Современная электронная библиотека ModernLib.Net

Энергия будущего

ModernLib.Net / Проценко Александр / Энергия будущего - Чтение (стр. 9)
Автор: Проценко Александр
Жанр:

 

 


      К этому времени на территории ФИАНа в двухэтажном кирпичном здании, получившем название лазерного павильона, был подготовлен к работе в те годы самый мощный в мире лазер с энергией около 0,01 ватт-часа (40 джоулей) и длительностью импульса 2,5 -10^-9 секунды.
      Группа молодых физиков института надеялась, применив его для облучения газообразного дейтерия, получить термоядерные нейтроны - доказательство осуществления термоядерной реакции. Уж очень велико было их желание первыми получить термоядерные нейтроны. И это желание понятно. Ведь в основном поело статьи Н. Басова и О. Крохина в эксперименты по проблеме начали включаться многие исследовательские лаборатории США, Франции, ФРГ, Японии. И было бы очень отрадно, если бы и первые успешные результаты были бы получены самими авторами предложенного эксперимента.
      Из работ академика А. Прохорова и профессора П. Пашинина было известно, что при искровом пробое газа лазерным лучом и его ионизации можно нагреть электроны плазмы примерно до 10 миллионов градусов.
      Во многом история этого первого эксперимента напоминает историю с ложными нейтронами в опытах по самосжатому разряду.
      Вот схема эксперимента в ФИАНе. Рядом с камерой с газообразным дейтерием, в которую направлялся луч лазера, размещался счетчик нейтронов. В случае возникновения в камере термоядерной реакции рождался пучок нейтронов. Он и заставил бы счетчик срабатывать и зажигать лампочку на панели прибора.
      При первом же опыте лампочка засветилась. Неужели появились нейтроны? Слишком легкой казалась эта победа. Начались проверочные опыты. Линзу лазера закрыли непрозрачным экраном так, чтобы после вспышки луч вообще не попадал в камеру с дейтерием. Эксперимент повторили, и лампочка снова зажглась. Все стало ясно: она включалась вовсе не потому, что появлялись термоядерные нейтроны, а в результате электромагнитных наводок. С ними пришлось вести упорную борьбу. Но они были ликвидированы. Физики вступили в длительный этап повторяющихся экспериментов. Вот как участник этих опытов описывает случай, имевший место во время исследований.
      В одном из экспериментов лампочка сработала. Невзирая на позднее время сразу позвонили академику Л. Арцимовичу. Он и его сотрудник В. Коган проявляли неослабевающий интерес к попыткам лазерщиков освоить новую специальность и всячески помогали дружескими советами. Академик тотчас приехал, сел на стул и приковал свой взгляд к заветной лампочке.
      Вспышки лазера следовали одна за другой, но аппаратура не проявляла признаков активности. Время перевалило уже за полночь. Но в павильоне горит свет, работают насосы, на стеклянных деталях вспыхивают отблески лазерного света. Лев Андреевич, уставший после напряженного двенадцатичасового рабочего дня, слегка задремал, сидя на с гуле. Потом, очнувшись, оценил обстановку и сказал: "Знаете, ребята, я пойду домой, а как только у вас что-нибудь получится, сразу звоните!
      Обязательно звоните, в любое время ночи!"
      Ему не позвонили ни в эту ночь, ни в следующую. Ожидаемый звонок прозвучал лишь через три года.
      Уже в 1968 году в ФИАНе были зарегистрированы первые настоящие термоядерные нейтроны на мишени из дейтерида лития. Летом 1969 года в Лимейле (Франция) было получено от 100 до 1000 термоядерных нейтронов на импульс. В 1970 году подобные эксперименты были проведены в одной из лабораторий США, в Сандия. За последние годы в СССР и США были проведены эксперименты, в которых на один импульс получали от 107 до 109 нейтронов.
      Этими опытами была экспериментально подтверждена плодотворность идеи сверхсжатия мишени.
      Еще многое неясно, но...
      Сейчас уже можно представить себе, как мог бы выглядеть энергетический термоядерный реактор с лазерным зажиганием. Конечно, только в самых общих чертах, потому что для того, чтобы этот реактор заработал, нужно решить еще очень много сложных задач и проблем. Еще неясно, как будут они решены и вообще произойдет ли это. Вдруг придется обратиться к другим идеям. А от этого зависит устройство реактора.
      Заглянем вперед и предположим, что все трудности остались позади и мы стоим перед реактором. Его сердце - сферическая камера; в ее центре - та самая мишень-льдинка из замороженных дейтерия - трития.
      В стенках камеры - окна. Через них на мишень со всех сторон направят лучи лазеров. Чтобы они на пути к ней не ослаблялись, в камере создается вакуум.
      Но вот подается команда. Установка вот-вот задействует. Вспыхивает лазер, и шарик-льдинка взрывается.
      Взрыв только одного шарика эквивалентен взрыву 10-15 килограммов тринитротолуола, то есть 10- 50 киловатт-часов энергии. Но это еще не все. Чтобы такой реактор стал действительно энергетической, а не экспериментальной установкой, эти взрывы в течение одного даже часа должны повторяться десятки, а то и сотни тысяч раз. При этом тепловая мощность реактора будет составлять несколько миллионов киловатт.
      Необходимо подчеркнуть, что энергия синтеза в реакторе выделяется в виде стремительно разлетающихся атомов гелия (альфа-частиц), рентгеновского излучения и нейтронов. Как и в случае термоядерного реактора с магнитным удержанием плазмы, взрывная камера окружена бланкетом - несколькими слоями различных веществ, в которых кинетическая энергия влетающих туда нейтронов превращается в тепловую.
      Сам-и же нейтроны используются для получения трития из лития. Тепловая энергия отводится из бланкета и преобразуется в электрическую, часть которой направляется на лазерную установку, а остальная идет в энергосеть.
      Конечно, это только один из многих возможных вариантов. Например, есть заманчивое предложение о непосредственном преобразовании кинетической энергии расширяющейся плазмы в электрическую при ее взаимодействии с магнитным полем, созданным внешними сверхпроводящими катушками.
      Надо заметить, что создание почти любого блока установки, почти каждой из ее систем требует нового, нестандартного подхода. Здесь есть где развернуться и показать свои способности изобретателям, которые помогут создать совершенный реактор.
      Возьмем, к примеру, систему подачи шарика-мишени, и мишени не простой, а движущейся. Она должна пройти свой путь так, чтобы лазерный луч не просто попал в нее, а вошел с большой точностью в самый центр.
      В противном случае подача энергии будет неравномерной, значит, нарушится симметричность сжатия, не будет достигнута нужная плотность и температура шарика и окажется, что энергия лазерного выстрела затрачена вспустую. Шарик-мишень не взорвется, термоядерная энергия не выделится или ее выйдет меньше, чем затрачено на лазерный импульс.
      Ввод мишени с большой точностью в область максимальной фокусировки лазерного излучения является большой самостоятельной проблемой. Нужно создать такую систему, которая обеспечивала бы размеренное появление в центре камеры одного за другим, скажем, десяти шариков в секунду. По-видимому, из многих рассмотренных способов наиболее многообещающим является баллистический метод выстреливания ими в точку схождения лазерных лучей с автоматической корректировкой их траектории. Специальный инжектор разгоняет шарики до скорости в несколько сот метров в секунду и выстреливает их в камеру. Система наведения мишеней в фокус автоматически отбирает только те из них, которые летят в нужную точку с необходимой точностью.
      Лазер срабатывает только и только тогда, когда шарик-мишень выдерживает заданную точность траектории. В противном случае он не стреляет, мишень остается целой и вновь забирается в баллистическую систему ввода мишеней, и снова выстреливается в камеру.
      Теперь о лазере. Его энергия в одном канале не может по разным причинам превышать 0,05-0,1 ватт-часа. В то же время энергия импульса должна быть не меньше 30 ватт-часов. Чтобы получить эту энергию, используют несколько лазеров, луч каждого из них расщепляют на несколько самостоятельных, усиливают до предельной величины и направляют на шарик-мишень.
      Такая система позволяет существенно уменьшить разновременность попадания на его поверхность световых импульсов. Ведь эта разница должна быть намного меньше длительности самого импульса.
      Понятно, что разновременность прихода световых вспышек может возникать не только из-за того, что первоначальные импульсы нескольких лазеров возбуждаются в разное время, но и просто из-за разной длины оптических путей всех лучей. При общей их длине в несколько десятков метров разница не должна превышать долей миллиметра.
      Несмотря на большую сложность создания мощных лазерных систем, уже сейчас действуют установки с энергией импульса, равной 3-5 ватт-часам. Это система "Дельфин" в СССР и "Шива" в США.
      Вернемся в нашем повествовании на шаг назад. Мы еще почти ничего не говорили о том, как выглядит самое термоядерное топливо: шарик-мишень. Если бы удалось осуществить режим сверхсжатия вещества согласно предложению американских физиков, то для шарика годилась бы однородная смесь дейтерия и трития.
      Но предложенный режим требует очень резкого изменения во времени мощности лазерного импульса, Примерно за 10^-8 секунды она должна возрасти в миллион раз. При этом половина всей энергии импульса должна выделиться всего за 10^-11 секунды. Задача эта чрезвычайно трудная.
      Так как же работает лазерный реактор?
      Проследим за протекающими в нем потоками энергии. Для этого введем в лазерную систему 1 киловаттчас электроэнергии, девять десятых которой потеряется при накачке лазера и в процессе его вспышки. В импульсе полетит сгусток энергии всего в 0,1 киловатт-часа. На этом потери не кончаются. Около 90 процентов от 0,1 киловатт-часа рассеется на шарике-мишени и потеряется по пути к нему. Значит, на разогрев и сжатие шарика пойдет только 0,01 киловатт-часа.
      Но дальше нас ожидает награда за ранее понесенные потери. За счет термоядерного синтеза выделятся 10 киловатт-часов. Преобразуя эту тепловую энергию в электрическую, мы получим 4 киловатт-часа. Отдав из них 1 киловатт-час на новую вспышку лазера, мы получим 3 киловатт-часа полезной электроэнергии.
      Если ежесекундно проводить около ста таких вспышек, то мы получим термоядерную электростанцию с лазерным реактором мощностью в миллион киловатт!
      Нет легких побед
      По сравнению с термоядерным реактором с магнитным удержанием плазмы лазерный реактор имеет ряд неоспоримых преимуществ. Послушаем, что о них говорят энтузиасты этого направления.
      В отличие от "баранки" Токамака лазерный реактор имеет простую сферическую геометрию, что важно при его эксплуатации и замене оборудования.
      Отказ от магнитного удержания плазмы уменьшает затраты на его изготовление и весьма упрощает конструкцию реактора.
      Вакуум, необходимый для процесса, может быть вполне умеренным.
      В лазерном реакторе легко контролируется средняя выходная мощность.
      Различные компоненты всей установки могут быть сконструированы и испытаны независимо от самого реактора.
      Это говорит о том, что лазеры и система ввода шариков могут быть разработаны отдельно, а осуществимость самой реакции проверена с помощью одиночных вспышек в реакторе малой мощности.
      Лазерные термоядерные установки - многообещающий источник энергии реактивных двигателей космических кораблей.
      В будущем при повышении энергии лазеров можно надеяться на осуществление реакции дейтерий - дейтерий.
      Тогда отпадет необходимость в тритии.
      А где-то в очень далекой перспективе мыслится и такое завлекательное топливо, как бороводород, которое при сгорании дает только три атома гелия при полном отсутствии нейтронов. Правда, переход к такому горючему станет возможным только при повышении лазерного импульса в 100 раз по сравнению с еще недостигнутой величиной, которая нужна для реакции дейтерия с тритием.
      Однако пора, по-видимому, прервать перечисление достоинств лазерного термоядерного синтеза, чтобы не впасть в сверхоптимистическое состояние. Настал момент вспомнить о том, что пока еще лазерный термоядерный синтез находится в самом начале развития и проблем, которые нужно решать, не меньше, чем уже решенных.
      К сожалению, сейчас нет таких лазерных установок, которые удовлетворяли бы всем необходимым условиям.
      Мала энергия импульса. Используемые при экспериментах лазеры с неодимовым стеклом имеют очень низкий коэффициент полезного действия, всего около 0,3 процента, а нужно 10-15. Предельная частота импульсов таких лазеров всего один в секунду, а нужно 10, еще лучше 100.
      Лучшими характеристиками будут обладать лазеры с углекислым газом.
      У них более высокая эффективность работы, и они чаще могут создавать импульсы. Однако не подходят их слишком длинные волны, из-за чего возникают значительные трудности при разработке оптических элементов и фокусировке.
      Как и в любом другом усилителе, на выходе лазера всегда присутствуют шумы - излучение из-за самопроизвольного высвечивания атомов. Пока нет основного импульса, это излучение в течение одной десятой или сотой доли секунды действует на шарик-мишень. Чтобы под действием этого "фона" он не испарился, не дождавшись основного импульса, нужно, чтобы величина фона была слабее импульса в сотни миллиардов раз (!).
      Еще неясно, каким путем достичь такой контрастности фона и основного импульса. А ведь нужно еще бороться с отраженным лучом лазера, с неоднородностью освещенности и обеспечивать синхронность импульсов всех каналов.
      Обратимся теперь к камере реактора, на корпус которой при микровзрыве мишени обрушивается поток рентгеновского излучения, нейтронов и горячей плазмы.
      Давление взрыва, эквивалентного энергии одного килограмма тринитротолуола, при радиусе камеры в полметра составляет около 100 атмосфер. Это, кажется, не очень страшно - ведь можно увеличить ее размер.
      Но все же потоки нейтронов и рентгеновского излучения могут приводить к повреждению стенок. Только за год работы камера должна выдержать несколько миллиардов взрывов.
      Обеспечить это довольно трудно. Однако можно защитить стенки жидким испаряющимся литием, который будет и поглотителем нейтронов, и поставщиком трития.
      К сожалению, при этом возникает новая проблема.
      Ведь в камере после каждого микровзрыва нужно очень быстро создавать вакуум. Это трудно сделать даже при сухих стенках, а если они влажные, то на откачку камеры после каждого микровзрыва потребуется около секунды. А нужно, чтобы каждую секунду происходил не один взрыв, а десять, сто! Есть из этого затруднения какой-либо выход? Пока есть не очень выгодный вариант: вспышки лазера направлять не в одну, а в десять или сто камер. В этом случае конструкция существенно усложняется, а реактор удорожается. Вопросы экономики для лазерного реактора также одно 1-3 слабых мест. Чтобы получаемая энергия была достаточно дешевой, на один импульс лазера и один шарикмишень можно истратить только несколько тысячных долей копейки. Сейчас они стоят в десятки тысяч раз дороже.
      Теперь, пожалуй, пора прервать перечисление недостатков и требований, чтобы не впасть в черный пессимизм. Трудностей впереди еще много. Но давайте оглянемся, и мы увидим, сколько позади, казалось бы, таких непреодолимых трудностей! Сколько было моментов, когда казалось, что работу лучше прекратить. И все же исследование и поиск продолжались и находились нчвые, порой неожиданные решения этой труднейшей задачи.
      ТОКАМАКИ ВПЕРЕДИ
      Ваша идея, конечно, безумна. Весь вопрос в том, достаточно ли она безумна, чтобы оказаться верной.
      Н. Бор
      После экспериментов, проведенных с импульсными разрядами, стало ясно, что получение термоядерной реакции в таких системах неперспективно. Проблему нельзя было взять прямой лобовой атакой. Мечту о быстром овладении термоядерной энергией пришлось отложить. Исследования по магнитному удержанию плазмы на многие годы перешли в русло физических исследований ее свойств в различных конфигурациях магнитного поля.
      Несколько лет спустя академик Л. Арцимович так говорил об этом периоде: "И все же вряд ли могут быть какие-нибудь сомнения в том, что проблема управляемого термоядерного синтеза будет решена. Неизвестно только, насколько затянется наше пребывание в "чистилище". Из него мы должны будем выйти... неся в руках спокойную, устойчивую высокотемпературную плазму, чистую как мысль физика-теоретика, когда она еще не запятнана соприкосновением с экспериментальными фактами".
      Физики перешли к планомерной осаде термоядерной крепости. Как из рога изобилия посыпались различные предложения по новым методам решения проблемы, методам изучения физики плазмы. Изобилие требовало отсеять идеи малоперспективные и выбрать самые интересные.
      С этой целью И.Курчатов в 1955 году собрал в Институте атомной энергии историческое для физиков-термоядерщиков совещание, на котором были оценены результаты четырехлетней работы и обсуждены перспективные направления.
      Для очень многих участников этого совещания сообщения ученых о работах по управляемым термоядерным реакциям были подлинным сюрпризом. Мало кто ожидал, что исследования ведутся с такой широтой и размахом. И. Курчатов был одним из первых, сумевших оценить и понять объем и круг предстоящих исследований: он неоднократно подчеркивал необходимость широкого развертывания работ в других институтах и их открытых обсуждений. "Надо не засекречивать эти работы, - настаивал он, - а развивать международное сотрудничество".
      Сенсация в Лондоне
      В апреле 1956 года в газетах Англии, США и Франции запестрели заголовки: "Работы по термоядерному синтезу раскрыты!", "Русские впереди!", "Курчатов раскрыл секреты!"
      На этот раз эти сенсационные газетные заявления не были беспочвенными. В английском атомном центре Харуэлле И. Курчатов сделал научный доклад о проведенных в СССР исследованиях импульсных разрядов в прямых трубах. Причем это было не тривиальное сообщение общего характера о том, что в СССР, мол, ведутся такие-то работы. Нет, это был действительно обстоятельный научный доклад с результатами экспериментальных исследований, их обсуждением и анализом.
      Вернувшись тогда из Англии, И. Курчатов занялся налаживанием международных научно-технических связей. Были полностью рассекречены работы по термоядерному синтезу в возглавляемой им лаборатории № 2, которая с того времени получила современное название - Институт атомной энергии. Но ученые США и Англии отреагировали не сразу.
      В том же 1956 году в американском городке Гетлинберге собрались на конференцию американские исследователи термоядерного синтеза. Перед участниками конференции лежал размноженный перевод доклада И. Курчатова в Харуэлле: "Термоядерные исследования в СССР". Нужно было дать ответ на эту инициативу.
      Среди многих обсуждавшихся вопросов был и такой:
      продолжать ли хранить свои исследования в секрете или опубликовать результаты работ, как это сделали русские?
      Обсуждение было достаточно горячим. Несмотря на разумные доводы сторонников широкого международного сотрудничества, большинство склонилось к тому, чтобы не отвечать на обращение советских ученых, сделать вид, что доклад И. Курчатова не был замечен. Все же в конце концов инициатива СССР заставила ученых многих стран принять активное участие в исследованиях в области, которой был посвящен знаменитый доклад.
      Начались работы во Франции. Более энергично стали проводиться исследования в Англии. В печати о них стала появляться информация. В 1957 году на конференции, состоявшейся в Венеции, о своих экспериментах доложили ученые США, Франции, Англии и ФРГ.
      В начале 1958 года появилась статья английских ученых о результатах работ на установке ЗЭТА, а в сентябре в Женеве состоялась вторая международная конференция по мирному использованию атомной энергии.
      Наряду с результатами работ по ядерным реакторам деления на ней было представлено много работ по термоядерным исследованиям.
      Оживленная дискуссия происходила на нескольких языках, и впервые эта тема стала приобретать истинно международный характер. В последующем были опубликованы многие статьи и сообщения, а также обнародованы сведения по стеллараторам, ловушкам с магнитными зеркалами, устройствам с молекулярными пучками ионов, тороидальным камерам и другим различным установкам.
      Я намеренно привел здесь несколько не очень понятных наименований исследований и устройств, чтобы можно было почувствовать атмосферу новых понятий и различных направлений развития, возникшую в результате шагов, предпринятых советскими учеными.
      Хотя наметившийся широкий размах исследований радовал ученых, занимавшихся термоядерным синтезом, однако настораживал излишек всевозможных направлений. На каком из них следует сосредоточить внимание? Какое даст нужный результат, а не заведет в тупик?
      Шорох орехов
      Перед физиками-теоретиками и экспериментаторами стоял, казалось бы, бесконечный набор серьезных научных проблем и более простых, но также требующих экспериментального исследования. Как удержать плазму в термоядерной установке? Каким образом ее нагреть? Откуда брать тритий, необходимый для проведения реакции? Какие материалы наиболее пригодны для установок? Наконец, совсем будто бы простой вопрос: как измерить температуру плазмы?
      Можно было утонуть в этом море проблем. За что взяться в первую очередь? И как взяться?
      Поучительна история, происшедшая в те годы в Институте атомной энергии. И. Курчатов поручил коллективу одного из отделов составить развернутый план работ. После многодневных бурных дебатов молодые исследователи принесли результат своих трудов в "хижину лесника" - домик на территории института, где жил И. Курчатов. Это был лист ватмана, расчерченный на клетки с записанными в них десятками задач. Не забыли и последовательность их решения.
      "Игорь Васильевич посмотрел на клетки, - пишет в своих воспоминаниях его соратник И. Головин, - весело взглянул на присмиревшую взволнованную молодежь, посвистел...
      - Шорох орехов, шорох орехов, - сказал он нараспев, - а не план! Знаете, что такое шорох орехов? Нет?
      Молодой грузин торгует орехами на базаре и продает их за ту же цену, что платил при покупке. "Зачем так делаешь, что ты от этого имеешь?" спрашивают его. "Люблю шорох орехов", - отвечает незадачливый бизнесмен. Так и вы. Десятки задач, видимость большой работы. А где цель? Где этапы пути к горячей плотной плазме?
      - Что вы, Игорь Васильевич, все это нужно, здесь нет ничего лишнего.
      - В том и беда этого плана, что в нем все есть.
      А в любом деле, как и в жизни, надо выбирать только самое главное. Иначе второстепенное, хотя и нужное, отнимет все силы и не даст дойти до главного. Какой сейчас самый важный этап?.. Вы считаете, что это решение проблемы устойчивости плазмы. Так и исследуйте ее! И не вообще, а в тех условиях, которые, как вы предполагаете, необходимы для достижения цели... Идите, подумайте еще над планом. Встретимся завтра, и я посмотрю, поняли ли вы, что такое шорох орехов".
      Удержание плазмы было самым главным. Этому мешала ее неустойчивость, почему и большинство предложений, рожденных в те далекие годы, было направлено на решение этой основной проблемы. Поясним, что это такое.
      Чтобы в плазме, разогретой посредством электрического тока, поддерживалась температура, необходимая для протекания термоядерной реакции, нужно исключить ее растекание и контакты со стенками камеры. Пытаться нагреть плазму, соприкасающуюся с ними, все равно что стараться вскипятить воду в сосуде из льда.
      Одной идеи сжатия плазмы в шнур магнитным полем, возникающим при течении тока, как это делалось в первых опытах, оказалась недостаточно. Плазма утекала через торцы такого устройства, а неустойчивости приводили к тому, что плазменный шнур распадался. Что же такое неустойчивости и отчего они зависят?
      Перетяжка плазменного шнура и сжимание его з нить в одном из мест явление, с которым столкнулись физики-экспериментаторы, - это лишь один пример неустойчивости. Причиной его является неустойчивое равновесие плазмы. Обычно события развиваются так. Из-за случайного малого возмущения в плазме толщина шнура в каком-либо месте становится чутьчуть меньше. Сразу же в этом месте кольцевые магнитные силовые линии, охватывающие шнур, сгущаются, сила их сжатия возрастает, шнур, снова несколько утончается, сила магнитного поля в этом месте снова возрастает и т. д. В конце концов шнур перетягивается полностью и плазма рвется на отдельные "сосиски"
      (эта неустойчивость иногда и именуется "сосисочной"), отбрасывается к стенкам и гаснет. Как же упрочнить плазменный шнур и продлить жизнь плазмы?
      Теоретики предложили ввести внутрь плазмы продольное магнитное поле. По их замыслу, оно создаст жесткий каркас - стержень, противостоящий кольцевому магнитному полю, охватывающему плазму. В такой системе кольцевые магнитные линии, сжимающие плазменный шнур, встретят на своем пути не только собственно плазму, но и пружинящие продольные магнитные силовые линии, препятствующие перетяжкам.
      Получить продольное магнитное поле просто. На камеру наматывают витки проводника и пропускают через него ток, который и создает магнитное поле вдоль плазменного шнура. Применение этого несложного способа резко повысило устойчивость плазмы. Оказалось, что осевое магнитное поле эффективно противостоит и другому виду неустойчивости - изгибу плазменного шнура. А ведь было так, что небольшой его изгиб увеличивался до тех пор, пока шнур не соприкасался со стенкой, что и служило причиной его уничтожения.
      Предложенное продольное осевое поле изменило картину: действуя как стержень, вставленный в плазму, оно не допускает ее изгиба.
      Мы привели только два примера неустойчивости плазмы и рассказали о некоторых способах повышения ее устойчивости. Неустойчивостей же много, очень много, и они сдаются, уступая настойчивости и изобретательности теоретиков и экспериментаторов.
      К сожалению, управление термоядерной реакцией связано не только с устойчивостью плазменного шнура.
      Заряженные частицы плазмы способны изменять свою траекторию и убегать из термоядерного реактора. Картина эта выглядит так. Заряженная частица плазмы, пытающаяся двигаться перпендикулярно магнитным силовым линиям, под действием поля изменяет свою траекторию на круговую. При достаточно сильном магнитном поле она начинает двигаться по спирали вдоль магнитной силовой линии. Но если поперек магнитных линий ей путь закрыт, то вдоль линии она может двигаться и через торцы объема покидать реактор. Как же удержать этих беглецов?
      Для этого есть две возможности. Во-первых, можно буквально свернуть магнитные силовые линии и саму камеру в виде бублика, образовав тем самым тороидальную систему, у которой нет концов.
      Второй путь - усиление на концах (торцах) камеры магнитного поля. Резкие всплески напряженности этого магнитного поля на торцах как магнитные пробки закроют концы камеры и не пустят или, если быть более точным, почти не выпустят беглецов. Эти магнитные пробки американские ученые назвали магнитными зеркалами.
      Так был преодолен еще один рубеж, позади осталась еще одна трудность. Но, как это часто бывает, сразу же появилась новая Оказывается, частицы плазмы могут все же перемещаться не только вдоль линий магнитного поля, но и, к сожалению, поперек их.
      Хотя они в основном и "привязаны" к магнитным силовым линиям, тем не менее могут переходить от одной из них к другой, перемещаясь постепенно к границе плазмы - к стенкам камеры. А происходит это по разным причинам: при столкновении частиц одна из них может перескочить со своей спирали на соседнюю и передвинуться так поближе к стенке камеры. Есть и еще одна причина: в неоднородном магнитном поле (а в тороидальной установке магнитные силовые линии гуще с внутренней стороны баранки и реже с внешней)
      происходит разделение электрических зарядов. Под действием возникающего электрического поля плазма медленко движется (дрейфует) в направлении, перпендикуляр! ом магнитному полю и в конце концов соприкасагтся со стенками камеры. Найдены эффективные методы борьбы и против такого явления.
      Для проверки теоретических представлений о поведении плазмы в магнитных полях в СССР, США, ФРГ, Англии, Франции и Италии создана целая серия различных экспериментальных установок. Невозможно даже бегло рассмотреть их все. Но с отдельными познакомиться полезно.
      Токамаки, стеллараторы и другие
      Больше всего собралось различных установок по изучению УТС в Институте атомной энергии. Если с площади И. Курчатова посетитель пройдет на территорию института, то окажется в большом сосновом бору.
      Одна из дорог приведет к домику И. Курчатова - "хижине лесника", а в 200 метрах он увидит здание первого в Европе реактора Ф-1, пущенного в 1946 году.
      О нем и шла раньше речь. Если пройти еще 200- 300 метров, взору откроется постройка, на фронтоне которой эмблема - рука, держащая солнце. В ней и расположена одна из первых, наиболее крупных термоядерных установок с магнитными зеркалами - ОГРА, разработанная коллективом под руководством советского физика И. Головина. Каков же принцип ее устройства?
      В прямой трубе (ее диаметр полтора метра, а длина около 10) создано продольное -постоянное во времени магнитное поле. Для разогрева плазмы в трубу-камеру с помощью специального устройства впрыскиваются ионы молекулярного водорода с энергией, которой соответствовала бы температура в камере около 900 миллионов градусов. Казалось бы, температура более чем достаточная! Однако плотность частиц в камере оказывается очень низкой - в 10 миллионов раз меньше, чем нужно, и столкновения частиц здесь происходят очень редко - термоядерная реакция не развивается.
      Многое в этой установке, да и в ее модификации ОГРА-П не удовлетворяло ученых. Тем не менее они шаг за шагом двигались к пониманию тайн плазмы.
      Создатели ОГРА, самой крупной в те времена установки, наперед знали, что на полный успех им рассчитывать не стоит. Но жизнь требовала строить и испытывать подобные установки, изучать свои ошибки и идти вперед. "Не делая этого, - писал И. Курчатов, - мы напоминали бы, пользуясь образным сравнением Гегеля, того софиста, который утверждал, что он не войдет в воду, пока не научится плавать".
      Примерно таким же путем двигались американские и английские ученые, создавшие несколько установок с магнитными зеркалами - ДСХ, Алиса, Феникс. Несмотря на то, что до сих пор введено и исследовано несколько десятков установок подобного типа, еще не удается достигнуть нужных параметров плазмы. Сейчас ближе других к цели продвинулись установки типа Токамак.

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14