Современная электронная библиотека ModernLib.Net

Беседы о рентгеновских лучах

ModernLib.Net / Власов Павел / Беседы о рентгеновских лучах - Чтение (стр. 2)
Автор: Власов Павел
Жанр:

 

 


      Оказывается, можно видеть из-за угла! Гравитация изогнет лучи от загороженного источника и направит их нам в глаза. Очевидно, это относится и к незримой электромагнитной радиации: у нее ведь та же природа.
      - Да, но одно дело свернуть с прямого пути и совсем другое - попасть в некую гравитационную ловушку, из которой вообще нет выхода. Может ли такое случиться с излучением, тем более столь жестким, всепроникающим, как рентгеновское?
      - Представьте такую ситуацию: его узкий пучок настолько искривлен встречными звездами, что согнут, как говорится, в бараний рог. Можно ли вырваться из замкнутого круга? А теперь вообразите столь массивный икс-объект, что он не выпускает из своих гравитационных объятий ни единую крупицу материи. Если же он пленил частицы (они же волны), то почему не может пленить и волны (они же частицы)?
      Как сказал В. Маяковский, "ведь еели звезды зажигают, значит, это кому-нибудь нужно"? Речь пойдет именно о них, с той лишь разницей, что их не только зажигают, но еще и гасят. Разумеется, в воображении, однако, на основе строгих выкладок, теоретических и экспериментальных.
      Как ни поразительны дива дивные новейшей астрономии, о которых уже говорилось, в ее кунсткамере есть нечто подиковинней. Например, настоящий небесный монстр - "пожиратель вещества и излучения", один из самых экзотических феноменов большого космоса. Это знаменитая "черная дыра", вопрос о которой стал едва ли не центральным для астрофизиков, so всяком случае, "горячей точкой" их дискуссий.
      Не исключено, что это в буквальном смысле слова горячая точка. Представьте: перед нами опять-таки результат гравитационного коллапса, но такого, который обходится без грандиозного космического фейерверка взрыва, разбрасывающего огромные массы огненного газообразного шара на все четыре стороны. Гигантская, в несколько раз крупнее Солнца, звезда сохраняет свое вещество при катаклизме целиком, и эффект сжатия оказывается еще более впечатляющим, хотя и не столь зрелищным. Она просто пропадает для внешних наблюдателей, превращаясь в точку горячую, но не светящуюся. Мгновенно "схлопывается", стиснутая со всех сторон чудовищным прессом собственного гравитационного поля. Материя конденсируется еще более плотным сгустком, чем даже в нейтронных звездах.
      Никакое излучение, видимое или незримое, не может выйти из "черной дыры" никогда. Не только корпускулярные частицы, но даже электромагнитные кванты удерживаются там неимоверно мощным полем тяготения, похороненные, как в могиле.
      И все же кое-какие сигналы из ее ближайшего окружения к нам доносятся. Дело в том, что она, подобно нейтронной звезде, образует двойную систему с крупным светилом и непрестанно заглатывает его плазму, которая обрушивается стремительным водопадом, раскаляясь до температур в десятки миллионов градусов.
      В тысячные доли секунды выделяется больше энергии, чем при одновременном взрыве 100 миллиардов мощнейших водородных бомб.
      Как мы уже знаем, в таких условиях рождается рентгеновская радиация. Вот она-то и дает нам знать хотя бы о самом существовании такого коллапсара, этой поистине всепожирающей пасти.
      Наиболее вероятный кандидат в "черные дыры" - Лебедь Х-1, удаленный от нас на 8 тысяч световых лет.
      Как он выглядит, если гипотеза правдоподобна? В точности никто сказать не может и не сможет, вероятно, никогда. Все же человеческая мысль устремляется "через не могу" за пределы доступного непосредственному изучению.
      Считают, что это чрезвычайно гладкое тело. Оно не способно ни треснуть, ни расколоться на куски, ни потерять хотя бы крупицу своего вещества. Оно может лишь наращивать массу, равную 10 солнечным, и размеры (диаметр около 3 километров). Плазма, которую оно засасывает, окружает его сияющей короной, но километрах в 30 от центра светимость пропадает, и под ярким ореолом зияет черное пространство. Там - "дорога с односторонним движением", "путь в никуда", где все "проваливается в тартарары"...
      По оценкам академика Я. Зельдовича и И. Новикова, в таких "дырах" уже нашли могилу десятки миллионов звезд, что соответствует 0,0001 массы нашей Галактики. Допускают, что эти "пожиратели светил" могут в конце концов поглотить все вещество вселенной, 99,99 процента которого сосредоточено именно в звездах.
      Не способные члениться, дробиться, распыляться, "Гаргантюа небес" в состоянии сливаться с себе подобными. Где же предел такой концентрации?
      Ответить помогает так называемое реликтовое излучение (от латинского "пережиток", "остаток").
      Оно напоминает бутылку с запиской, которую вылавливают через десятилетия. Путешествуя по бескрайним просторам космического океана, око доходит до нас с опозданием, рассказывая сегодня о делах давно минувших дней. О событиях тех далеких эпох, когда вселенная была совсем молоденькой, насчитывала миллионы лет, а не миллиарды. По этим и другим свидетельствам ученые могут представить ее детство. В возрасте около суток она была более горячей (100 миллионов градусов) и не столь разреженной (10^-5 грамма на кубический сантиметр), как ныке. А раньше? Еще горячее, плотнее и меньше.
      Допускают, что в первые мгновения своего существования она представляла собой каплю невообразимой плотности -1091 грамма на кубический сантиметр, а это в 1090 раза больше, чем у рт"ти. Что касается размеров этой капли, то их малость и подавно невообразима: 10^-12 сантиметра. Как у электрона!
      На первый взгляд нам ничего не остается, как воскликнуть вслед за Алисой в "Стране чудес": "Нельзя же верить в невозможное!" Но почему невозможьи?
      В таких условиях известные нам законы физики едва ли применимы в той же мере, как при объяснении привычных для нас фактов.
      Наука на грани фантастики? Скорее уж вперелч фантастики, чем у ее порога. Как заметил советский астрофизик И. Шкловский, "железная звезда" из романа И. Ефремова "Туманность Андромеды" выглядит наивно рядом с вполне реальным светилом, очутившимся в "гравитационной могиле"...
      Вполне реальным? Это ведь тоже воображаемая картина! Да, но она строго отражает физическую реальность. Ведь если звезды зажигают или гасят, значит, это не просто "кому-нибудь нужно", а с необходимостью следует из теоретических предпосылок и экспериментальных фактов, объединяемых в гипотетическую картину. В картину, которая непрестанно уточняется.
      В отличие от фантастики наука не переиздает свои сочинения стереотипно. Напротив, корректирует и даже перечеркивает их безжалостно, если они перестают соответствовать современному уровню знанииТак и в рентгеновской астрономии. Единичные кванты незримого излучения, собираемые заатмосферной аппаратурой, сливаются в нарастающий поток информации и о "черных дырах", и о прочих икс-объектах, которые сегодня рисуются дерзкими гипотезами, а завтра будут описываться строгими теориями. Понятно, почему с таким нетерпением ожидаются новые сведения: не ради сенсации, а ради информации, позволяющей сделать еще шаг-другой на пути от гипотезы к факту.
      Многие из них получены, например, на советской орбитальной станции "Салют-4". Там неплохо поработали рентгеновские телескопы РТ-4 и "Филин". Первый регистрирует мягкую радиацию, которая ослабляется особенно заметно. Второй - и мягкую и жесткую в широком диапазоне, позволяя тщательно исследовать самые разные ее источники. Космонавтами изучались и Лебедь Х-1, и Скорпион Х-1, и другие объекты.
      Идет планомерное кропотливое накопление данных.
      А тем временем специалисты думают, как поднять работу на качественно иной уровень.
      Можно создать, например, на Луне обсерваторию с крупными рентгеновскими телескопами. Там им не будет мешать даже разреженная газовая среда, через которую движется космический аппарат на любой околоземной орбите, даже весьма высокой (верхняя атмосфера простирается на многие сотни километров над плотными воздушными слоями). Но особенно важно, что там нет радиационных поясов, подобных тем, которые образовались вокруг нашей планеты. В них ведь накапливаются заряженные частицы (электроны, протоны), поставляемые космическими лучами. А частицы нет-нет, да и заставляют срабатывать счетчики кваптоз.
      Эксплуатировать на благо рентгеновской астрономии не только искусственные, но и естественный сп)ткш:
      Земли вполне реально. Достаточно вспомнить советские луноходы. Первый же из них продемонстрировал высокую эффективность автоматики. Активно действовал на Луне многие месяцы, столь длительный срок пребывания для людей там пока еще просто немыслим.
      Рентгеновские телескопы лунной обсерватории можно нацелить в любой пункт небесной сферы, чтобы затем удерживать в таком положении средствами автоматической наводки долгие часы и дни. Не проблема и получение информации, накапливаемой в запоминающих устройствах и передаваемой на Землю в сеансы телеметрической связи.
      На "Луноходе-1", который успешно функционировал в Море Дождей с 17 ноября 1970 года по 4 октября 1971 года, был испытан счетчик-телескоп, созданный в ФИАНе (Физическом институте Академии наук СССР имени П. Лебедева). Первый опыт длительной эксплуатации такого прибора в суровых условиях Луны дал хорошую основу для дальнейшего совершенствования подобной аппаратуры.
      Сегодня небесная рентгеновская радиация улавливается телескопами двух типов - счетчиков ы ми и зеркальными. Последние интересны тем, что используют ее малоизвестное неспециалистам свойство.
      Казалось бы, всепроникающая, она тем не менее способна практически полностью отражаться от очень гладкой металлической поверхности, когда падает на нее под малым углом, почти скользя по касательной.
      Тщательно отполированное зеркало напоминает сужающийся, имеющий параболическое сечение стакан без дна. Зеркало фокусирует невидимые лучи, направляя их концентрированным потоком на детектор. А тот регистрирует их в виде отдельных импульсов (например, разрядов, вызываемых ионизирующими квантами в специальной трубке, где создано электрическое поле высокого напряжения).
      Как видно, зеркальный телескоп - одновременно и счетчиковый (не по названию, а по существу). Последний отличается от первого в принципе тем лишь, что не фокусирует незримую радиацию. И улавливает ее не через одно оконце, а сразу множеством "глазков", расположенных впритык, как ячейки сотов, на плоской платформе. Детектор тоже не один, а десятки.
      У американского спутника "Ухуру" было, если помните, две такие обоймы, площадью 880 квадратных сантиметров каждая. Зеркальный телескоп, разработанный в ФИАНе, имеет никелевый параболический отражатель диаметром 20 сантиметров. Недалек день, когда в заатмосферном пространстве появятся намного более крупные приборы обоих типов. Счетчиковые - площадью в несколько квадратных метров. Зеркальные - поперечником около метра и длиной 5-6 метров. Почему и те и другие?
      Каждый имеет свои преимущества. Если мягкая радиация хорошо отражается от полированных металлических стенок, то жесткая все-таки проходит через них. Зато фокусирующее устройство имеет в десятки раз более высокую чувствительность, чем нефокусирующее. Концентрирование потоков позволяет гораздо точнее измерять положение на небе даже слабых источников. С другой стороны, нужны и обычные счетчики рентгеновских и гамма-квантов, установленные десятками, сотнями на больших панелях и спосвбные охватывать всю панораму икс-объектов: четкость искупается масштабностью.
      Укрупнение и усовершенствование этих инструментов помогут лучше решать главную проблему - надежнее определять координаты рентгеновских излучателей, всех вместе и каждого в отдельности, что особенно трудно делать, когда яркость мала.
      Удастся зафиксировать еще более удаленные от нас и потому кажущиеся слабыми икс-объекты. Диапазон наблюдаемой вселенной раздвинется для рентгеновской астрономии в десятки раз.
      Впрочем, техника техникой, но даже самая совершенная автоматика не сведет на нет роль человека.
      И здесь нельзя недооценивать огромные возможности пилотируемых космических кораблей и прежде всего орбитальных станций. Они все шире будут использоваться в заатмосферных исследованиях.
      Новая информация, полученная из заоблачных далей высотными аэростатами, геофизическими ракетами, искусственными спутниками и прочими летательными аппаратами, имеет колоссальное значение. Благодаря ей решаются все новые проблемы. Но и ставятся все новые. Зачастую она приносит больше вопросов, чем ответов.
      5.
      - Вы хотите во что бы то ни стало удивить, заинтриговать читателя вашими любимыми икс-лучами. Допустим, вам удастся вызвать в ком-то любопытство к ним, ну и что? Оно может помешать деловитому, объективисту подходу к этому действительно важному инструменту теории и практики. Настроить "будущего Колумба" на поиски чего-то сенсационного, тогда как наука - прежде всего будничная работа, а не романтическая "езда в незнаемое".
      - Если заниматься ею без интереса, то, может, лучше вообще не заниматься? Да, в науке есть проза будней. Но и своя поэзия тоже! Увидеть это не помешает, а поможет "ценнейшее в жизни качество", как называл Р. Роллан "вечно юное любопытство, не утоленное годами и возрождающееся каждое утро".
      "В двадцать второй день седьмой Луны первого года периода Ши-хо Янь Вей-тэ сказал:
      - Простираюсь ниц: я наблюдал явление звезды-гостьи в созвездии Чуэнь-Куань. Она была слегка радужного цвета..."
      Эта запись из китайской хроники относится к 1054 году.
      "Первого шабана 396 года появилась необыкновенно большая звезда слева от Иракской Коблы. Она светилась подобно Луне и наблюдалась до 15 деци-када, когда погасла..."
      Эта запись из арабской хроники относится к 1054 году.
      "Появилась... Светилась... Погасла..." Мираж? Бредовое видение астролога? Нет, удивительный феномен замечен одновременно во многих уголках нашей планеты, за тридевять земель друг от друга. И запечатлен историческими документами самых разных народов.
      В частности, рядом японских и китайских летописей.
      Зарегистрирован и в научных трудах. Например, Ма Тун-линем в обсерватории Большого Дракона в Пекине.
      Правда, только учеными Востока, не Запада. Но в XI веке Европа практически не имела своей астрономии.
      Новое светило, объявившееся тогда в созвездии Тельца, превосходило блеском Венеру, было видно даже днем. Засияв в июле, оно почти месяц оставалось третьим по яркости после Солнца и Луны. Потом померкло и через год-другой исчезло бесследно.
      Бесследно? Но на том месте небосвода, которое довольно четко обозначено средневековыми наблюдателями, мерцает еле видимая светящаяся кисея, газовая туманность. Ее назвали Крабовидной.
      Обнаружилось, что Краб едва заметно шевелится, как бы ползет, расплываясь вширь. В начале 40-х годов по скоростям этого расползания определили, что примерно 900 лет назад он представлял собой сгусток, сосредоточенный в очень малом объеме. Так было до XI-XII веков. До 1054 года?
      Неужели отыскался след пропавшей гостьи? Действительно, почему бы не предположить, что именно она оставила после себя газовый шлейф? Но как, почему? Дыма без огня не бывает, и, как бы в подтверждение пословицы, в век атома была выдвинута гипотеза: перед нами "дым и пепел термоядерного пожара", бушевавшего в космосе и закончившегося грандиозным взрывом.
      Такое вполне возможно. По части фейерверков дело во вселенной поставлено на широкую ногу. Они устраиваются в каждой галактике десятками за год, почитай, раз-другой за неделю. Делается это обычно с размахом. Одно из 100-200 миллиардов ее солнц разгорается вдруг с невиданной силой, увеличивая свою светимость в десятки и сотни тысяч раз. Притом надолго: на недели и даже месяцы. Потеряв около 0,00001 своей массы, оно рано или поздно тускнеет, возвращаясь к тому же примерно состоянию, что и до взрыва- Наконец успокаивается на века, стабилизируясь как карликовое, не очень яркое, но горячее небесное создание, которое через сотни или тысячи лет может повторить свой пиротехнический аттракцион.
      Если эту вспышку заметят земляне, они увидят невесть откуда взявшуюся блистательную незнакомку там, где раньше ее не было ни в одном атласе. Такие звезды-гостьи называются новыми. Наряду с ними появляются и сверхновые, которые выглядят несравненно эффектнее, ибо увеличивают свою светимость не в сотни тысяч, но в сотни миллионов раз за какие-нибудь сутки. А через две-три недели - в миллиард раз.
      Миллиард солнц на месте одного! И опять-таки надолго: лишь через три месяца блеск спадает в 25- 30 раз. На это "мероприятие" звезде приходится затрачивать гораздо больше средств: уже не 0,00001, а до 0,1 и даже 0,9 своей массы. В таких случаях небесному телу предоставляется уникальная возможность измениться неузнаваемо и даже пожертвовать собой ради невиданного зрелища. Здесь, правда, природа демонстрирует известную сдержанность, компенсируя размах события его редкостью: такое случается в каждой галактике не часто - несколько раз за тысячу лет.
      Зато землянам может предстать фантастическая картина ночной феерии: светило ярче Луны. Даже днем оно хорошо различимо невооруженным глазом. А потом гаснет, оставляя после себя разбегающееся пылегазовое облако, рассеянное на миллиарды километров окрест (для сравнения: поперечник солнечной системы - 12 миллиардов километров).
      Похоже, и впрямь Краб не что иное, как "прах" такой вот Сверхновой, вспыхнувшей в 1054 году. Это предположение стало общепризнанным еще полвека назад, когда узнали, что она наблюдалась в XI веке.
      Но одно дело "фантазерские" гипотезы, другое - строго научные теории.
      Почему, например, Краб уникален? Отчего столь замечательного следа не оставили другие сверхновые, скажем, 1006, 1572, 1604 или 1667 года? Надо было выяснить их природу, воссоздать биографию, которая не у всех одинакова.
      Помогла новая астрономия, прежде всего радиоволновая, а затем рентгеновская. Она позволила обнаружить останки сверхновых, совершенно невидимые или плохо различимые в обычный телескоп (заслоненные, допустим, облаками межзвездной пыли и т. д.). До недавних пор скрывалась от наблюдателей, например, основная часть газа в подобных остатках: у него, как правило, чрезвычайно слабое излучение в оптическом диапазоне. Заатмосферные счетчики квантов жесткой радиации радикально изменили положение вещей.
      Вернемся, однако, к Крабу. Действительно ли он "прах" той звезды, что столь ярко вспыхнула в 1054 году? Расследованием занимались многие. В 40-х годах оно увлекло астрофизика И. Шкловского, ныне членакорреспондента Академии наук СССР. Подумать только: по останкам, развеянным в дальних космических далях, определить, что произошло с безымянной гостьей в небесах 900 лет назад... Впрочем, не 900, а 6400!
      Ибо в 1054 году сигнал о катастрофе, преодолев расстояние в 5500 световых лет, только-только докатился до Земли.
      Право, такому сюжету могли бы позавидовать" покойные А. Конан-Дойль и А. Кристи, ныне здравствующий Ж- Сименон и иже с ними. А ведь то была бы документальная повесть! Но перед ней побледнели бы многие выдумки, которыми восхищаются любители детективного жанра.
      Если в 1604 году Сверхновой занимались такие корифеи, как И. Кеплер, в 1572-м - Т. Браге, то в 1054-м - звездочеты средневековья. "Гостья" XI века оказалась наименее изученной. И наиболее интересной.
      И вот, словно заправский архивариус, листает и листает астрофизик И. Шкловский пожелтевшие страницы старинных изданий. Сопоставляет исторические свидетельства, проверяет, ищет в летописях все, что относится к волнующим его загадкам и догадкам. От исследований современных астрофизиков - к кабалистике древних астрологов и опять от средневековых документов - к формулам XX столетия.
      Проходят годы, прежде чем картина становится более или менее ясной. Как же она выглядит сегодня, если забежать вперед?
      Когда светило распылилось, его микрочастицы разлетелись во все стороны с колоссальными скоростями (10-20 тысяч километров в секунду). Протоны (положительно заряженные ядра водорода) сумели пробиться сквозь паутину магнитных силовых линий, опутавших туманность. И смешались с космическими лучами, которые заполняют вселенную.
      А вот электроны, каждый из которых имеет куда меньшую массу (0,0005 протонной), не смогли вырваться на свободу. Их удержали цепкие клешни Краба, если можно назвать так его магнитные поля.
      Однако, продолжая там свое движение по траектории, эти заряженные частицы не могут не испускать излучения. Притом сильного, ибо скорость (а значит, и энергия) у них весьма велика. Между тем белесая кисея туманности едва видна в обычный телескоп. Что ж, электромагнитные колебания, которые она генерирует, могут быть мощными совсем не в оптическом диапазоне. Тогда в каком же? Оказывается, у Краба они наиболее интенсивны в радиоволновом.
      Проверить этот расчет экспериментально по просьбе И. Шкловского пытались еще в 1949 году сотрудники Крымской обсерватории. Но имевшийся у них тогда радибтелескоп мог "прослушивать" туманность, лишь когда она восходила над морем, а там ее закрывали горы... Все же радиоизлучение обнаружили. Это сделали австралийские ученые в том же 1949 году, подтвердив тем самым мысль, высказанную И. Шкловским годом раньше. Для них оно оказалось "неожиданно мощным".
      Объяснил его происхождение И. Шкловский (1953 год). Помогла идея, сформулированная в 1950году шведскими физиками Альвеном и Херлфсоном и независимо немецким астрофизиком Кипенхойером. Но тщательно разработана она была главным образом в СССР, прежде всего И. Шкловским. Это позволило довести ее до уровня отточенной теории. Если не вдаваться в подробности, то суть ее такова.
      Сильная незримая радиация, испускаемая остатками Сверхновой, генерируется сверхбыстрыми и сверхэнергичными электронами, "простреливающими" магнитные поля. Эффект этот именуется с_и_н_х_р_о_т_р_о_н_н_ы_м, по названию ускорителей, в которых протекает аналогичный процесс.
      Ну а где же наши добрые старые знакомые?
      В 1963 году были зарегистрированы довольно интенсивные потоки рентгеновских лучей, которые исходят от Крабовидной туманности. Как ни удивительно, они той же природы, что и радиоволны Краба. Не тепловой, как в случае Солнца, нейтронных звезд или "черных дыр" с их колоссальными температурами, а именно синхротронной, обусловленной торможением быстрых электронов магнитными полями. Таково же, кстати, происхождение и слабого видимого свечения этой туманности.
      В 1968-1969 годах выяснилось, что в Крабовидной туманности упрятан самый замечательный из всех известных пульсаров. В отличие от всех остальных он тройной: и рентгеновский, и радиоволновой, и оптический. Мигает 30 раз в секунду, притом синхронно во всех диапазонах.
      В 1967 году мир узнал о великом астрономическом открытии XX века открытии пульсаров. К 1976 году на карте неба их насчитывалось уже почти двести (из десятков тысяч, которые, вероятно, существуют в галактике). Они, главным образом, радиоволновые (практически все). И в ничтожном меньшинстве - рентгеновские (например, уже упоминавшиеся Геркулес Х-1, Центавр Х-3). Последние, как мы знаем, являют собой системы, вызывающие ассоциацию с каруселью, на которой вихрем кружатся рыхлый Гулливер и сверхплотный лилипут.
      Вспомним, что представляет собой малютка в такой паре. Это нейтронная звезда. А теперь вообразите, что она одинока и вращается сама по себе, подобно волчку, вокруг собственной оси. Перед нами модель радиопульсара. Полный оборот он совершает гораздо быстрее, чем наша планета, - не за сутки и даже не за минуты.
      Иной - за 3,75 секунды (максимум), иной - за 0,033секунды (минимум). И соответственно с той же периодичностью "мигает".
      Разумеется, так лишь кажется тем, кто его наблюдает с Земли. Ибо сам пульсар, конечно, ничего не включает и не выключает, а только поворачивает, как маяк, свой прожекторный луч. Отсюда ясно: если такой источник существует в природе, скажем, в недрах туманности, оставленной той или иной Сверхновой, это еще не значит, что он непременно даст о себе знать землянам. Его собранная в пучок радиация может пробегать мимо, не задевая нашу планету. Понятно и другое: трудно переоценить роль космонавтики, открывшей перед учеными возможность забрасывать зонды с телескопами в далекие уголки вселенной.
      Тройной "маяк" Крабовидной туманности виден, к счастью, хорошо. Полагают, что это сверхплотное шарообразное тело диаметром около 10 километров, оставшееся от Сверхновой 1054 года в результате коллапса.
      Оно вращается с рекордной частотой - 30 раз в секунду. И с той же периодичностью - 1/30, точнее 0,033 секунды, - на Земле отмечаются всплески рентгеновского, видимого, радиоволнового излучения, синхронные во всех трех диапазонах.
      Но вот что любопытно. Если пульсар столь компактен, то и наблюдаться должен в виде крохотной мерцающей звездочки. Между тем рентгеновский объект Телец Х-1, отождествленный с Крабом, как, впрочем, и радиоволновой (Телец А), - отнюдь не точечный, а диффузный, "размазанный" расплывающимся пятном.
      Откуда это несоответствие?
      Объяснение тут такое. Именно пульсар заставляет туманность светиться во всех трех упомянутых диапазонах. Ибо непрестанно впрыскивает в нее электроны, а те, как мы убедились, дают синхротронное излучение.
      Делится он с ней и своим магнитным полем. Не будь этой "подкачки", Краб потух бы через сотню лет после вспышки Сверхновой. Между тем его мерцающая кисея наблюдается вот уже многие века. Расползается она опять-таки не без содействия непрерывно вливающихся в нее заряженных частиц и магнитных сил, распирающих ее изнутри.
      Вот и получается, будто умершая звезда оставила после себя не только "прах", но и свое "сердце", которое не просто пульсирует, но поддерживает жизнь Краба, вливая в него "свежую кровь", помогая ему "ползти".
      Картина, как видно, иная, чем в случае Геркулеса Х-1 или Центавра Х-3. Там сверхплотный лилипут "обирает" рыхлого Гулливера, оттягивая на себя плазму газообразного раскаленного партнера. Особенно ненасытна "черная дыра" Лебедя Х-1. Как бы то ни было, там и тут рождается рентгеновская радиация. У остальных ее небесных генераторов тоже, как правило, преобладает один из этих двух механизмов: либо тепловой, либо синхротронный.
      Если вспомнить, что открытие пульсаров считают едва ли не величайшим в современной астрономии, то можно представить, как была воспринята весть о самом удивительном из них - тройном. Ошеломляющая новость! "Я никогда не забуду своего ощущения, когда узнал об этом, - признается профессор И. Шкловский. - И вот, пожалуйста: в дополнение ко всем связанным с этой туманностью "чудесам" там находится пульсар, да еще какой!"
      Сенсация вызвала кипение страстей, и ученый вспоминает, как сам затеял спор с авторами открытия, двумя американцами. Оба уверяли, что внутри Краба - два пульсара. "Вот это уже не лезло ни в какие ворора! темпераментно рассказывает И. Шкловский в своей книге "Звезды: их рождение, жизнь и смерть". - Как раз в это время я был в США и, помню, заключил пари с американскими коллегами. Я утверждал, что з Крабовидной туманности может быть только один пульсар, а они, посмеиваясь и указывая на записи импульсов, говорили: два! Ставка была "принципиальная"; один доллар против одного рубля".
      Как выяснилось, второй "маяк" и впрямь действует, причем с рекордно длинным периодом (3,75 секунды), но не внутри туманности, а вне ее. И вообще не связан с ней генетически, как первый, с рекордно коротким периодом (0,033 секунды). "Мне кажется, - заключает с улыбкой советский астрофизик, - я имею все основания считать, что пари выиграно мною, хотя пульсаров оказалось все-таки два. Я не потерял надежды получить свой доллар, который, правда, с тех пор успел подешеветь почти на 30 процентов".
      От Краба продолжают ждать новых сюрпризов.
      Сколько раз подтверждал он свою репутацию едва ли ли не самого замечательного небесного объекта!
      6.
      - Академик Л. Арцимович как-то пошутил: "Наука есть лучший современный способ удовлетворять любопытство отдельных лиц за счет государства". Нельзя забывать, что и драгоценная информация - штука дорогостоящая. Если же рентгеновская астрономия увлекательна, то не увлекает ли она слишком далеко от грешной земли? Пусть она полезна для теории. А для практики?
      - Фундаментальная наука в отличие от прикладной не ставит перед собой задачу вносить сиюминутный вклад в народное хозяйство. Но недаром говорят: нет ничего практичней хорошей теории. Она может быть поистине революционной для техники.
      - То ли будет, то ли нет... Не лучше ли синица в руках, чем журавль в облаках? Или Лебедь Х-1 вместе с Крабом и иже с ними...
      - "А какое будущее ожидает вашего ребенка"? Так вопросом на вопрос ответил М. Фарадей, когда у него поинтересовались перспективами его "абстрактного"
      открытия, которое впоследствии дало жизнь электрогенераторам и электромоторам.
      ...Многие десятки и сотни миллионов лет назад, когда на Земле и духу человеческого не было, нашу планету населяли гигантские пресмыкающиеся. Иные были высотой с 3-5-этажный дом, длиной в десятки метров.
      Тонны стальных мышц, закованные в бронеподобную шкуру; страшные челюсти, способные сокрушать древесные стволы; могучий хвост, наносящий жертве смертоносные удары...
      Все это делало ящеров властелинами фауны, а обилие растительной и животной пищи среди роскошной зелени в теплом климате обещало им безбедное существование. Тем не менее колоссы мезозойской эры вымерли повсеместно примерно 70 миллионов лет назад.
      Почему?
      Гипотез немало. Одна из них связана с влиянием небесных таинственных невидимок.
      В 1957 году И. Шкловский и В. Красовский высказали предположение, ч го гибель огромных рептилий вызвана стойким увгличением интенсивности космических лучей. Вероятно, десятикратным и даже стократным. Это вполне могло произойти, если где-то неподалеку от солнечной системы вспыхнула Сверхновая. Радиация - как корпускулярная, так и волновая (в частности, рентгеновская) - губительно повлияла на наследственность звероящеров, что и привело к искоренению их рода.
      "Проверкой этой гипотезы было бы палеонтологическое доказательство того, что рептилии вымерли на Земле повсеместно за время, не превышающее нескольких десятков тысячелетий". - пишет И. Шкловский в книге "Вселенная. Жизнь. Разум".

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14