ОНГ даёт целостную картину мира. Развитие включает противоречивое взаимодействие тенденций двух противоположных на-правлений:
      тенденция стабильности (сохранение гомеостазиса), отрицательные обратные связи
      тенденция поиска новых, более рациональных спосо-бов использования ресурсов энергии, вещества и ОНГ, использует положительные обратные связи.
      Диалектика в развитии выражается в том, что каждое новое действие порождает новое противодействие, после чего порождаются новые конфликты и необходимость подыскания компромиссов. Основные механизмы развития одинаковы как в неживом и живом мире, так и в обществе и состоят из эле-ментов изменчивости, наследственности и отбора. Диалек-тика самоорганизации (по принципам синергетики) выра-жается в том, что одни и те же факторы изменчивости (про-явление стохастичности и неопределённости) могут стимули-ровать как создание, так и разрушение структур и элементов системы. Сочетание развития и стабильности всегда противо-речиво, она представляет собою непрерывную цепь компро-миссов между противоречивыми тенденциями.
      Диалектические методы помогают обобщать, выяснять сущность многих проблем, связанных с вопросами пере-работки и применения информации:
      1. Вопросы ОНГ систем и их изменения связаны с глу-боко противоположными тенденциями: с одной стороны - дисси-пация энергии и рассеяние информации, с другой - локальное повышение ОНГ и концентрация энергии. Неопределённость поведения системы - развитие или деградация, зависит от не всегда предсказуемого соотношения скорости роста новых и старых элементов структуры.
      2. Между возможными стабильными состояниями сис-темы возникает конкуренция, отбираются "наиболее эко-номные" варианты, которые с наиболее высоким эффектом используют полученную энергию, вещество, информацию. Для выяснения наиболее эффективных и жизнеспособных вариантов в поисковом поле возможностей требуется приме-нения (в сочетании информации с методами системного анализа) экспертных систем и диалектический подход к сложным проблемам.
      3. Существуют общие принципы отбора оптимальных вариантов, которые называют по разному (принцип мини-мума диссипации энергии, минимума потенциала рассеяния, минимума производства или экономии энтропии).
      Обобщённый принцип диссипации открывает неко-торые возможности прогноза прогрессивного развития (уве-личения ОНГ) систем:
      Если в данных конкретных условиях возможны не-сколько альтернативных вариантов упорядочения системы, согласующихся с другими принципами отбора, то реализу-ется та структура, которой отвечает минимальный рост (или максимальное убывание) ОЭ при максимальной степени поглощения поступающих извне энергии, вещества и ОНГ.
      Данный принцип действует во всех системах, даёт воз-можность для широких обобщений и аналогии. В то же время применение его в сложных системах с высоким ОЭ и ОНГ требует сочетания последних с системным анализом и прин-ципами эвристического программирования.
      4. Положение диалектики, по которому развитие происходит по спирали, указывает на оптимальное направ-ление для повышения ОНГ систем при минимальных потерях энергии и информации. Такой путь является по возможности близким к равновесному состоянию системы и окружающей среды. Здесь реализуется диалектическое противоречие: опти-мальный путь к неравновесию идёт через множества вре-менных равновесий.
      5. При оптимизации процессов полезно применять диа-лектический принцип "крайности сходятся". Чем дальше от оптимальности, в любую сторону, тем больше понижение ОНГ, тем больше потери ресурсов.
      6. Особого подхода требуют вопросы диалектического единства инфопроцессов на микро- и макроуровне и в соз-нании. Существующие в микромире вероятностные факторы и неопределённости можно характеризовать количеством ОЭ, с другой стороны, их квантовый характер указывает на сущест-вование информационного и негэнтропийного компонента.
      МЕХАНИЗМ ПРОЦЕССА ПЕРЕДАЧИ
      ИНФОРМАЦИИ
      Процесс передачи информации не происходит только по специальным инфоканалам (электронные, компьютерные сети и др.). Инфообмен протекает между большинством систем в универсуме, т.е. он является одним из самых распрост-ранённых явлений мира. Только в большинстве систем он протекает в скрытом, трудноисследуемом виде. Системы имеют вокруг себя гравитационные и др. поля (или искрив-ления полей), которые могут оказать влияние на другие системы. Поля можно рассматривать в качестве отдельной системы, обладающей массой, энергией и ОНГ. Поля раз-личаются по интенсивности, форме, преимущественного вида проявления (волны, вибрации и др.). Внешнее поле может служить каналом связи между системами. Например, даже такая со строго определенными пределами инертная вещест-венная система как камень, даёт ряд сигналов во внешний мир: гравитационное поле, отражение света, инфракрасное тепловое излучение и др. Мысль человека также является системой и далеко не изолированной. Мозг связан при по-мощи вегетативной нервной системы с многими органами человека и оставляет там какой-то след. Хранение мысли в памяти зависит от существенности её для жизни человека.
      Более существенную роль в процессе передачи инфор-мации играет система-приёмник. Структура каждой системы имеет какую-то избирательность-чувствительность к сигналам от внешнего мира. Информационную чувствительность от-носительно энергетического воздействия можно выразить увеличением ОНГ системы после получения одной единицы
      энергии ОНГ . Этот показатель колеблется в очень больэнергия
      ших пределах. Поток энергии может содержать малое или огромное количества ОНГ относительно целевой критерии системы. Особенно, если использовать современные техни-ческие средства для усиления сигналов. Например, совре-менными приборами установлено существование галактик на расстоянии десятки миллиардов световых лет от земли. Ко-нечно, поток энергии или вещества с такого расстояния нич-тожно мал, практически его нет. Тем не менее, получаемая информация может быть очень ценной. Некоторые глубо-ководные рыбы могут регистрировать изменения электри-ческого поля (по плотности тока) менее чем 10-11 ампер. Огромные потоки информации могут содержаться и в пото-ках вещества. В системе переработки аммиака окислением в азотную кислоту 1 г катализатора может обеспечить произ-водство 1 тонны азотной кислоты.
      Чем больше система-приёмник содержит ОНГ, тем больше она находится в неравновесном состоянии. Тем боль-ше система является неустойчивой, чувствительной и реакци-онноспособной к внешним воздействиям. Особенно чувст-вительной система становится в близости к точке бифур-кации, где направление дальнейшего изменения структуры зависит от ничтожных внешних воздействий. Повышение ОНГ наблюдается только в том случае, если скорость возни-кновения элементов новой структуры превышает скорость разрушения элементов старой структуры.
      Для определения количества и качества информации предложены ряд других невероятностных методов. Вместе с тем все подобные теории обнаруживают нечто общее со ста-тистической теорией: все они определяют количество инфор-мации как уменьшение неопределённости. Только неопре-делённость определяется по другим методам. Одним из вы-двигаемых ныне невероятностных подходов является пред-ложенный А.Н.Колмогоровым метод определения алгорит-мического количества информации. Последний определяется по "сложности последовательности", т.е. по минимальной дли-не программы её описания. Длина программы измеряется количеством команд (операций), позволяющих воспроизвести последовательность событий. Легко видеть, что и здесь имеется дело с определением неопределённости и её уменьше-нием (только по методу программ).
      Во многих публикациях высказано предположение, что статистическая теория не рассматривает вовсе качественную и полезностную сторону информации. Предусматривается, что качественной стороной занимаются такие науки, как семи-отика - теория знаковых систем, и её разделы; синтактика исследование формальных отношений между знаками; семан-тика - содержание информации; прагматика - вопросы опре-деления ценности информации. Однако, при анализе любых альтернативных методов существо вопроса основывается на определении уменьшения неопределённости. Методы разли-чаются по структуре моделей и по терминам обобщенных понятий и их передачи. Для определения качественного со-держания или полезности информации также необходимо сначала определить цель и критерии оценки её достижения и условные энтропии по каждым факторам. Факторами могут служить и словесные понятия или разные методы по оценки ценностей информации. Все альтернативные методы могут играть дополнительную роль при определении условных вероятностей выполнения критерии цели. Однако, они не из-меняют сущность ОЭ и ОНГ систем.
      6. СТРУКТУРА ИНФОСИСТЕМ (ИС)
      Поскольку универсум состоит из систем и все системы и их элементы содержат связанную информацию (ОНГ) и об-мениваются ею, то весь мир можно рассматривать как ги-гантскую инфосистему. Последняя иерархически разделяется на все более мелкие инфосистемы до кванта света, энергии, пространства или времени. Инфосистемы обмениваются меж-ду собой или между элементами информацией [ 39 ]. Но такой обмен происходит строго избирательно, в условиях конкуренции. Могут произойти односторонние или взаимные обмены, при различных отношениях количества и эффектив-ности информации. Обменом информацией являются также потоки её связанной формы ОНГ, уплотнённой в веществе и энергии. Однако, информация может быть передана и при помощи ничтожно малого количества вещества или энергии, даже через различного рода вибрации полей. Например, сол-нечную систему можно рассматривать в виде инфосистемы в которой элементы-планеты постоянно обмениваются инфор-мацией с солнцем. Траектория движения планет определена гравитационным полем (ОНГ) солнца. Это не значит, что солнце не посылает земле ОНГ также в виде солнечного облучения, космических лучей, потока нейтрино и других микрочастиц. Кроме ОНГ они могут содержать допол-нительную информацию (в виде аномальных вибраций) о состоянии солнца и космоса.
      Как и все системы, инфосистемы должны иметь свои структуры, элементы и отношения (связи) между ними [ 48 ]. Элементами в инфосистеме служат ОНГ (память), от-ношениями между ними служат каналы и потоки ин-формации. Каждую инфосистему характеризует целостность. Выделение её из других систем выражается в том, что отношения между элементами инфосистемы сильнее, чем между элементами других систем. Целостность инфосистем можно понимать в более или менее строгом значении. При слабой целостности существенным признаком считается только самостоятельность и автономность инфоканалов, спо-собных работать без других систем. Строгая целостность показывает, что из системы нельзя удалить или заменить ни одного инфоканала или ОНГ без того, чтобы система не исчезла. Целостность ИС предполагает также наличие согласованного функционирования её элементов для вы-полнения явной или скрытой цели. В случае живых, сознательно или искусственно созданных инфосистем можно говорить о наличии цели или целесообразности. В не-органических структурах можно говорить о назначении или о свойствах инфосистем. Приобретение системой полезных свойств может дать ей существенные преимущества в "борь-бе за существование" и может рассматриваться как не-осознанная цель системы. Важность такой характеристики как свойство системы подчёркивает и параметрическая теория систем. В этой теории исходят из того, что система определяется при помощи параметров трех категорий: эле-ментами, соотношениями между ними и свойствами. Перенося выводы теории к инфоструктурам, они состоят из ОЭ, информации и ОНГ, а также из их соотношения.
      ОПРЕДЕЛЕНИЕ СТРУКТУРЫ ИС
      Обобщённое понятие структуры инфосистем следующее.
      Структурой инфосистемы является совокупность взаи-моотношений инфо-перерабатывающих элементов (память, ОНГ) путём обмена информации.
      Вид структуры зависит от закономерностей инфопере-дачи между элементами и от степени инфопереработки в элементах [ 5 ]. Все элементы должны иметь информаци-онные связи с другими элементами системы, но не всеми. Информационные связи могут быть детерминированными или функциональными, но они могут быть выражены и в форме стохастических или статистических закономерностей. Струк-тура является отдельной составляющей в инфосистеме, которой её элементы не содержат, но содержит целостная система.
      ИЕРАРХИЯ ИНФОСИСТЕМ
      Так же, как для всех систем, для комплексов инфо-систем (ИС) существует принцип иерархичности. В качестве фактора, вызывающего иерархичность, служит целостность ИС, что проявляется в отношениях ИС с внешней средой. ИС можно рассматривать, как уровень иерархии в общей сис-теме, которая занимает как её, так и среду (внешние ис-точники и потребители информации). Так можно подни-маться по уровням иерархичности вверх до инфосистемы всего универсума или вниз - до квантов. В инфосистемах можно исследовать отдельно их структуры и функции, но они тесно связаны. Любая функция ИС может быть реализована только посредством её конкретной структуры.
      Существует три вида иерархических комплексов ИС.
      1. Иерархия ИС объективной реальности. Обладают ОЭ, близкой к бесконечности и требуют для исследования упрощений при помощи моделей.
      2. Иерархия ИС вторичной реальности, сознания. Су-ществуют также объективно, но состоят в основном из систем моделей в голове и творениях людей.
      3. Иерархия искусственно людьми созданных ИС. Сюда относятся все электромагнитные, электронные и электри-ческие системы связи, библиотеки, телевидение, радио и т.д.
      ИНФОСИСТЕМЫ НЕЖИВОЙ И ЖИВОЙ
      ПРИРОДЫ
      Может возникать вопрос, справедливо ли говорить об ИС-ах в неорганическом мире? Ведь процессы там протекают по законам физики и химии, не по теории информации. Однако все законы физики и химии являются только упро-щёнными моделями первичной реальности с ограниченным количеством и пределами факторов. Они только при-ближённо гомоморфны с ней, не учитывают неопреде-лённостей и вероятностных процессов реального мира. Для оценки неопределённостей требуется выяснение ОЭ, ОНГ и условных вероятностей влияния факторов.
      Исследование сложных ИС начинается с изучения элементарных систем. Элементарная ИС состоит или из двух элементов ОНГ, которых соединяет по меньшей мере одна информационная связь (А) или из одного элемента ОНГ, который имеет каналы входной и выходной информации (Б)
      Вариант А Вариант Б ОНГ1 И ???R ? - - - ОЭ ОНГ2 Ивх ???R ? - - - ОЭ1 ОНГ Ивых ???R ? - - - - ОЭ2
      Элементарная ИС типа В.Эшби. Эленментарная ИС типа О.Ланге.
      В элементах, которые отправляют информацию, увели-чивается ОЭ.
      Элементарные ИС типа В.Эшби (А) моделирует инфо-обмен между двумя элементами связанной информации ОНГ. В качестве примеров такого типа из неживой природы можно привести следующие:
      1. Замерзание водоёма при отрицательных температурах окружающего воздуха. Элементы ОНГ: вода и окружающая среда. Вода при замерзании уменьшает свою ОЭ, увеличивает ОНГ и отдаёт тепло воздушной среде. ОЭ среды увели-чивается. При этой общей схеме локальные процессы зависят от многих вероятностных факторов, в частности соотношения ОЭ и ОНГ.
      2. Соединение атомов в молекулы. Степень свободы и ОЭ атомов уменьшается, ОНГ увеличивается. Кажется, что реакции между атомами и молекулами протекают по хими-ческим законам и уравнениям. В действительности химики знают, как много в химических экспериментах на скорость и полноту реакций, на их равновесие оказывают влияние вероятностные свойства, дополнительные условия реакций, реакционная среда, катализаторы и др. факторы.
      3. Адсорбция газа на поверхности твёрдых тел или аб-сорбция его в жидкость. Молекулы газа теряют при дви-жении часть степеней свободы, уменьшается их ОЭ, повы-шается ОНГ. Следовательно передаётся информация от элемента твёрдого тела или жидкости к молекулам газа. Выделяется теплота (ОЭ), которая передаётся твёрдому телу или жидкости.

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15