Современная электронная библиотека ModernLib.Net

Беседы о рентгеновских лучах

ModernLib.Net / Власов Павел / Беседы о рентгеновских лучах - Чтение (стр. 11)
Автор: Власов Павел
Жанр:

 

 


      В подобной ситуации всегда нелишне иметь для сравнения рентгенограммы, отражающие предысторию недуга. Если обследования проводились и прежде, очень важно сопоставить их с новейшими, особенно в диагностике некоторых злокачественных опухолей, имеющих на ранних стадиях сходство с доброкачественными.
      ...Мужчина 46 лет, еще недавно вполне здоровый, об-, ращается к врачу с воспалением легких. Выявляется шаровидное образование в легком, заставляющее подозревать рак. Но есть сомнение: аналогичная картина наблюдается при доброкачественных опухолях и кистах, не требующих экстренных мер. Если образование маленькое и расположено в глубине легочной ткани, к нему затруднен доступ для зондирования через бронхи и для пункпии через грудную стенку. Ни клиническое состояние больного, ни лабораторные данные в таких случаях не позволяют поставить точный диагноз. Единственный критерий надежности для предоперационной диагностики - оценка темпов, какими растет опухоль.
      Злокачественные новообразования развиваются быстро, доброкачественные медленно.
      К счастью, в архиве найдена рентгенограмма нашего больного, полученная несколько месяцев назад в связи с профилактическим осмотром. На ней нет ничего такого, что заставило бы подозревать рак. Иное дело теперь.
      Значит, требуется незамедлительное хирургическое вмешательство...
      Это реальный случай из практики. После успешной операции есть все основания надеяться на благополучный исход.
      Да, архивные материалы - необходимейшее подспорье. Надобность в них возникает повседневно. К сожалению, сплошь да рядом за ними приходится отправлять сотрудника, отрывая его от непосредственной работы в клинике. А сколько таких нарочных бегает по всей стране! Курьеры, курьеры, курьеры 10 тысяч одних курьеров.... Вот где трудовые резервы!
      Между тем куда легче и быстрее заполучить информацию из ее хранилища с помощью телекоммуникационной связи. По селектору вызывается архив, и тотчас на экране кинескопа появляется изображение органов, обследованных месяцы или годы назад. Другой телевизор демонстрирует картину просвечивания, которое проводится сейчас, в данную минуту, в любом из рентгеновских кабинетов (а их десятки в крупной больнице, где обслуживаются сотни больных ежедневно).
      Ясно, что наладить такие службы повсюду немыслимо без видеомагнитной записи. Она позволяет воспроизводить изображение многократно для более тщательного или более квалифицированного анализа без повторного облучения. Техника ее несложна и недорога. Вся аппаратура умещается в чемодан средних размеров. Не так уж много места занимают и кассеты с лентой, ширина которой - от 2,5 до 5 сантиметров.
      Разрешающая способность? Сравните: 10 линий на сантиметр для рентгенотелевидения, 3 линии на сантиметр - для обычного просвечивания, когда наблюдение ведется в темноте, 40 линий на сантиметр - для снимков со стандартного двойного флюоресцирующего экрана, которые рассматриваются, естественно, на свету. Желательно, конечно, добиться ее повышения. Но и на нынешнем своем уровне видеозапись имеет неоценимые достоинства, предоставляет огромные возможности, которые необходимо реализовать полнее.
      Она сулит настоящий переворот всей системы рентгеновских архивов. Хранение и поиск информации в них превратились в серьезнейшую проблему. Тысячи снимков, большей частью ценных, а подчас уникальных, приходится регулярно списывать и уничтожать: не хватает места. Пытаются их микрофильмировать, снижается качество изображения. Да и найти их в этом случае оказывается не проще, порой даже сложнее.
      А если их перевести на магнитную ленту? Тогда, нажав кнопку, можно было бы воспроизводить на телеэкране нужные результаты прежних обследований. Конечно, многое еще надо сделать, чтобы усовершенствовать имеющуюся аппаратуру, разработать новую, наладить ее массовый выпуск. Но игра стоит свеч.
      Широкие перспективы сулят открытия и изобретения последнего времени. Например, голография. С ее помощью в принципе возможно все 27 миллионов томов Государственной библиотеки СССР имени В. И. Ленина втиснуть в объем одной книги. В США создана система видеозаписи, использующая лазер. Она в 300 раз эффективнее обычной. На одном диске диаметром 30 сантиметров фиксируется до 50 тысяч телевизионных кадров.
      Нужное изображение с того или иного микроучастка считывается лазерным лучом автоматически при посредстве мини-компьютера.
      28.
      - Но и добрую старую рентгенографию рано сдавать в архив, если она обеспечивает более высокую разрешающую способность, чем любой иной метод, включая видеомагнитный, не правда ли?
      - Да, у нее есть свои преимущества. Но их тоже надо использовать полнее. Можно, например, поднять ин"
      формативность снимков, как бы собрать с того же поля дополнительный урожай.
      "Лучший способ продлить жизнь - это не укорачивать ее", - говорил древнеримский философ Сенека.
      Простейший способ поднять урожаи - это уберечь их от потерь, скажет вам любой рачительный хозяин.
      Хорошо, но при чем тут рентгенология?
      К ней применимы аналогичные правила. Поле, с которого диагност снимает плоды трудов своих, - изображение. Урожай? Информация. Она зависит от разрешающей силы, которую обеспечивает тот или иной метод.
      Максимум тут на первый взгляд уже достигнут: это 40 линий на сантиметр при съемке на двухстороннюю пленку, располагаемую между двумя флюоресцирующими экранами. Но именно на первый взгляд.
      Информативность снимков можно, оказывается, повысить, если не терять ее при изучении, а, напротив, сохранять во всей полноте. Чтобы выжать ее до последней капли, нужны не только теоретические знания и практический опыт, но также соответствующие техника и организация.
      Рентгеновское отделение напоминает цех, выпускающий многоразличные изделия. Наряду с крупноформатными снимками на двуслойной пленке флюорограммы, ксерографические отпечатки на обычной бумаге, кинофильмы и так далее. Но все они являются, по сущест
      ву, лишь полуфабрикатами. Ибо нужны не сами по себе, а ради последующей работы сними. Окончательной готовой продукцией здесь оказывается информация.
      Ее получают, используя разнообразные приспособления, - многосекционные негатоскопы, флюороскопы, кинодешифраторы, всевозможные проекторы и прочие демонстрационные средства. Извлечь ее наиболее полно, не потеряв ни единой драгоценной крупицы, - таково назначение всей этой аппаратуры.
      Разумеется, задача начинает решаться раньше, еще на стадии съемки. Объект фотографируют в разных проекциях, в разных фазах жизнедеятельности, скажем, сокращения и расслабления сердца. Понятно, почему иное обследование сопровождается изготовлением многих рентгенограмм, а то и многих серий.
      При контрастном исследовании сердечно-сосудистой системы, например, необходимо сделать минимум 10 снимков. С тем чтобы детально разобраться во всех ее особенностях на всех этапах кровообращения - артериальном, капиллярном, венозном.
      Кроме того, привлекаются архивные материалы. Вместе с новыми результатами они обрушиваются на голову диагноста настоящей лавиной. Когда же информация падает такой Ниагарой, найти и сохранить каждую маломальски ценную ее каплю не очень-то просто.
      Проблема усугубляется необходимостью просматривать рентгенограммы многократно и длительно. При изучении некоторых динамических процессов требуется точная оценка весьма незначительных изменений. Приходится снова и снова сравнивать отдельные снимки друг с другом в разных сочетаниях, в неодинаковой последовательности. Рано или поздно это вызовет утомление, а оно ухудшает восприятие информации, что ведет к ее потерям.
      Если серию негативов разглядывать на небольшом негатоскопе, утрачивается цельность восприятия: картина изучается по частям. Кроме того, непроизводительно расходуется время на поиск и перестановку рентгенограмм. Если у вас одного это отняло 5 минут, то у аудитории в 50 зрителей - более 4 человеко-часов.
      Можно ли рационализировать процедуру? Несомненно. Например, использовать большие многосекционные негатоскопы, на которых размещаются десятки, даже сотни снимков одновременно. На один такой аппарат можно установить всю дневную продукцию рентгеновского отделения, после чего ее легко анализировать многократно всем присутствующим без томительного ожидания, когда наконец появится нужный кадр.
      Привести демонстрационные средства в соответствие с технологией рентгеновскою производства - одна из актуальнейших задач, без решения которой немыслима научная организация трула.
      Допустим теперь, что дело поставлено идеально, с учетом всех человеческих факторов. Устранены все задержки, фрагментарность восприятия и прочие помехи.
      Нельзя ли повысить информативность изображения?
      Вроде бы нет: ведь оно содержит в себе тольмо то, что содерх:ит, и ничего больше. А "из ничего и не выйдет ничего", как заметил еще В. Шекспир, устами своего короля Лира повторив по-английски древнюю латынь ("экс нигило - нигиль", то есть "из ничего - ничего").
      Вспомним, однако, не менее древний софизм: "То, чего я не терял, я имею. Я не терял рогов. Следовательно, я их имею". Перед нами логический трюк. В обоих случаях речь идет о том, чего человек не терял, но сначала о том, что он имел и мог потерять, а затем о том, чего не имел и не мог потерять. Неверный вывод обусловлен недопустимой погрешностью умозаключения: подменой понятия.
      А теперь представим такую ситуацию. На негативе не видно никаких рогов. Если же они отсутствуют, то ни утратить, ни тем паче обрести их невозможно. И вдруг они появляются на снимке после соответствующей его обработки... Мыслимо ли такое?!
      В 1954 году был изобретен логетрон. Этот электронно-оптический прибор предназначался поначалу для того, чтобы улучшать репродукции с аэрофотоснимков.
      Но уже в 1955 году обнаружилось, что он способен повышать информативность и у рентгенограмм. Принцип действия? Смягчение контрастов. Самые плотные участки негатива ослабляются, как при передержке в фотографии, самые прозрачные, напротив, усиливаются, как при недодержке. И бывает, возникают новые детали. Неоткуда они, если "из ничего - ничего"?
      Ясно, что они не появляются с бухты-барахты, а лишь выявляются из-под спуда. Выравнивание резких перепадов между черно-белыми крайностями вскрывает лишь то, что было упрятано в недрах эмульсии, завуалировано, например, фоном. Как бы там ни было, информативность повышается. Так что читатель может быть спокоен: если у него не было рогов при съемке, то дажелогетронирование их не прибавит.
      Современные логетроны наделены способностью осуществлять так называемую субтракцию - вычитание.
      Для этого на два негатоскопа ставятся две рентгенограммы. Одна, к примеру, с контрастированными сосудами, другая обычная, сделанная без контрастирования (введение в организм непрозрачных для проникающей радиации веществ). Второй снимок с помощью рентгенотелевизионной системы превращается в позитив. Оба видеосигнала с двух передающих трубок поступают через усилитель на кинескоп. Наложение позитивной картины на негативную приводит к тому, что "минусы" и "плюсы"
      взаимно уничтожаются, вычитаются. Так устраняются все мешающие тени. Остаются лишь коптрастированные участки, которые теперь выглядят гораздо отчетливей.
      Что же получается? Обеспечивая наивысшую разрешающую способность, рентгенография тем не менее прибегает к услугам рентгенотелевидения, даром что оно отстает по этому важному параметру. Мораль? Не стоит абсолютизировать тот или иной метод, ибо ни один из них не идеален. Каждому свое. Наиболее разумный подход здесь, пожалуй, очевиден: сочетать их так, чтобы преимуществами одного компенсировались недостатки другого.
      29.
      - Вероятно, можно повысить информативность изображения, если превратить его из плоского в объемное?
      - Совершенно верно. Так и делают.
      - Я не раз проходил обследование в поликлинике, но так не делал никто и никогда.
      - Значит, не требовалось. Метод сложноват и потому применяется не столь широко.
      - А что тут сложного? Даже дети малые легко осваивают стереоскоп, который выпускается специальна для них. Прибор - проще не придумаешь.
      - Если бы в рентгенологии все было так просто!
      В 1832 году Л. Неккер удивил научную общественность простеньким рисунком, который мог бы показаться пустячком для детской забавы, а на деле стал поводом для серьезных размышлений.
      Возьмите тетрадь в клеточку. Начертите куб, используя всюду, где только можно, готовые вертикали и горизонтали. Все ребра его должны выглядеть одинаково, сплошными темными линиями. Пририсуйте посредине небольшое колечко. Вы получите знаменитую фигуру Неккера, которая вошла в историю психологии.
      Когда на чертежик смотришь долго и внимательно, колечко кажется изображенным то на передней, то ка задней грани куба. Перед нами "перевертыш", для которого оба варианта равнозначны, и один переходит в другой попеременно, порой как бы помимо нашей воли. Какая поверхность ближе к нам?
      "Система восприятия придерживается сначала одной, а затем другой гипотезы и никогда не может прийти к решению, так как однозначного ответа нет, - поясняет Р. Грегори в книге "Глаз и мозг". - Восприятие и мышление не существуют независимо друг от друга. Фраза "я вижу то, что я понимаю" это не детский каламбур, она указывает на связь, которая действительно существует".
      А если вглядеться в рентгеновское изображение? Мы увидим сложное сочетание пятен и линий, где тени наслаиваются друг на друга. Оно тоже может нам подбросить загадку, которую каждый разгадает по-своему ("вижу то, что понимаю"). Например, при восприятии глубины.
      При просвечивании грудной клетки на фото запечатлен обломок швейной иглы. Где он расположен? В мягких тканях спины или груди? В средостении, в пищеводе, в позвоночнике? А может, в сердце или аорте? По снимку, если проекция одна, определить невозможно.
      А если не одна? Тогда, конечно, легче. Но и несколько рентгенограмм, полученных с разных позиций, под разными углами зрения, дают лишь весьма ориентировочное представление о пространственном соотношении элементов. Тени многочисленных анатомических структ} п, накладываясь одна на другую на экране или на пленке, порождают путаницу, в которой не всегда просто разоораться, чтобы точно оценить расстояние до чужеродного тела.
      Иное дело стереорентгенография, которая превращает плоское изображение в объемное. Суть ее не требует долгих пояснений. Изготовляют два снимка, которые составляют так называемую стереопару: на них одна и та же картина, но на одном она запечатлена так, как ее видит левый глаз, на другом - как правый. При рассматривании обоих негативов в специальный аппарат они совмещаются в один, и мы начинаем воспринимать глубину.
      Идея нехитрая, но ее воплощение потребовало громоздкого и дорогого оборудования. Упростить его, удешевить, сделать удобней в применении-задача будущих исследователей.
      Еще сложнее для технической реализации оказалась стереорентгеноскопия. Она осуществлена лишь недавно благодаря внедрению рентгенотелевидения. Пациента просвечивают двумя трубками, которые включаются поочередно, 50 раз в секунду каждая. Обе серии импульсов поступают на электронно-оптический преобразователь, откуда они попеременно, синхронно с работой трубок, снимаются двумя телевизионными системами.
      Обе картины совмещаются в одну при разглядывании через полупрозрачное зеркало с помощью поляризационных очков.
      Предстоит еще преодолеть целый ряд трудностей, чтобы сделать эти методы более совершенными и удобоприменимыми. Немалые надежды возлагаются здесь на голографию. А пока в широкой практике глубину залегания, пространственную структуру, форму и величину патологических образований оценивают чаще всего более простыми средствами, например с помощью томографии - послойных снимков. Представьте себе: больной лежит на столе. Над ним движется рентгеновская трубка, а пленка под больным в этот момент перемещается в противоположном направлении. Тольке те элементы, которые находятся на уровне осп вращения рычага, соединяющего трубку и пленку, оказываются резкими, остальные выше- и нижележащие размазываются и становятся невидимыми. По серии снимков, отображающих такие плоские дольки толщиной в несколько миллиметров, легко установить, где находится чужеродное тело или болезненный очаг. Это ценнейшее подспорье для диагноста при распознавании самых разных недугов, особенно легочных.
      ...Молодая женщина вошла в кабинет врача, устало опустилась на стул. На вопросы отвечала вяло. От наметанного глаза опытного медика не ускользнуло ее подавленное настроение, скрытое беспокойство, нежный румянец на щеках при общей бледности и худобе. Как самочувствие? Неважное: несколько месяцев назад переболела гриппом, через неделю пошла работать, хотя ощущение полного здоровья так и не вернулось. Сохранилось недомогание, покашливание, по вечерам повышается температура.
      Обычное клиническое обследование не показывало никаких особых отклонений от нормы. Настораживала лишь рентгенограмма. На ней выявлено затемнение з верхушке легкого. Что это? След затянувшейся пневмонии? Рак? Туберкулез? Без томографии ответить трудно.
      Когда ее применили, обнаружились туберкулезные очаги. В одном из слоев хорошо просматривалась кавернаполость распада, которая осталась незаметной на обычной рентгенограмме, замаскированная плевральными наслоениями и рубцово-склерртическими изменениями...
      Еще иллюстрация, опять-таки из практики. Нужно обследовать верхнегрудной отдел позвоночника, но как лучше? При обычной рентгенографии понадобились бы две проекции - прямая и боковая. Но в боковой на силуэты позвонков наложатся плотные тени плечевого пояса с его массивными мышцами и костями, а также легких с их густой сетью сосудов. Возникнет такая мешанина, что в ней утонет интересующий врачей объект. Зато на томограмме он будет выделен в чистом виде.
      А теперь заглянем в область стоматологии, где рентген прочно обосновался с давних пор.
      Малыш жалуется на зубы, но не может показать точно, где именно ему больно. Боится дяди доктора, плачет горючими слезами при виде инструментов. Но соглашается "сфотографироваться с помощью таинственных невидимок". И вот, наконеи, просвечивакрте. Увы, впустую: квадратик пленки очутился не на месте то ли изза невразумительных ответов несмышленого пациента, то ли потому, что был сдвинут языком ребенка. Повторять облучение? Но да каких же пор?
      У человека 32 зуба. Какой из них плох, не всегда установишь при наружном осмотре. Что же, делать десятки снимков? Перспектива не из приятных. А нельзя ли обойтись одним, который даст панорамное изображение обеих челюстей целиком? Такая возможность есть.
      До того как она появилась, методика оставалась неизменной десятилетиями. В полость рта помещалась пленка форматом 3X4 сантиметра, а снаружи - рентгеновская трубка. Но при этом на негативе получались 2-3 зуба из 32. Теперь они могут быть запечатлены все до единого вместе за один раз. Каким же образом? Ведь они расположены подковой! Не установишь же вокруг них по дуге батарею излучателей? Разумеется, нет: источники радиации помешали бы друг другу, дважды просвечивая некоторые участки эмульсионного слоя.
      Найдено иное решение. Пленка и трубка поменялись местами: первая очутилась снаружи, вторая внутри, во рту. Трубка, естественно, должна быть миниатюрной, к тому же безопасной для пациента. Лишь в 1959 году был сконструирован аппарат "Панорамикс", который удовлетворял этим требованиям. Название достаточно красноречиво: в одном слове слились понятия "панорамный снимок" и "икс-лучи".
      И все же врачи были недовольны. Пациента приходилось облучать дважды, чтобы обследовать обе челюсти.
      Ибо "Панорамикс" за один сеанс снимал лишь одну из них, верхнюю или нижнюю. Ту и другую сразу позволяет запечатлеть панорамная томография. Преимущество немаловажное: хорошо видно, каков прикус, как лучше ставить пломбы, коронки, заменять естественные* зубы искусственными.
      При таком методе не только пленка, но и трубка находятся вне ротовой полости: первая располагается полукругом спереди, последняя - сзади. Во время экспозиции та и другая двигаются синхронно. Пучок лучей проходит через узкую щель. И в каждый данный момент времени на фотоэмульсии фиксируется лишь узкая полоска будущей рентгенограммы (во избежание проекционного искажения).
      30.
      - Если так углубляться в детали, получится нечто похожее на томографию самой рентгенологии, ее методического и технического арсенала. Между тем такая "послойная анатомия" достойна разве лишь учебника. Для непосвященных же достаточно сделать как бы панорамный снимок всей рентгенологии, чтобы самое значительное выделить крупным планом, а остальное дать фоном.
      Что у вас, например, "самое-самое"?
      - Все зависит от того, что взять за основу сравнения.
      - Не вес же и не габариты аппаратов! Смешно хвастать: у нас-де самая крупная в мире установка. Не ясно ли, что главное - качество, эффективность?
      - Верно, но задумывались ли вы над этими понятиями?
      Рассказывают, И. Гайдн как-то поспорил с В. Моцартом, что сумеет исполнить без подготовки любые, пусть даже "самые-самые", из опусов, которые когда-либо сможет написать его юный, но уже прославленный коллега.
      Тот принял пари и, не откладывая дела в долгий ящик, в пять минут сочинил небольшую фортепьянную пьесу.
      Маститый композитор, который был на 22 года старше В. Моцарта, торжественно уселся за инструмент, мелодия полилась, но... После первых же тактов наступила неожиданная пауза.
      На чем же споткнулся признанный виртуоз? Требовалось взять правой рукой очень высокую ноту, левой - очень низкую, а заодно стукнуть в клавишу посредине.
      Опытный маэстро, спасовав публично, заявил, что этот аккорд не берется вообще. В. Моцарт улыбнулся и тотчас опроверг оппонента, сыграв свою вещь от начала до конца. В "заколдованном месте" автор нажал среднюю клавишу... носом.
      Этот эпизод фигурирует под рубрикой "самое невероятное" в книге Б. Фелтона и М. Фаулера (США) "Самое лучшее, самое худшее, самое невероятное". Нельзя ли найти нечто подобное в рентгенологии?
      Самое невероятное - объять необъятное. Нелегко охватить всю гамму ее методов и приборов, но еще труднее сделать акцент на чем-то особом. Здесь не выручит * обычный орган обоняния, как в только что приведенном историческом анекдоте. Тут требуется необыкновенное чутье, а в эпоху научно-технической революции с ее небывалыми темпами изменений может отказать даже весьма тонкий "нюх аналитика". Впрочем, некоторые вещи очевидны.
      Лучшее, что есть в рентгенологии, - рентгеновские лучи. Они ее породили. Без них не было бы ни ее самой, ни ее грандиозных успехов, равно как и ее проблем, поисков, решений.
      Худшее? Опять-таки рентгеновские лучи. Вернее, не сами они, а их вредное воздействие, но оно с ними связано неразрывно. Уменьшить его желательно, но свести на нет полностью, к нулю, можно лишь ценой проигрыша в эффективности. Приобретая одно, мы теряем другое.
      Теоретически принцип ясен: максимум пользы при минимуме опасности. А практически с ростом первой нередко увеличивается и вторая. Вот и попробуйте найти "самое-самое"... Понятно, сколь нелегко искать конструкторам оптимальное решение - не просто неплохое, одно из приемлемых, но наилучшее в заданных условиях, при многочисленных ограничениях. Хотя разумный подход к качеству рентгеновской техники вроде бы очевиден: ее назначение - способствовать распознаванию и лечению болезней, то есть главное в том, насколько эффективна она для здравоохранения.
      Как бы там ни было, с этих позиций можно выделить два переворота в ее развитии. Первый связан с внедрением электронно-оптических усилителей: увеличилась разрешающая способность, уменьшилась лучевая нагрузка, появилось рентгенотелевидение, началось дистанционное наблюдение за пациентом во время просвечивания, изучение изображения на экране не в темноте, а на свету.
      Вторая революция сопряжена с автоматизацией рентгеновских процедур.
      С 1896 года не одно десятилетие дело ограничивалось в основном простой инструментализацией кабинетов. Они оснащались аппаратурой для просвечивания, съемки, фотолабораторных работ... Если прибегнуть к аналогии с музыкой, рентгенолог стал похож на исполнителя-универсала, играющего на всех инструментах, от барабана до органа, хотя по смыслу своей деятельности должен напоминать скорее дирижера. Врач есть врач, он обязан целиком посвящать себя больным, а не приборам. Он не в состоянии физически, не вправе морально ломать голову над тем, сколько нужно киловольт и миллиампер подать на трубку, какую выбрать выдержку и т. д., и т. п. (сейчас все эти параметры устанавливаются автоматически).
      Потом началась моторизация оборудования, его движущихся узлов. У врача высвободились силы и время, с тем чтобы он мог их больше уделять больному.
      Одновременно все ощутимее давала себя знать нужда в совершенной системе управления, в защите от возможных ошибок. И вот наметился переход от механизации к автоматизации, при которой человек становится рядом с машинами не как их придаток, а как контролер и регулировщик, как дирижер оркестра. Оч.
      взваливает на их плечи все нетворческие функции. Это стало возможно, по существу, лишь в послевоенный период, с появлением электронно-вычислительной техники, которая особенно бурно развивается в последние 2-3 десятилетия.
      Благодаря автоматике все шире входит в практику программированное управление всей диагностической процедурой. Например, при обследовании сердечно-сосудистой системы аппаратура сама вводит контрастное вещество в организм, включает и выключает высокое напряжение, продвигает пленку, перемещает пациента, регулирует последовательность и интервалы съемки. И так далее.
      На XIII Международном конгрессе рентгенологоз (1973 год, Мадрид) была развернута экспозиция, которая стала впечатляющим парадом "самого-самого". Посетители выставки, даже видавшие виды специалисты, че скрывали своего изумления прогрессом в этой области медицины.
      Пять крупнейших западных фирм, в том числе "Дженерал электрик" (США), "Сименс" (ФРГ), "Филипс"
      (Голландия), представили полностью автоматизированные системы для рентгенографии. Что же здесь интересного?
      Долгие десятилетия фотолабораторная обработка снимков была самым узким местом технологического процесса в рентгеновском кабинете. Велась она по старинке, в ванночках и баках, вручную. Посмотреть мокрый негатив удавалось лишь через 20-30 минут, а сухой - несколько часов спустя. Иное дело теперь. Существуют проявочные машины. Одни с холодильник средних размеров, другие еще меньше. Благодаря использованию концентрированных реактивов и высокотемпературных режимов, сушке путем отжимания на вальцах экспонированная пленка через полторы минуты полностью готова к употреблению. Отпала необходимость в специальной фотолаборатории с ее темнотой и сыростью.
      А на мадридском конгрессе была продемонстрирована малогабаритная проявочная машина, вмонтированная в рентгеновский аппарат. Дальше всех пошла "Сименс":
      она показала полностью автоматизированную установку, подающую снимки прямо на стол врача.
      Неузнаваемо изменилось оборудование кабинетов.
      Еще недавно в них можно было видеть открытые громыхающие цепные и зубчатые передачи, висящие над головой кабели, рубильники, придававшие медицинскому учреждению вид механической мастерской. Все это уже ушло либо вот-вот уйдет в прошлое, уступив место кно-* почно-кибернетической машинерии, отличающейся компактностью, удобными и элегантными формами, радующей глаз окраской, простотой в эксплуатация.
      Увы, восхищение сменяется унынием, когда справляешься о ценах на эти прекрасные новинки. Современная рентгенодиагностическая установка стоит на международном рынке от 100 до 300 тысяч долларов - в десятки раз больше, чем 30-40 лет назад, притом отнюдь не самая дорогая. Есть и за 700 тысяч. Такова, например, система, сочетающая в себе элементы рентгеновского аппарата и скеннера.
      Это последнее слово действительно "самое-самое" в рентгеновской технике. Вместо флюоресцирующего экрана - панель с кристаллическими детекторами. Попадая на них, проникающая радиация в зависимости от своей интенсивности возбуждает те или иные электрические эффекты в каждом элементе такой мозаики. Сигналы обрабатываются компьютером и подаются на выход в цифровом виде, а затем в расшифрованном.
      Разрешающая способность - непревзойденная. Стало возможным то, что еще недавно казалось немыслимым:
      различать без введения контрастных препаратов ткани, мало отличающиеся друг от друга по плотности. Коммивояжеры английской фирмы ЭМИ утверждают, что можно даже отличить серое вещество головного мозга от белого... Уже за счет одного повышения зоркости аппаратуры, сократив продолжительность исследования, можно снизить лучевую нагрузку на организм пациента.
      Будущее, по всей видимости, за такими комбинированными скенирующими устройствами. Но самое перспективное пока остается и самым дорогим. Чтобы кач можно шире внедрять современнейшую рентгенотехнику, ее нужно удешевить А рост ее стоимости, к сожалению, продолжается, грозя "бюджетным взрывом".
      Этой проблемой озабочен весь мир. Ее специально обсуждали представители 32 государств, собравшиеся на I Международный симпозиум по планированию рентгенологических и радиологических отделений в Хельсинки в 1972 году.
      В капиталистических странах, которые оказались в жестких тисках социально-экономических проблем, серьезно задумались над тем, как рациональнее использовать дорогостоящее оборудование. И надо заметить, на симпозиуме было высказано немало интересных рекомендаций, заслуживающих нашего внимания.
      31.
      - Коммерческий подход ко всему и вся вошел в плоть и кровь буржуазного общества, но не социалистического. Стоит ли нам сводить рентгенологические проблемы к бухгалтерским? Для нас здоровье людей превыше всего, и нечего тут заниматься экономией.

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14