Современная электронная библиотека ModernLib.Net

Энергия будущего

ModernLib.Net / Проценко Александр / Энергия будущего - Чтение (стр. 5)
Автор: Проценко Александр
Жанр:

 

 


В графитовых кирпичах, из которых выкладывали реактор, имелись отверстия для урановых блоков, похожих на гирьки. Пока не было всего необходимого урана и графита, в здании собирали различные модели, с помощью которых можно было определить многие нужные физические параметры установки. И вот в декабре 1946 года прибыли последние партии урана и графита. На слое графита стали размещать графитовые кирпичи с вставленными в них блоками урана. Кирпичи клали так, чтобы реактор по форме как можно точнее напоминал шар - тогда меньше нужно графита и урана.
      Наконец выложено шестьдесят два слоя графитовых кирпичей. Измерения показывают, что реактор почти критический. Надо еще немного улучшить размножение нейтронов - и цепная реакция начнется. И. Курчатов отпустил на отдых всех, непосредственно не связанных с пуском, а сам начал поднимать регулирующий стержень. Чем выше тот поднимался, тем осторожнее становились движения ученого. Вот стержень выдвинут еще немного. Зайчик гальванометра, а он должен был показывать поток нейтронов, чуть сдвинулся с места и остановился. Реактор заработал, но мощность его не растет, значит, еще нет цепной реакции. "Отдохнем", - говорит Игорь Васильевич. Потом еще поднял стержень на десять сантиметров. Зайчик гальванометра тронулся и начал двигаться по шкале не останавливаясь. Вот он ушел за шкалу; переключается масштаб измерений.
      Мощность растет. Звонко щелкают динамики - это электрические импульсы, создаваемые нейтронами в счетчиках, с помощью усилителей превращаются в звук.
      Щелчки динамиков учащаются: барабанная дробь сменяется пулеметной очередью, а затем и вовсе нельзя различить отдельные щелчки - все сливается в сплошной гул. Реактор стал надкритическим. И. Курчатов тут же оценил мощность: "Вот они, первые сто ватт от цепной реакции делений!"
      Потом каждому пожал руку и поздравил с победой.
      Реактор был пущен в 18 часов 25 декабря 1946 года.
      Пока задачу приходится сводить к предыдущей
      До сих пор мы еще не говорили, в каком виде выделяется энергия при делении атомного ядра. Очевидно, что часть ее связана с нейтронами, вылетающими при делении. Обладая огромной скоростью в 20 тысяч километров в секунду, они несут энергию в 5 Мэв на деление, что составляет 2,5 процента всей энергии разделившегося ядра. На гамма-излучение и на электроды приходится 10 процентов. Около 6 процентов уносит с собой нейтрино, причем уносит безвозвратно. И, наконец, 81,5 процента (или 88, если не учитывать всепроникающее нейтрино) приходится на осколки, те новые ядра, которые образуются при делении урана-235. Если ядро разделится точно пополам, отдав одинаковое количество энергии каждой половинке, то новое ядро-осколок будет лететь со скоростью двух тысяч метров в секунду. Обладая такой скоростью и массой, более чем в сто раз превышающей массу нейтрона, летящие осколки и уносят основную долю энергии, выделяющейся при делении.
      Сталкиваясь с окружающими молекулами, они передают им свою энергию, и те начинают двигаться быстрее, интенсивнее. А увеличение скорости движения молекул вещества есть не что иное, как повышение его температуры. Так энергия деления ядра переходит в тепловую энергию движения молекул урана.
      В реакторах уран находится в виде стерженьков или таблеток, выполненных из двуокиси урана и заключенных в металлическую оболочку. Из какого металла надо делать оболочки? Конечно, прочнее они были бы из нержавеющей стали. Но она очень сильно поглощает нейтроны и замедляет процесс деления. Поэтому идут: на компромисс, используя материал менее прочный и температуростойкий, но зато слабо поглощающий нейтроны. Обычно берут цирконий или сплавы этого металла.
      Стержень из двуокиси урана, помещенный в герметичную циркониевую трубку, называют тепловыделяющим элементом - сокращенно "твэл". Если тепло от твэла не отводить, то температура его будет непрерывно повышаться, в конце концов он раскалится, затем размягчится - реактор "сгорит".
      Каждый тепловыделяющий элемент реактора можно было бы сравнить с вытянутой в линию спиралью электрической плитки. Из нескольких тысяч таких "спиралек" составлена центральная часть реактора. Эту его часть называют активной зоной. Каждая "твэл-спиралька" отдает энергию куда большую, чем спираль электроплитки.
      Напряженность работы поверхности тепловыделяющего тела, через которую передается тепло, теплотехники определяют по количеству тепла, отдаваемого единицей поверхности в единицу времени. Так, спираль электроплитки работает в довольно напряженных условиях - через каждый квадратный сантиметр ее поверхности в час проходит 4 килокалории тепла. Уже при такой тепловой нагрузке спираль накаляется докрасна.
      В 25 раз больший тепловой поток идет через поверхность твэла активной зоны энергетического реактора.
      Он составляет в час 100 килокалорий на один квадратный сантиметр, и тем не менее оболочка твэла докрасна не раскаляется, да до этого цирконий и нельзя допустить - он расплавится.
      Как же удается снижать температуру оболочки? Конечно, хорошим отводом от твэла тепла. Наверное, многие замечали, что, если подуть на спираль электроплитки, она потемнеет, значит, температура ее понизилась, хотя количество тепла при этом выделяется то же самое. А температура понижается потому, что стало лучше отводиться тепло; и чем с большей скоростью будет отводиться тепло, тем меньшей будет температура спирали.
      В большей части существующих сейчас энергетических реакторов энергия деления отводится от тепловыделяющих элементов примерно так же, но не с помощью воздуха, а воды. Охлаждающая вода поступает по трубе в нижнюю часть корпуса реактора, а затем попадает в каналы с тепловыделяющими элементами. В каждом канале может быть собрано 100-200 тепловыделяющих элементов, расположенных на некотором расстоянии друг от друга. Протекая с большой скоростью мимо твэлов, вода охлаждает их и, нагреваясь, выходит через трубы, расположенные сбоку в верхней части корпуса реактора. Путем такого интенсивного охлаждения и удается снизить температуру оболочки твэлов. Такова общая схема отвода тепла из активной зоны реактора.
      Конечно, она ненова. Так же с помощью воды, только текущей по трубкам, отбирается тепло раскаленных газов в топках паровых котлов электростанций, работающих еа органическом топливе.
      Есть- у математиков такой метод решения: новую сложную задачу упрощают, разбивая ее на части до тех пор, пока она не станет похожей на какую-нибудь другую задачу, которая уже была решена раньше. Говорятг задача сведена к предыдущей. В этой связи следует заметить такой шутливый рассказ, бытующий среди учащихся. Двум студентам - математику и механику предложили почти без всяких инструментов вытащить из стены забитые по шляпку гвозди. После долгих усилий эту задачу решили оба. Затем гвозди забили в стену только наполовину. Студент-механик сразу же вытащил гвоздь, а математик сначала свел задачу к предыдущей - забил гвоздь по шляпку, а потом уж испытанным способом вытащил его. Конечно, это шутка. Рассказана же она потому, что создатели атомных энергетических установок во многих случаях поступают подобно студенту- м атем атику.
      Как очевидно, задача большой части энергетических установок - это получение электричества: наиболее удобной и гибкой формы энергии. Проследим цепочку получения электрической энергии на тепловых станциях.
      В топках паровых котлов электростанций сгорают уголь, нефть или газ. Тепло, выделяемое при горении, передается другому веществу, например воде. Вода разогревается и превращается в пар. Пар, выходя из котла, направляется в турбину. В ней энергия пара преобразуется в механическую энергию вращения турбины. И наконец, последняя ступень - турбина вращает генератор, вырабатывающий электрический ток.
      Таков долгий, но пока почти единственно возможный путь масштабного получения электрической энергии из топлива. Теперь на смену химическому топливу приходит энергия ядра. В самом факте освобождения внутриядерной энергии заложены совершенно новые большие потенциальные возможности. Во-первых, выделяющуюся энергию можно сконцентрировать в очень" небольшом объеме. Другими словами, может быть достигнута громадная плотность энерговыделения. Во-вторых, для осуществления процесса выделения ядерной энергии не нужно непрерывно вводить в установку какие-то иные, кроме топлива, вещества, без которых энерговыделение невозможно (имеется в виду кислород в топке обычных котлов). Кроме того, и само топливо вводится крайне редко. В-третьих, почти отпадает необходимость в обязательном удалении новых продуктов, возникающих в процессе энерговыделения: золы, шлаков, газов - непременных спутников процесса горения угля, сланцев, торфа, нефти. В-четвертых, количество ядерного горючего, нужного для работы реактора, в миллионы раз меньше количества химического топлива, обеспечивающего такую же выработку энергии. И наконец, в-пятых, в отличие от химических реакций (если не говорить о взрывных процессах) при выделении внутриядерной энергии могут быть получены любые необходимые температуры источника тепла.
      Да, возможности громадные! Но пока... задачу получения электроэнергии приходится сводить к предыдущей, то есть превращать энергию атома в энергию пара и направлять его в турбину. Почему пока?
      В кабинетах физиков-теоретиков, в конструкторских бюро, на экспериментальных установках и реакторах - везде ведутся поиски и разрабатываются новые, более совершенные пути использования энергии атома. Здесь и прямые газотурбинные ц-иклы, и магнитогидродинамические установки, и прямое преобразование тепла в электроэнергию. Трудно сказать, когда все эти новые методы войдут в жизнь. Поэтому посмотрим, как же решается эта задача сейчас.
      Вода, нагретая в активной зоне, выходит из реактора и по трубопроводу поступает в парогенератор - сосуд с очень большим количеством трубочек, по которым и течет нагретая вода. Из парогенератора вода перекачивается насосом снова в активную зону. Получается замкнутый контур, из которого вода никуда не уходит:
      реактор - парогенератор - насос - реактор.
      Вода, циркулируя в этом замкнутом контуре, забирает тепло в активной зоне и отдает его в парогенераторе воде второго контура.
      Вода второго контура, поступая в парогенератор и омывая снаружи трубочки, внутри которых протекает вода первого контура, нагревается, начинает кипеть и превращается в пар.
      Энергия пара преобразуется в механическую энергию вращения вала турбины. После турбины отработанный пар направляется в конденсатор. Здесь он охлаждается наружной водой или воздухом, конденсируется и насосами снова перекачивается в парогенератор.
      Вращение турбины передается генератору, вырабатывающему электрический ток.
      Такова эта длинная цепочка превращения ядерной энергии в электроэнергию. Есть и другие схемы. Но о них мы расскажем позже.
      СТЕПЕНЬ ОПАСНОСТИ
      ...Вещи невиданные, скрытые и непознанные порождают в нас и больше веры, и больше страха.
      Гай Юлий Цезарь
      Любое производство - будь то текстильная фабрика с ее машинами и шумами, металлургический комбинат с повышенной загазованностью воздуха, трактор на пашне - приносит человеку определенную пользу и определенный вред. То же самое можно сказать и по поводу энергетической станции. Если теплоэлектростанция вынуждает нас вдыхать двуокись серы, окислы азота, углекислый газ, аэрозоли и так далее, то на атомной станции вред может приносить облучение, которым сопровождается как процесс деления ядер, так и некоторые продукты, связанные с работой установки.
      В каждой отрасли промышленности защите человека от вредного воздействия шумов, газов и т. д. уделяется серьезное внимание. Огромна роль профилактики - предупреждения возможных тяжелых заболеваний и травм. В атомной энергетике защите тоже уделяется большое внимание, точнее сказать, не просто большое, а по сравнению с другими производствами громадное внимание, и тем не менее к атомной энергетике у многих людей особенно настороженное отношение.
      Подумайте сами. Самые различные группы населения - научные сотрудники и производственники, пенсионеры и школьники, артисты и педагоги, колхозники и служащие одинаково опасаются атомной энергии. Эта боязнь доходит порою до комизма. Бывает, что мои собеседники, узнав, что я живу невдалеке от Института атомной энергии, спрашивают с опаской: "И... ничего?"
      Приходится отвечать, что я проработал там четверть века и уверен, что еще долго буду трудиться в тех стенах, где действуют реакторы и вырабатывается атомнал энергия. Кстати, этот московский район по уровню излучений один из самых благополучных.
      Лекарства от радиации
      Безусловно, основная причина необоснованной тревоги - чистая неосведомленность. Но объяснять только этим было бы большим упрощением. Очень важен и психологический фактор. Излучение - это нечто отличное от того, к чему привык человек. Пламя, например, явление привычное. Пожарные в робе из минерального волокна бесстрашно борются с ним. Сталевары, которых предохраняет от ожогов специальная одежда и обувь, спокойно обслуживают домны, вагранки. А химики, занятые производством вещества, способного взрываться, проникать в легкие, в кровь? Разве не они постоянно рискуют здоровьем? Но все дело в том, что металлурги, химики, строители, врачи и прочие специалисты научились обращаться с явлениями, таящими в себе опасность, и хорошо знают, чего можно от них ожидать.
      А вот атомная энергия, излучение - его не видно. Оно не пахнет. Его не почувствуешь. В такой ситуации человек чувствует себя беззащитным.
      Первое знакомство людей с атомной энергией было чудовищным знакомством. Ужасы Хиросимы и Нагасаки надолго останутся в человеческой памяти. К сожалению, такое знакомство привело и к тому, что выражения "атомная энергия", "атомный реактор" у многих стало отождествляться с понятием "атомная бомба", хотя из ранее сказанного читатель уже сам может сделать вывод, что это разные вещи. Но "ведь источник энергии, - скажут мне, идентичен! Что может помешать использовать атомную энергию не в мирных, а в военных целях?"
      Лучше поставить вопрос так: кто может этому помешать? Ответ последует простой: это совершат народы, готовые сопротивляться всеми силами повторению Хиросимы и Нагасаки. Люди всего мира знают, чго Советское государство всячески препятствует применению адского оружия, и это их воодушевляет на борьбу против атомного кошмара.
      Конечно, в атомной энергии есть опасность, И бороться против ее вредного воздействия необходимо. Но стоит ли отказываться от колоссального достижения человеческого разума? Не закрываются же химические производства, хотя на некоторых из них готовят взрывчатые и ядовитые вещества.
      Не запрещаются же автомобили, самолеты, газовые плиты и электричество. А ведь они тоже могут приводить к гибели человека.
      Атомная энергетика родилась в эпоху, когда развитие техники, включая и энергетику, достигло небывалых успехов и масштабов.
      Она стала активно влиять на природу и облагораживающе и разрушительно, улучшая и ухудшая ее.
      Пришла пора по-настоящему серьезно относиться к проблеме влияния техники и энергетики на природу и человека. Нужно сказать, что атомной энергетике явно повезло в том смысле, что с самого ее зарождения начались тщательные исследования, в частности, по созданию научно обоснованных пределов облучения. Не ошибусь, если скажу, что такого уровня эти исследования не достигли еще ни в одной из других отраслей промышленности.
      Тут-то и возникает парадокс. Получилось так, что особое внимание к защите от излучений было воспринято многими как признак особой опасности, а не как показатель действительно научного и государственного подхода к здоровью человека.
      За всем сказанным вовсе не скрывается намерение показать, что атомная энергия совершенно безопасна и безвредна. Как и любой вид энергии, этот также имеет свои отрицательные стороны. Важно лишь принять нужные меры защиты.
      С точки зрения ученых, действительная специфика опасности атомной энергетики в ее излучениях, и они сильнее каких-либо других явлений вызывают генетические изменения в организме. Правда, эти изменения могут быть и следствием действия некоторых химических веществ и других излучений. Небезопасны, скажем, и рентгеновские лучи. Однако отрицательный эффект от воздействия ядерного излучения может быть большим.
      Есть и другая особенность: часть отходов, неизбежных при производстве ядерной энергии, остается опасной иногда на протяжении нескольких тысяч лет.
      Исправлю не совсем верное утверждение, сделанное мною выше о том, что для человека радиация - явление совершенно новое и непривычное. На самом деле с момента своего возникновения человечество жило, правда, не зная об этом, в потоках разнообразных лучей. Более 80 лет назад были открыты излучения ядер и началось их изучение. Но, конечно, 80 лет - малый срок для того, чтобы человечество привыкло к ним. К тому же 80 лет назад об этом знали одни лишь ученые. Подавляющее число людей заинтересовалось излучениями совсем недавно, вслед за появлением ядерного оружия и атомной энергии.
      Первым ученым, "увидевшим" необыкновенные лучи, еще неизвестные науке, был немецкий физик К. Рентген.
      В 1896 году весь научный мир был взбудоражен его открытием. Лучи свободно проходили через непрозрачные предметы. Этим явлением тотчас воспользовались медики. По сей день врачи ставят диагноз, направляя пучок рентгеновских лучей на человеческий организм. Исследователей же в первую очередь интересовала природа излучения. Надо было узнать, что они собой представляют и откуда берутся?
      Наряду с исследованиями велся поиск излучающих веществ. В том же году французский ученый А. Беккерель, изучая те вещества, в состав которых входил уран, обнаружил, что они также источники какого-то излучения, проникающего сквозь непрозрачные тела. За открытием А. Беккереля последовали обширные исследования супругов Кюри.
      Но вот что выглядело загадочным: излучение урана, делающее воздух электропроводным и зачерняющее эмульсию фотопластинок, невозможно было изменить никаким воздействием. Мария Кюри нагревала и охлаждала его соли, держала их в темноте, направляла на них пучки света. И никакого влияния. Вне зависимости от физического состояния урана, находился или не находился он в магнитном поле, излучение сохраняло прежнюю величину. Значит, шло оно из глубины элемента - из атома. Это новое свойство Мария Кюри предложила назвать радиоактивностью, исходя из латинского слова "радиус" - луч.
      Явление радиоактивности, представляющее собой своего рода извержение, было первым сигналом о том, что внутри ядра есть энергия.
      Последующие исследования вскрыли природу радиоактивного излучения и позволили определить его состав.
      В него входят альфа-лучи, представляющие собой ядра гелия; затем бета-лучи - это электроны; и, наконец, гамма-лучи - это электромагнитное излучение. С электромагнитным излучением мы встречаемся постоянно.
      Радиоволны, тепловое излучение, свет, лучи Рентгена, гамма-излучение все это электромагнитное излучение, отличающееся только длиной волны.
      Электромагнитное излучение распространяется подобно волнам на воде. Расстояние между двумя близлежащими гребешками называют длиной волны. У радиоволн длина волны лежит примерно в интервале от 10 сантиметров до нескольких десятков километров. Человек их не видит и не ощущает. Но вот волны становятся короче, скажем, их длина уменьшается до одного миллиметра. И они уже ощутимы, ибо человека греет тепло, волнами идущее от солнца и батарей отопления. Если длина волны еще короче - это уже область видимого светового излучения. При длине волны Ю-7-Ю-9 сантиметра излучение носит название рентгеновского. Его человек также не видит и не ощущает. Невидимы и неощутимы и самые короткие волны около 10^-11 сантиметра. Это уже гамма-лучи.
      Стоит напомнить еще об одном известном факте - о прерывистости потока излучения, о квантовании лучистой энергии. По мере изучения радиоактивности становилось очевидным, что она имеет прерывистый характер и состоит как бы из порций, из пакетов волн электромагнитного излучения. Становилось ясно, что и энергия излучения передается только небольшими порциями, которые назвали квантами. Величина квантов, то- есть количество содержащейся в них энергии, зависит от длины составляющей их волны. Чем она короче, тем больше энергии в кванте.
      По-видимому, первейшими исследованиями, посвященными действию рентгеновского облучения на живые организмы, была работа русского академика И. Тарханова. Статья, опубликованная в 1896 году "В известиях Санкт-Петербургской биологической лаборатории", называлась "Опыт под действием рентгеновых Х-лучей на животный организм". Выходит, прошло лишь несколько месяцев после того, как К. Рентген впервые сообщил о своем открытии, а И. Тарханов за это время уже обнаружил, что у облученных лягушек изменяются некоторые физиологические реакции.
      Наступил период, когда сами исследователи убедились во вредном действии рентгеновского излучения.
      Очень многие пионеры исследования рентгеновских лучей и излучения радиоактивных ядер стали жертвами науки. Одни из них заболевали, а другие погибали.
      В 1936 году в Гамбурге был установлен обелиск в память ученых, погибших при исследованиях неизвестных лучей. В момент открытия памятника на нем уже были высечены имена ста десяти ученых.
      Долгое время люди не могли понять, чем вызвано губительное действие радиации. "Что тут непонятного? - удивленно воскликнет современный читатель.-Все знают, что энергия рентгеновских и гамма-лучей-наивысшая".
      Все это так, но тут есть некоторые тонкости, с которыми полезно ознакомиться. Да, энергия квантов такого излучения максимальна, но даже смертельная доза в тысячу рентген (рентген - единица измерения радиации), принятая организмом, вызовет повышение его температуры лишь на три тысячные градуса, так как это только 20 калорий тепла. Под солнечными лучами мы получаем то же самое за полсекунды-секунду. А ведь многие из нас, хотя это не так уж безопасно для здоровья, лежат на пляже часами. Чаще всего с нами ничего особенного не случается. В чем же тут дело?
      В разнице между видами лучей. Световые лучи и радиоволны не могут ионизировать атом - оторвать от него электрон. Для этого недостаточно той порции энергии, которую несут их кванты. А квантов гамма-излучения хватает. Они ионизируют элементы, из которых состоит наш организм. А ионизированное вещество весьма неустойчиво, его атомы легко вступают в химические реакции. Это приводит к изменению химического состава вещества нашего живого организма.
      Такое же действие могут оказать и нейтроны. В организме при облучении потоками этих частиц также могут возникнуть необратимые изменения. Правда, сами нейтроны не могут ионизировать атомы. Но они могут поглотиться атомом водорода, в ядре его возникает избыточная энергия, которая и высвечивается в виде гамма-излучения, обладающего не только высокой энергией, но и большой ионизирующей способностью.
      Все это так. Однако мы еще не пришли к объяснению биологического эффекта. -Ведь и такого воздействия излучения, при котором возникает ионизация атомов, для него еще недостаточно. Представим себе, что при указанном выше облучении из строя будет выведено несколько молекул белков. Исследования покажут, что это настолько незначительное количество, что такая потеря никак не может привести к тяжелым нарушениям в организме. Клетка не станет смертельно поврежденной, если окажется пораженной молекула воды, какой-либо соли или фермент. Ну исчезнет одна-другая молекула из многих тысяч, что из этого? Другое дело, если будут выведены из строя гены, ответственные за наследственные свойства клетки. Последствием их гибели окажутся мутации - изменения наследственной информации, возникающие под воздействием радиации.
      Распространено мнение, что наследственная информация - это передача признаков и свойств от родителей к детям. На самом деле это и передача сведений от одних клеток к другим. Хотя они делятся и гибнут, их свойства наследуются другими клетками. Если нарушить этот механизм передачи информации, то клетки перестанут обновляться. Бывает и так, что начинают нарождаться и размножаться другие клетки, неполноценные, функционирующие не так, как нужно.
      Нарушение наследственной информации во многих клетках при воздействии радиации и есть причина некоторых болезней. Правда, не надо думать, что нарушение наследственной информации вызывается только ядерным излучением, в чем до недавнего времени были убеждены многие. Наследственные изменения могут вызываться и химическими веществами. Открыт целый ряд лекарственных препаратов, усиливающих или ослабляющих воздействие излучения на клетки. Одни из них помогают излучению разрушать ненормальные, больные клетки, другие восстанавливают их жизнеспособность.
      Восстанавливать клетки - это понятно. Но зачем разрушать? Оказывается, при лечении некоторых раковых опухолей такие препараты как бы помогают организму избавляться от клеток, ставших вредными, концентрируют на них усилия излучения.
      Уничтожение раковых опухолей не единственное полезное применение проникающей радиации. Искусственные мутации, например, позволяют во много раз ускорить селекционную работу по созданию новых высокопроизводительных сортов растений и пород животных.
      Упрочение материалов, создание температуростойких веществ, использование в различных измерительных системах промышленности, стерилизация медикаментов и продуктов питания, атомные батареи для космических спутников - все это показывает, что излучение проникает буквально во все области нашей жизни: в медицину, в сельское хозяйство, промышленность и науку.
      Никто сейчас не станет отрицать пользу излучений.
      Нужно только научиться держать их в узде, научиться правильно управлять этой энергией, применять надежную защиту.
      Пять барьеров
      Атомная энергетика - это не только атомные электростанции, но и комплекс предприятий, потребных для обеспечения их топливом. Это рудники, где добывают урановую руду; заводы по ее переработке и выделению окислов урана; предприятия, в которых разделяют изотопы урана и изготовляют тепловыделяющие элементы. После того как тепловыделяющие элементы с ураном отработают на атомной электростанции положенное время, их транспортируют на завод, где из этого отработанного горючего выделяют осколки деления и невыгоревшее топливо. Этот цикл завершает захоронение отходов - осколков деления и других радиоактивных элементов.
      На всех перечисленных этапах, хотя речь идет всего лишь о топливном цикле, также предусматривается защита людей от излучения. Его носители вездесущие радиоактивные элементы. Их можно встретить в воздухе, в шахтах, где добывают уран, в воде; они содержатся в различных растворах, используемых в технологических процессах. Но, где бы с ними ни столкнулся человек, всюду его ограждает надежная защита.
      Лучше всего познакомиться с нею на-примере атомной электростанции, где мощность излучения наибольшая. Там она предусмотрена непосредственно у самого источника излучения - тепловыделяющих элементов, внешне представляющих собой, как мы говорили раньше, таблетки из двуокиси урана. Они помещены в герметичные трубочки из циркония, поэтому радиоактивные продукты, образующиеся при делении, никак не могут попасть в воду первого контура, охлаждающую активную зону реактора. Таков первый барьер, стоящий на пути излучения.
      За ним следует второй. Дело в том, что у части тепловыделяющих элементов все же может отказать герметичность. В таком случае радиоактивные элементы попадут, правда, в небольшом количестве, в воду. Кроме того, в ней содержатся еще радиоактивные продукты коррозии, А с течением времени накапливаются еще и вещества, образовавшиеся в результате химических реакций водорода и кислорода с материалами, из которых сделан первый контур. Попадая вместе с водой .в активную зону, они облучаются нейтронами и превращаются в различные радиоактивные элементы. Так же при облучении нейтронами может активироваться и кислород воды. На пути этой радиоактивности в первом контуре реактора и предусматривается второй барьер - специальный фильтр, постепенно пропускающий через себя всю воду.
      Он резко, но не до конца уменьшает количество содержащихся в ней радиоактивных продуктов. Чтобы свести их к минимуму, контур делают совершенно герметичным. Ни одна капля циркулирующей в нем воды не должна проникнуть в помещения с людьми. Это и есть третий барьер.
      Если иметь в виду, что давление воды в первом контуре достигает 160 атмосфер и что при этих условиях необходимо приводить во вращение насосы и перемещать стержни, управляющие в активной зоне цепной реакцией, то станет ясно, насколько трудна задача создания полной герметизации.
      Сложность представляют насосы, обычно соединенные с электромоторами, которые нельзя погрузить в воду, да еще горячую, ибо нарушится изоляция проводников. Если же поместить насосы внутри, а электромотор вне контура, то связывающий их вал должен будет пройти через стенку первого контура. А при высоком давлении невозможно уплотнить место выхода вала так, чтобы полностью исключить утечку воды и содержащихся в ней газов радиоактивных веществ. Все же инженеры и конструкторы нашли решение. В первый контур вошел не весь электромотор, а только его ротор вместе с валом и подшипниками. Неподвижная же часть электромотора - статор, где находятся проводники, по которым течет ток, остался снаружи. А часть стенки контура, находящуюся под статором, сделали из тонкого нихрома, не представляющего большого препятствия для электромагнитного поля, которое обеспечивает вращение ротора.
      Теперь, после принятых мер, радиоактивность, содержащаяся в воде, не будет опасна, так как она не может выйти из контура, и тем не менее на пути воды поставлен еще один - четвертый - барьер. Для этого все оборудование первого контура - реактор, парогенераторы, насосы, трубопроводы, фильтры и т. д. -помещено в герметичные боксы, и даже воздух оттуда не может попадать в помещения, где работают люди. Иногда проектировщики станции размещают оборудование не по отдельным боксам, а окружают его одной большой герметичной железобетонной оболочкой. Специальная служба регистрации ведет непрерывное наблюдение за уровнем излучений вблизи первого контура и в соседних помещениях, где находятся люди. Во всех наиболее опасных местах имеются счетчики гамма-излучения, электронов и нейтронов. Их сигналы позволяют быстро принимать меры к уменьшению активности излучений.

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14