Современная электронная библиотека ModernLib.Net

О редких и рассеянных (Рассказы о металлах)

ModernLib.Net / Венецкий С. / О редких и рассеянных (Рассказы о металлах) - Чтение (стр. 12)
Автор: Венецкий С.
Жанр:

 

 


      Так, не вызывало сомнений, что элемент No 87 должен быть надежным хранителем щелочных "традиций", крепнущих от лития к цезию. Этим обусловливалась прежде всего его высокая реакционная способность (выше, чем у цезия), по "вине" которой он мог присутствовать в природе лишь в виде солей, обладающих большей растворимостью, чем у всех других солей щелочных металлов. Поскольку от лития к цезию падала температура плавления (от 180,5 до 28,5°С), резонно было полагать, что эка-цезий в обычных условиях должен подобно ртути, находиться в жидком состоянии. Для щелочных металлов (кроме лития) характерна еще одна закономерность: чем больше массовое число элемента (т. е. чем ниже он расположен в периодической таблице), тем меньше его содержится в земной коре. Если учесть, что уже на долю цезия в природе приходится совсем немного атомов, то расположенный под ним элемент No 87 мог и вовсе оказаться редчайшим из редких. Наконец, радиоактивные "наклонности" его соседей справа (о которых упоминал в статье Менделеев) - открытых в конце XIX века радия и актиния позволяли утверждать, что и эка-цезий должен обладать радиоактивностью.
      Свойства элемента No 87 определили два основных направления поиска: одни ученые рассчитывали найти его в минералах щелочных металлов или в богатых ими водах минеральных источников и морей; другие предпочитали вести розыск на радиоактивных тропах, надеясь найти эка-цезий среди продуктов распада соседних с ним элементов.
      В 1913 году английский радиохимик Дж. Крэнстон сообщил, что он заметил у одного из изотопов актиния слабое альфа-излучение (наряду с характерным для этого изотопа бета-излучением). Ученый предполагал, что при этом может образоваться изотоп элемента No 87. Спустя год сходные результаты были получены австрийскими радиохимиками Мейером, Гессом и Панетом, обнаружившими при опытах с изотопом актиния "незваные" альфа-частицы. "Эти частицы образуются при альфа-распаде обычно бета-активного 227Ас", - писали они, ...продуктом распада должен быть изотоп элемента 87". Но предположение - еще не научный факт, тем более, что для сомнений было немало оснований: во-первых, замеченное альфа-излучение было настолько слабым, что не выходило за пределы возможных погрешностей эксперимента: во-вторых, исследуемый препарат актиния вполне мог содержать примеси "проживающего" рядом протактиния, который способен излучать альфа-частицы и потому мог легко ввести ученых в заблуждение. Хотя эти исследователи, как выяснилось позднее, находились на правильном пути, до открытия элемента No 87 было еще далеко - этого события оставалось ждать ровно четверть века...
      В 1925 году англичанин И. Фриенд решил отправиться в Палестину, намереваясь изучить воды Мертвого моря, богатые щелочными металлами. "Уже несколько лет назад, - писал он, - мне пришло в голову, что если эка-цезий способен к постоянному существованию, то его можно будет найти в Мертвом море". Что ж, идея эта не лишена была смысла, но сколько ни пытался ученый обнаружить рентгеноспектральным анализом хотя бы следы элемента No 87, желаемых результатов он так и не добился.
      К помощи спектроскопа прибегали и многие другие исследователи: ведь именно он помог открыть рубидий и цезий - ближайших родственников элемента No 87 по щелочному семейству. Не только концентраты морских солей, но и крупицы редчайших минералов, зола грибов и пепел сигар, сожженный сахар и кости ископаемых животных - казалось бы, все потенциальные обладатели атомов эка-цезия представали перед объективом спектроскопа, но прибор всякий раз огорчал экспериментаторов.
      Однако у ученых, искавших эка-цезий, были не только огорчения, но и радости, часто, правда, преждевременные: некоторые их "открытия", ярко блеснув поначалу, оказывались на поверку ошибочными и потому быстро "закрывались". Так, в 1926 году в печати, появилось сообщение английских химиков Дж. Дрюса и Ф. Лоринга о том, что они якобы наблюдали линии 87-го элемента на рентгенограммах сульфата марганца и дали ему название алкалиний. Через три года американский физик Ф. Аллисон опубликовал данные своих магнитооптических исследований, позволивших ему, как он полагал, обнаружить следы разыскиваемого элемента в редких минералах щелочных металлов - самарските, поллуците и лепидолите. В честь своего родного штата ученый предлагал назвать 87-й виргинием. В 1931 году его соотечественникам Дж. Пэпишу и Э. Вайнеру вроде бы удалось спектроскопическим методом подтвердить наличие линий виргиния в самарските, но вскоре выяснилось, что причиной появления незнакомых линий был дефект кальцитового кристалла, установленного в спектроскопе, которым пользовались ученые.
      В 1937 году румынский химик Г. Хулубей заявил, что эка-цезий найден им в поллуците, и предложил именовать новый элемент молдавием. Но ни алкалинию, ни виргинию, ни молдавию не довелось занять вакантную клетку в левом нижнем углу периодической таблицы.
      Продолжали поиски и сторонники радиоактивного направления. Еще в 1925 году одесский химик Д. Добросердов высказал на страницах "Украинского химического журнала" соображения о физических и химических свойствах эка-цезия, подчеркнув, в частности, что он "непременно должен быть весьма радиоактивным элементом". Но ученый при этом ошибочно предположил, что радиоактивность калия и рубидия обусловлена примесями 87-го элемента, который он предлагал назвать руссием, если честь открытия выпадет на долю русских ученых.
      Годом позже интересные результаты удалось получить известным радиохимикам О. Гану (Германия) и Д. Хевеши (Венгрия). Тщательное исследование радиоактивных рядов некоторых изотопов актиния показало, что при альфа-распаде одного из них образуется изотоп эка-цезия. правда, из каждого миллиона атомов исходного вещества можно полнить лишь несколько атомов 87-го элемента.
      Такова была ситуация в науке к 1938 году, когда в поиски эка-цезия включилась Маргерит Перэ - сотрудница парижского Института радия, ученица Марии Склодовской-Кюри. Прежде всего Перэ решила повторить уже к тому времени давние эксперименты Мейера, Гесса и Панета. Недаром говорят, что часто в науке "новое-это хорошо забытое старое". Подтверждением этого может служить история открытия элемента No 87.
      Проделав опыты, Перэ, подобно своим предшественникам, обнаружила присутствие тех же альфа-частиц. Необходимо было доказать, что их источником являются не примеси протактиния, а актиний. Проведя поистине ювелирную очистку актиния от всех возможных примесей и "дочерних продуктов" (т. е. продуктов его радиоактивного распада), а затем исследовав полученный чистейший препарат актиния, Перэ выяснила, что изотоп этого элемента с массовым числом 227 имеет "радиоактивную вилку", или, иначе говоря, способен распадаться по двум направлениям - с излучением бета- и альфа-частиц. Правда, "зубья" у этой вилки оказались далеко не одинаковыми: лишь в 12 случаях из тысячи ядра актиния испускали альфа-частицы, во всех же остальных случаях они излучали бета-частицы (т. е. электроны), превращаясь в ядра изотопа тория. Ну, а что же происходило при альфа-излучении?
      Расчет показывал, что, выбросив альфа-частицу (т. е. ядро гелия), ядро изотопа актиния "худело" ровно настолько, чтобы стать не чем иным, как ядром изотопа 87-го элемента. Действительно, в результате опытов появлялся продукт распада актиния со свойствами тяжелого щелочного радиоактивного металла. Это и был никогда прежде не зафиксированный в природе долгожданный эка-цезий, точнее, его изотоп с массовым числом 223. Так в 1939 году был открыт один из последних доурановых элементов. В честь своей родины Перэ назвала его францием.
      Почему же так долго франций оставался неуловимым для ученых всего мира? Прежде всего потому, что из всех химических элементов (исключая трансурановые) франций - самый неустойчивый. Период полураспада его наиболее долгоживущего изотопа (который и был обнаружен в опытах Перэ) - всего 22 минуты. Мудрено ли, что при такой "продолжительности жизни" на Земле практически нет не только ощутимых запасов этого элемента, но и мизерных его следов? Впрочем, кое-что все же есть. Пользуясь законом радиоактивного распада, специалисты подсчитали, что из 5976 * 1018 тонн земного вещества на долю франция приходится... чуть больше 500 граммов. Вот почему найти в природе хотя бы крупицу этого элемента неизмеримо сложнее, чем отыскать иголку в стоге сена. И тем не менее сегодня ученым точно известны многие физические и химические свойства франция. Как же удалось их определить?
      Для этого нужно искусственным путем получить сколько-нибудь заметные количества элемента, тщательно очистить его от всех примесей и затем в кратчайшее время провести необходимые измерения и опыты.
      Первое время для выделения франция применялись различные химические методы, однако они были довольно сложны и далеки от совершенства. Ощутимых успехов удалось достичь, когда на помощь химикам пришла... физика. Создание циклотронов и развитие техники ускорения ионов позволили разработать физические методы получения франция, основанные на бомбардировке ториевых или урановых "мишеней" протонами высоких энергий. Таким путем в Объединенном институте ядерных исследований в Дубне в результате пятнадцатиминутного "обстрела" одного грамма урана на синхроциклотроне было получено 5 * 10-13 граммов франция.
      Всего 5 * 10-13 граммов? Если бы речь шла, допустим, о золоте, то такое его количество не стоило бы в буквальном смысле и ломаного гроша. А триллионные доли грамма Франция представляют для ученых огромную ценность, ибо позволяют заполнить многие графы в характеристике этого элемента. Разумеется, при этом невозможно экспериментально определить плотность металла или выяснить, при каких температурах он плавится и кипит, но собранная исследователями информация позволяет сделать это расчетным путем.
      Разработан и другой оригинальный способ получения франция - облучение "мишеней" из свинца, таллия или золота многозарядными ионами соответственно бора, углерода или неона, ускоренными на циклотронах либо линейных ускорителях. Средневековые алхимики схватились бы за голову, узнав, что их потомки вместо того, чтобы заниматься серьезным делом, т. е. получать золото из других веществ, безрассудно "стреляют" в него какими-то частицами, стремясь превратить драгоценный металл в элемент с сомнительными свойствами. Именно эти сомнительные свойства и вынуждают ученых проводить все новые и новые эксперименты, чтобы узнать как можно больше "секретов" франция.
      Как же осуществляются "алхимические" процессы XX века? Тончайшую золотую фольгу (толщиной всего несколько микрон), помещенную в кассету, облучают ускоренными ионами неона - происходит ядерная реакция, в результате чего образуется изотоп франция с массовым числом 212. После получасовой "артподготовки" кассету с фольгой доставляют в лабораторию, где в защитном шкафу с помощью манипулятора облученное золото извлекают из кассеты. Внешне фольга выглядит так же, как до опыта; на самом же деле она содержит десятки тысяч атомов франция. Скажем прямо, не густо, но современным ученым зачастую приходится иметь дело буквально с несколькими атомами вещества. Так, элемент No 101 (впоследствии названный менделевием) был открыт американскими учеными, когда у них "в руках" побывало всего 17 атомов, да и то не одновременно, а в результате примерно дюжины экспериментов (по 1-2 в каждом). Так что десятки тысяч атомов - это целый клад.
      Итак, франций получен, но работа с ним только начинается: ведь его надо извлечь из золота и очистить от всех других осколков деления атомных ядер, а уж потом подвергнуть скрупулезному исследованию. Все это надо ухитриться проделать поистине с "космической" скоростью, потому что период полураспада изотопа франция, получаемого при "обстреле" золота, всего 19 минут.
      Сначала фольгу растворяют в царской водке и с помощью специальных "золотоуловителей" удаляют весь драгоценный (но совершенно лишний в данной ситуации) металл. Теперь надо убедиться, что эта операция прошла успешно: электронные приборы, в основе работы которых лежит метод меченых атомов, категорически "заявляют", что в растворе нет ни одного атома золота. Но ведь еще не удалены другие примеси. Если они останутся, то исследовать франций бессмысленно, так как картина может быть искажена и ученые окажутся "обманутыми". А отпущенное время неумолимо сокращается. как шагреневая кожа...
      "Обеззолоченный" раствор несколько раз прогоняют через колонку, которая заполнена веществом, жадно поглощающим все лишние продукты ядерных реакций и пропускающим лишь франций. Но вот очистка окончена. Капельку раствора помещают в углубление на тефлоновой пластинке и облучают мощным потоком инфракрасных лучей. Через несколько секунд от капли ничего не остается. Но испарился только раствор, а атомы франция должны "лежать" на пластинке. Чтобы убедиться в этом, ее вставляют в камеру чувствительного прибора, где создается вакуум, и крохотная неоновая лампочка сигнализирует о том, что франций есть. Но почему горит лишь одна из многих лампочек? Это означает, что франций чист. Если бы к нему "присоседились" инородные атомы, то загорелись бы и другие лампочки. Но, к счастью, ненужной иллюминации нет - можно приступать к химическому исследованию франция. А на эту завершающую и, пожалуй, самую ответственную стадию эксперимента отведены считанные минуты, иначе от франция останутся лишь воспоминания. Не случайно ученые в шутку называют такие опыты "химией на бегу".
      За годы, прошедшие со времени открытия франция, проделано множество опытов, выполнены сотни расчетов. Сегодня науке известны основные физические и химические свойства этого элемента. Его плотность 2,5 г/см3, температура кипения примерно 620-630 °С, а вот в отношении точки плавления франция у ученых нет единой точки зрения. Дело в том, что измерить эту температуру пока что не удается, поскольку наука не в состоянии синтезировать франций в весовых количествах; иначе говоря, было бы что плавить, тогда было бы и что измерять. Правда, сегодня радиохимики умеют работать и с так называемыми субмикроскопическими количествами вещества (так, масса впервые полученного в металлическом состоянии берклия составляла всего пять миллионных долей грамма). Но и тогда результаты определения температуры плавления франция нельзя было бы считать истинными, так как чем меньше размер частиц вещества, тем ниже точка его плавления (например, частицы золота размером 0,01 микрона плавятся не при 1063 °С, как положено золоту, а лишь при 887°С).
      Поэтому искомую характеристику франция ученые получают лишь теоретически путем сопоставления свойств других щелочных металлов, выяснения существующей между ними взаимосвязи и экстраполяции, т. е. продолжения установленной графической зависимости в область, для которой нет экспериментальных данных. Но этот путь не дает столь точных результатов, как современные способы измерения температуры. Отсюда и расхождения, зависящие от того, какие теоретические предпосылки положены в основу расчета. В литературе можно встретить такие значения температуры плавления франция (в градусах Цельсия): 8, 19, 20, 27, 15-23 и т. д.
      С химической точки зрения, франций - самый активный щелочной металл. Если фтор, находящийся в правом верхнем углу таблицы Менделеева, - наиболее яркий представитель неметаллов, то его антипод франций можно считать самым "металлическим" металлом.
      Ну, а какую практическую пользу может принести этот неуловимый элемент? О широком применении его говорить пока рано. Однако лед тронулся. Характерное для франция излучение позволяет, например, быстро определить, есть ли в тех или иных природных объектах его "прародитель" актиний. Для медицины несомненный интерес представляет способность франция накапливаться в опухолевых тканях, причем (что особенно важно) даже на начальных стадиях заболевания. Благодаря этому элемент можно использовать для ранней диагностики саркомы. Такие опыты уже успешно проведены на крысах. Будущее несомненно раскроет и другие "способности" франция, а пока...
      Эксперименты продолжаются, франций "рассказывает" о себе, ученые внимательно "слушают".
      "В ГРАММ ДОБЫЧА, В ГОД ТРУДЫ" (РАДИЙ)
      Повествуют легенды. - Шаг в бессмертие. - Три франка в день. - Задачи определены. - Не жарко! - Два незнакомца. - Голь на выдумку хитра. - Находка в парижском дворе. - Подарок из Богемии. - Сказочное царство. - Четыре года спустя. - "Не имею нужды в ордене..." - Торжество алхимических идей? - Любовь и обида Беккереля. - Чудесный исцелитель. - Радость старого лорда. - Ожерелья и лаборатории. - Нобелевская премия. - Гибель Пьера Кюри. - "В грамм добыча, в год труды!" - На войне, как на войне. - Сказочный ларец. - Русский радий. Мечта танцовщицы. - Черная записная книжка.
      История науки хранит немало примеров того, как гениальные идеи внезапно осеняли ученых, как буквально в считанные секунды рождались великие открытия. Если верить древней легенде, однажды Архимед решил принять ванну, и пока его бренное тело занималось вытеснением жидкости, в голове великого грека уже созрел едва ли не важнейший закон гидромеханики. А вот Ньютону якобы достаточно было увидеть в саду падающее с дерева яблоко, как физика обогатилась одним из основных своих постулатов-законом всемирного тяготения...
      В результате легкомысленного, а порой и обывательского "понимания" того, как открываются великие законы науки, создавались эти легенды. Но еще Ходжа Насреддин говорил: "Дичь видишь потому, что охотишься". На многих падало яблоко с дерева, но только для Ньютона оно оказалось воистину золотым. Все мысли ученого были заняты этим "будущим" законом - пока еще в предположениях и наблюдениях; вот почему маленькое яблоко стало подобно тому первому камешку в горах, который вызывает обвал. Да ведь для обвала-то надо кое-что "иметь", кроме этого первого камешка.
      Порой, чтобы достичь цели, ученые трудились долгие месяцы и даже годы, проводили эксперимент за экспериментом, совершая при этом настоящий научный подвиг. И, пожалуй, самым ярким примером такого подвига может служить открытие и получение Марией Склодовской-Кюри и Пьером Кюри одного из удивительных металлов мироздания - радия. Вот почему рассказ о радии - это и рассказ о двух замечательных ученых, об их бескорыстном титаническом труде на благо науки.
      ...Поезд идет уже третьи сутки. Где-то далеко позади осталась родная Польша, отсчитана не одна сотня километров по земле Германии, впереди - Париж. Что ждет там скромную польскую девушку, решившую поступить в знаменитую Сорбонну? Она мечтает, закончив университет, вернуться на родину - работать учительницей физики. Ни она сама и ни один человек в мире еще не знает, что не сбудется эта робкая мечта. Судьбе угодно было распорядиться иначе: сев в этот поезд, Мария Склодовская сделала первый шаг на долгом и тернистом пути, который обессмертит ее имя, поставит его в ряд величайших имен человечества.
      Всеобщее признание, слава, почет - как нескоро еще придет все это... А пока она может тратить только три франка в день - на еду, одежду, жилье, тетради, книги. Всего три франка!.. Расходы на омнибус - непозволительная роскошь: в холод и дождь Мария идет в университет пешком. Чтобы сэкономить керосин для освещения, как только начинает темнеть, она бежит в библиотеку Сен-Женевьев, где можно просидеть до закрытия - до десяти часов вечера. А потом до двух ночи при свете керосиновой лампы Мария занимается дома - в крохотной комнатушке под крышей. На протяжении многих недель дневной рацион ее - чай да хлеб с маслом, а порой - лишь пучок редиски или немного вишен.
      Но вот, наконец, с блеском окончен курс Сорбонны, получены сразу два диплома - физика и математика.
      В это время в одном из писем брату Мария Склодовская делится с ним мыслями: "Жизнь, как видно, не дается никому из нас легко. Ну, что же, надо иметь настойчивость, а главное - уверенность в себе. Надо верить, что ты на что-то годен и этого "что-то" нужно достигнуть во что бы то ни стало".
      Вскоре, в 1895 году, произошло событие, сыгравшее важную роль в судьбе Марии, - она стала женой уже известного в то время физика Пьера Кюри. С этого момента совместная работа стала для них смыслом жизни. До открытия радия оставалось немногим более трех лет...
      Даже рождение дочери не могло помешать Марии заниматься любимым делом. Молодая женщина успевает и вести хозяйство, и ухаживать за крохотной Ирэн, и трудиться в лаборатории Пьера Кюри, в подготовительной школе физики при Сорбонне. В том же году Мария Склодовская-Кюри приступает к работе над диссертацией. Ей предстоит выбрать тему. Больше всего молодого ученого волнует открытое незадолго до этого Анри Беккерелем загадочное излучение урана и его соединений. Именно в этом направлении и решено было на семейном совете продолжать научный поиск.
      С помощью созданного мужем прибора, позволявшего количественно оценивать поток таинственных лучей, Мария Кюри исследовала тысячи образцов. Работа велась в неимоверно тяжелых условиях, в сыром не приспособленном для опытов помещении, на примитивном оборудовании. В один из зимних дней в научном дневнике появилась запись, покоряющая своей педантичной точностью: "Температура 6,25 °С!!".
      Но Мария Кюри трудилась с необыкновенным упорством. Тщательное изучение разнообразных материалов подтверждало правоту Беккереля, считавшего, что чистый уран обладает большей радиоактивностью, чем любое его соединение. И хотя об этом говорили результаты сотен опытов, исследованию подвергались все новые и новые вещества. И вдруг... Неожиданность! Два урановых минерала хальколит и смоляная руда Богемии - гораздо активнее действовали на прибор, чем уран. Вывод напрашивался сам собой: в них содержится какой-то неизвестный химический элемент (возможно, и не один) с еще более высокой степенью радиоактивности. По крупицам анализируя оба минерала, супруги Кюри приходят к заключению, что в них "прячутся" два незнакомца. И вот, наконец, открыт один из них. В честь Польши-родины Марии - его решено назвать полонием.
      Снова за работу, снова титанический труд - и еще одна победа: обнаружен элемент, в миллион раз превосходящий по радиоактивности уран. За эту неиссякаемую способность к излучению ученые назвали его радием ("радиус" по-латыни-луч). Произошло это в 1898 году.
      Итак, полоний и радий открыты, но их пока никто не видел. Чтобы показать миру эти элементы, чете Кюри понадобилось еще четыре года напряженного труда, долгих четыре года...
      Даже в наиболее радиоактивных продуктах присутствуют лишь следы новых элементов. Значит, для их выделения придется обработать тонны сырья! Для этого нужны средства и немалые. Где их взять?
      Ученые решили обратиться к одному из австрийских физиков с просьбой помочь им приобрести по доступной цене отходы урановой руды (из нее в Богемии извлекали уран, используемый в виде солей для окрашивания стекла и фарфора).
      Тем временем нужно подыскать подходящее помещение: та небольшая мастерская, где начинались поиски неведомого элемента, слишком уж тесна для предстоящей работы. Руководство Сорбонны "не видит возможности" помочь ученым. В соседнем дворе они находят старый заброшенный сарай, у которого имелось одно весьма сомнительное достоинство: он был настолько плох, что на него не зарился никто другой. "Хоромы" поступают в полное распоряжение Пьера и Марии Кюри.
      Дощатые стены, асфальт вместо пола, стеклянная крыша, протекавшая во время дождя, несколько грубо сколоченных столов, печка с проржавевшей трубой да классная доска - вот "штрихи к портрету" той лаборатории, где ученым предстояло провести не один год, прежде чем они добьются своей цели - выделят крупицы лучезарного радия. "Но как раз в этом никудышном, старом сарае прошли лучшие и счастливейшие годы нашей жизни, всецело посвященные работе", - скажет впоследствии М. Кюри.
      Пока супруги осваивали свои новые владения, пришли добрые вести из Австрии: по ходатайству Венской академии наук австрийское правительство дало указание директору рудника отправить в Париж несколько тонн отходов урановой руды.
      Вскоре, в одно прекрасное утро (если бы шел проливной дождь с градом и ветер срывал с домов крыши, все равно это утро показалось бы Марии и Пьеру прекрасным), к зданию, где помещалась школа физики, подошла конная повозка и рабочие начали выгружать мешки. Мария не может скрыть свою радость: она стала обладательницей несметных сокровищ! Ведь в этих мешках содержится не просто бурая порода, похожая на дорожную пыль, - здесь таится ее радий. Проще, правда, найти иголку в стоге сена, чем добыть хотя бы крупицы этого металла. И все же - за работу, сейчас же, немедленно...
      Первое время супруги совместно трудятся над химическим выделением радия и полония. Однако постепенно они приходят к выводу, что целесообразно разделить "обязанности": Мария продолжает обработку руд, чтобы получить чистые соли радия, Пьер ставит тонкие опыты по уточнению свойств нового металла.
      В сарае нет вытяжных шкафов, а при работе выделяются вредные газы, поэтому Марию чаще можно было увидеть во дворе, окруженную клубами дыма. Зимой же и в непогоду она трудилась в сарае, при открытых окнах. "Мне приходилось обрабатывать в день до двадцати килограммов исходного вещества, - вспоминала М. Кюри, - и в результате весь наш сарай был заставлен большими сосудами с осадками и растворами; это был изнурительный труд - переносить мешки, сосуды, переливать жидкости и часами перемешивать железным прутом кипящую массу в чугунном котле". (Когда впоследствии кто-то назовет в присутствии М. Кюри ее деятельность подвижничеством, она возразит: "Какое это подвижничество, господа, когда все это было так интересно!")
      Иногда ученые на несколько минут отрываются от приборов и склянок и начинают мечтать о том дне, когда они увидят, наконец, свой радий. "Пьер, ты каким представляешь его себе?" "Видишь ли, Мари, мне бы хотелось, чтобы у него был красивый цвет". К великому восторгу обоих через несколько месяцев они обнаруживают, что у радия есть нечто большее, чем красивый цвет: он постоянно излучает свет! По вечерам радий словно манит их к себе. Когда темнеет, Пьер и Мари возвращаются в сарай, где повсюду - на столах, на полках - расставлены стеклянные банки и пробирки с веществами, обогащенными радием. И старый дощатый сарай превращается в сказочное Царство Радия. Во тьме его, куда ни глянешь, мерцают чудесные зеленовато-голубоватые огни, как бы висящие в темноте. Бледное сияние озаряет прекрасные взволнованные лица ученых...
      Шли дни, недели, месяцы, но радий упорно отказывался знакомиться с людьми. Стоит ли этому удивляться? Ведь условия, в которых находились физики, отнюдь не способствовали решению стоявшей перед ними сложнейшей химической задачи. Пьер даже предложил приостановить работу, заняться теоретическими исследованиями и дожидаться лучших времен - тогда успеха можно будет добиться с меньшими затратами сил. Но даже авторитет мужа не в состоянии поколебать решимость Мари. И Пьер соглашается с ней.
      Самозабвенный труд приносит наконец плоды: в 1902 году, спустя четыре долгих года с того дня, когда супруги Кюри объявили о вероятном существовании радия, Мари удается выделить крупицу чистого хлористого радия, который давал ясный спектр нового элемента. Всего десятая доля грамма, но она приносит радию уже официальное признание.
      И снова за дело - ведь теперь можно ближе познакомиться с этим необыкновенным элементом, выяснить, чем он может быть полезен людям. Для этого, как воздух, нужны средства, а семья Кюри, несмотря на блестящие научные достижения, продолжает едва сводить концы с концами.
      Ученые мечтают о новой лаборатории, где они смогли бы развернуть большие опыты с радием, но судьба не торопится воплотить их мечту в жизнь. Примерно в это время начальство П. Кюри решило представить его к награде орденом Почетного легиона. Однако в записке, адресованной декану факультета, Пьер писал: "Прошу Вас, будьте любезны передать господину министру мою благодарность и осведомить его, что не имею никакой нужды в ордене, но весьма нуждаюсь в лаборатории".
      Даже в тех условиях, которые, мягко выражаясь, оставляли желать лучшего, ученым удавалось узнавать все новые и новые подробности о радии. Оказалось, например, что он испускает не только лучи: каждый грамм этого металла выделяет в час теплоту, достаточную, чтобы растопить такое же количество льда.
      А всего за время своего существования (постепенно весь радий распадается, превращаясь в другие элементы) один грамм радия выделит столько теплоты, сколько образуется, например, при сжигании полтонны каменного угля, но на это потребуется немногим меньше... 20 тысяч лет.
      Если в стеклянную трубку поместить маленькую щепотку солей радия и запаять ее, а спустя несколько дней перекачать воздух из нее в другую герметичную трубку, то она начнет светиться в темноте зеленовато-голубым светом - точно так же, как и радиевая соль. Большой интерес к этому явлению проявили английские ученые Эрнст Резерфорд, Фредерик Содди, Уильям Рамзай. Сначала было установлено, что свечение объясняется образованием нового газообразного радиоактивного вещества, рожденного из радия. Вслед за тем, в 1903 году, удалось обнаружить, что превращение радия в эманацию (так первое время именовался новый газ, названный позднее радоном) сопровождается появлением уже известного тогда газа гелия. Работы английских ученых положили начало теории радиоактивных превращений элементов (кстати, сам радий образуется в результате распада урана - именно поэтому он впервые дал о себе знать, когда исследовались урановые минералы).
      Один элемент самопроизвольно превращается в другой - как тут не вспомнить средневековых алхимиков, стремившихся получить золото из других металлов. Значит, не так уж и плоха была в принципе эта идея. Но скольким умам еще предстояло родиться, прежде чем мир узнал о том, что подобные чудеса возможны, понял, почему они происходят, научился их совершать!
      Во Франции же изучение радия пошло в несколько ином направлении: им всерьез заинтересовались... врачи. Было обнаружено еще одно свойство этого элемента: его излучение вызывало ожоги человеческого тела. Пьер Кюри добровольно подверг свою руку действию радия в течение нескольких часов - кожа сначала покраснела, затем образовалась рана, на лечение которой ушло более двух месяцев. Анри Беккерель также обжегся радием, хоть и не по своей охоте: проносив некоторое время в кармане жилета пробирку с солью радия, он ощутил вдруг сильное жжение. Рассказывая об этом супругам Кюри, Беккерель воскликнул: "Я люблю радий, но я на него в обиде".

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13