Современная электронная библиотека ModernLib.Net

Эврика-86

ModernLib.Net / Неизвестен Автор / Эврика-86 - Чтение (стр. 20)
Автор: Неизвестен Автор
Жанр:

 

 


      дов лет. Ученые вычислили, что во Вселенной в объеме, равном одному кубическому световому году, происходит примерно триста распадов "монополония". Излучение, исходящее от таких "магнитных атомов", может входить в состав фоновых радиоволн во Вселенной. Правда, первые оценки показывают, что на длине волны в один сантиметр интенсивность "монополониевых" сигналов в миллион раз меньше той, что можно реально зарегистрировать. Исследователи пока ищут более заметные сигналы "монополония".
      ИОНЫ БЕРУТ РЕВАНШ
      Сегодня ускорители элементарных частиц стали в заводских цехах чуть ли не такими же привычными, как плазменные сварочные горелки, ультразвуковые дефектоскопы или электромагнитные индукторы.
      В начале 50-х годов удалось ускорить так называемые тяжелые ионы (бор, углерод, азот). Новые ускорители использовались для экспериментальных исследований, ядерных превращений, и вскоре появилось основание считать пучки ускоренных ионов "тяжелой артиллерией". Уж очень интенсивно разрушали они свои мишени. А когда в Институте объединенных ядерных исследований был построен мощный ускоритель тяжелых ионов, оказалось, что они разрушают различные конструкционные материалы, сплавы и металлы в тысячи раз быстрее, чем нейтроны. Поэтому с помощью ионов испытание нового материала, длившееся годами, теперь можно провести за несколько часов.
      226
      227
      Но этим не ограничиваются технологические возможности тяжелых ионов. В отличие от ускоренных электронов подавляющую часть своей энергии ионы отдают в конце пробега, то есть непосредственно перед самой остановкой в толще облучаемого вещества. А место, где они остановятся, можно определить с точностью до одного миллиметра. В медицине такой инструмент трудно переоценить, поскольку им можно воздействовать только на больной участок ткани, не подвергая радиоактивному облучению здоровую ткань, которую луч пронизывает на пути к больному месту.
      Приведенные примеры больше иллюстрируют разрушительную силу ускоренных тяжелых ионов, но она может стать и созидательной. Сконцентрировав импульсные излучения тяжелых ионов, в мишени можно создать давление в миллионы атмосфер. При таких давлениях графит становится алмазом, а водород переходит в металлическое состояние. Советские ученые сфокусировали мощный ионный пучок на миллиметровом зернышке графита, и примерно десятая часть его превратилась в алмазный порошок!
      Впереди создание более мощных ускорителей тяжелых ионов, а вместе с ними и новые возможности их использования и в научных целях (ученые считают, что с их помощью можно будет получать новые химические элементы, выходящие далеко за пределы таблицы Менделеева), и в промышленности. Исследования продолжаются.
      ^.
      ПРОЗРАЧНОСТЬ, СБЕРЕГАЮЩАЯ МИЛЛИОНЫ
      В истории науки известны примеры когда открытие не воплощалось с жизнь из-за отсутствия эффективных способов обработки особенно твердых или хрупких материалов. Поэтому каждый новый метод промышленного изготовления изделий из таких "трудных" материалов - приметная веха на пути технического прогресса.
      И вот инструмент профессора А. Степанова с таким необычным названием, как формообразователь. Благодаря ему можно получать готовые монокристаллические изделия вытягиванием непосредственно из расплава. Они не нуждаются в обработке и сразу могут быть пущены в дело.
      Интересно наблюдать этот процесс. Над тиглем виден лишь погруженный а расплав диск с вырезанной на его поверхности геометрической фигурой. Ее продолжение - жидкий столбик той же формы, образованный под действием сил поверхностного натяжения. При охлаждении он затвердевает. Так образуется кристалл заданной конфигурации.
      Этот способ внедрен на предприятиях нашей страны.
      Над превращением интересного физического принципа в промышленную технологию трудились многие исследователи. Среди них особое место заняла группа сотрудников одной из лабораторий Всесоюзного научно-исследовательского института электротермического оборудования (ВНИИЭТО).
      Руководитель лаборатории Л. Затуловский с особенным удовлетворением
      называет кандидатов технических наук Л. Егорова и Д. Кравецкого. Сотрудничество коллектива лаборатории с металлургами закончилось организацией промышленного производства монокристаллов германия заданной формы. Теперь очередь еще за двумя полупроводниками кремнием и арсенидом галлия. Уже получены опытные образцы. Но это только начало.
      Широко разнообразие изделий, полученных в этой лаборатории. Один из образцов - искусственный лейкосапфир-выглядит стеклянным, но сходство со стеклом или кварцем только в прозрачности. Этот бесцветный кристалл - "родственник" благородного синего сапфира, рубина и других ювелирных камней из семейства корундов, ибо в основе каждого из них - окись алюминия.
      - Лейкосапфир,- говорит Л. Затуловский,- плавится при 2050 градусах. Оптиков привлекает его способность пропускать широкий диапазон световых волн - от ультрафиолетовых до инфракрасных. Химиков и физиков устраивает химическая инертность, сочетающаяся с твердостью, близкой к алмазу. Поэтому лейкосапфир отличается высокой износостойкостью. Продолжая список замечательных качеств, ученый заметил: "Должен сказать, что по теплопроводности он не уступает металлу. А вот электрический ток в отличие от металла он не проводит - это "непоколебимый" диэлектрик". Остается подчеркнуть, что все его свойства не теряются и в экстремальных условиях работы. Этим объясняется интерес, проявленный к нему учеными и практиками различных специальностей.
      Коллектив лаборатории ВНИИЭТО организовал производство изделий из бесцветного сапфира на ряде промышленных предприятий страны.
      Что же дает государству использование метода профессора А.Степанова по сравнению с другими известными способами получения лейкосапфира?
      Новая технология позволяет по чать изделия без отходов. В этом огромное преимущество. Глядя на код! лекцию, состоящую из трубок, кали^ рованных стержней с изменяемой фоо. мой поперечного сечения, колпачков тиглей, "лодочек" и замкнутых ампул' думаешь, что изготовление некоторых из них даже из более податливого материала просто нереально. Замкнутую ампулу, например, чудится, можно было выдуть только из стекла. А ведь монокристаллическая окись алюминия, по существу,- камень.
      ...За окнами уже сгущались сумерки. Но внезапно в лаборатории стало так светло, словно сюда проникли солнечные лучи. Такое впечатление создала подвешенная под потолком натриевая лампа, напоминающая своей формой миниатюрный дирижабль. Другая такая лампа стояла на стенде. Внутри ее стеклянной оболочки, служащей защитой,- газоразрядная трубка с металлическими электродами на обоих ее концах. Между ними и горит электрический разряд-очаг яркого света желтоватой окраски. Натриевая лампа - один из наиболее интересных примеров использования профилированного сапфира.
      Затуловский положил на рукопись две трубки одинакового размера. Первая была так прозрачна, что сквозь нее можно было прочитать текст. Другая трубка не позволяла различать даже буквы. Первая получена из лейкосапфира, вторая же трубка - из поликора, спеченного порошка той же окиси алюминия.
      В настоящее время производство натриевых ламп наружного освещения ведется с использованием поликоровых трубок. Замена их более прозрачными - лейкосапфировыми сэконо^ мит на протяжении года на каждой лампе (а их будут миллионы) 12 руб' лей.
      Эта экономия определяется большим сроком службы лампы и снижен^ ным расходом электроэнергии при той
      мощности - на 120 киловатт-часов
      ежегодно.
      На светотехнических предприятиях же работают созданные во ВНИИЭТО ^ановки. В каждой из одного тигля с ^сплавом одновременно вытягиваются шесть газоразрядных трубок.
      разработанный процесс выращивания сапфировых изделий по способу А. Степанова, как и аппаратурное оформление, запатентованы в Англии, США, ФРГ, Японии.
      Перечисленные выше изделия изготовляются из отечественного сырья и на отечественном оборудовании. Успеху способствует творческое содружество коллектива лаборатории с рядом организаций и заводов. Среди них Институт физики твердого тела АН СССР и многочисленные заказчики ранее невиданных стойких и прозрачных изделий. Испытанная в различных приборах и устройствах, эта продукция открывает новые области применения лейкос^пфира в науке и технике.
      ПЛАЗМА В ПРОИЗВОДСТВЕ
      Плазма - ионизованный газ - это не только вещество Солнца или "огненный вихрь" в будущих термоядерных реакторах. Это и газовый разряд в лампах дневного света, и кислородноацетиленовая струя сварочной горел^-так называемая низкотемпературная плазма. Сейчас она начинает с Успехом применяться во многих процессах химического производства. Воз^кпа особая область прикладной нау^ - плазмохимия.
      Специалисты многие годы изучают физику плазмы. Результаты этих
      дований уже широко используются в самых различных областях - от астрофизики до космического двигателестроения и электроэнергетики.Физические методы обработки материалов с использованием плазмы хорошо известны - это, например, сварка, резка, напыление покрытий и выращивание кристаллов. А вот плазменная химия пока еще развита сравнительно мало. Сейчас, однако, приходят к пониманию того, что многие производственные процессы можно осуществлять быстрее, дешевле, с меньшим загрязнением окружающей среды, если в них применять вместо традиционной технологии плазмохимию. Стоимость электроэнергии, которая требуется для выработки плазмы, начинает сравниваться со стоимостью других видов энергии, необходимых для химической промышленности, в особенности это касается нефтяной и газовой энергетики.
      Любая плазма - это газ, достаточно ионизованный для того, чтобы проводить электрический ток. Нагрев газа способен вызвать его ионизацию путем отщепления электронов от атомов. Образуется смесь положительных ионов и электронов, в которой будут и другие продукты пиролиза - новые атомы и свободные радикалы.
      Частицы плазмы обладают высокой энергией. Они могут вызывать некоторые химические реакции или служить катализаторами в других, причем в таких, которые иным путем получить невозможно. Степень ионизации зависит. от химических и физических свойств плазмы, особенно от ее температуры и давления. Плазма, используемая для химической технологии, имеет температуру до 20 тысяч градусов Цельсия. Это так называемая "низкотемпературная плазма". При температуре около 10 тысяч градусов она ионизована процента на два. В отличие от нее высокотемпературная плазма, например, та, которая служит источником энергии при термоядерном синтезе, разогрета до 100 миллионов градусов.
      на она полностью. В естественных условиях плазма существует в недрах Солнца и других звезд, в каналах грозовых разрядов, в ионосфере.
      Разновидности плазмы, полезные для химической технологии, можно отнести к двум типам в соответствии с их термодинамическим состоянием. В равновесной плазме легкие частицы (электроны) и тяжелые (ионы, атомы, молекулы) пребывают в состоянии приблизительного термодинамического равновесия: у них одна и та же температура, уровень энергии. Это "термическая", или горячая, плазма. Возникает она при сравнительно высоком давлении, порядка одной атмосферы или более. Неравновесная же плазма, с другой стороны, характеризуется высокой температурой электронов, но в то же время сравнительно низкой температурой самого газа. Это "холодная" плазма при низком давлении. Типичный пример "горячей" плазмы - кислородно-ацетиленовое пламя для автогенной резки и сварки, а "холодной" - газовый разряд в трубке лампы дневного света.
      В установках промышленного масштаба горячеплазменные методы способны давать большой выход продукции при высоких температурах, поскольку они работают при сравнительно высоких давлениях. Соответственно повышенные скорости реакций позволяют экономично использовать сравнительно малогабаритные дешевые реакторы. Поэтому "горячая" плазма перспективна для осуществления широкого ряда таких реакций, где требуются повышенные затраты тепла. Она находит многочисленные применения в переработке углеводородов, руд, получении огнеупоров и в металлохимии.
      У плазмы большие преимущества при использовании в металлургических процессах, где требуются высокие температуры и расход тепла для расплавления и испарения металлов и руд и для осуществления в них эндотермических
      реакций. Важными качественными казателями здесь являются незаго ценность плазмы, отсутствие в ней п сторонних примесей и гибкость в ко роле за атмосферой процесса в оки лительных и восстановительных pea циях. В особенности это относится получению дорогостоящей продукции вроде молибдена, титана, боридов и нитридов металлов.
      "Холодная" плазма образуется при "непробивных" разрядах. Ее применение для крупных химических производств более ограничено, поскольку подобные разряды поддерживаются при низких давлениях, и поэтому здесь можно достигнуть лишь небольших скоростей выхода продукции. Пока единственный общепризнанный процесс - синтез озона в "тихом" разряде.
      Недавно завершены две особо важные разработки по использованию тлеющего разряда для изготовления полупроводниковых изделий в пленочной электронике.
      СОЛНЦЕ, ВЕТЕР И ТРОСТНИК
      Кубинские энергетики запланировали масштабный эксперимент: на полигоне в окрестностях города Сантьяго-де-Куба возводятся солнечные коллекторы различного типа. Одни будут давать горячую воду окрестным предпри"тиям, другие - электрический ток, полученный прямым преобразованием солнечных лучей. Чтобы не уповать только на дневное светило, для стабильности предусмотрены и ветросиловые установки - лопасти генераторов будут вращаться пассатами. Энер' готическую триаду венчают реакторы"
      оабатывающие биогаз. Для его про"'of^cХ^вa используют отходы сахар^х заводов - переработанную массу тростника.
      ЗЕРКАЛЬНЫЙ ПОДСОЛНУХ
      На крыше одного из ленинградских домов выросло необычное сооружение своеобразный зеркальный "подсолнух". Растение, как известно, поворачивает свой цветок вслед за солнышком. Точно так же ведет себя и небольшая лабораторная электростанция, созданная в Физикотехническом институте имени А. Ф. Иоффе АН СССР. Работает она от солнечного света. Идея гелиостанции, где солнечные лучи преобразуются в электричество, не нова - так, например, действуют солнечные батареи космических аппаратов. Но для земных условий это слишком дорогой вариант. Ленинградские физики предложили другой. Станция работает не на обычном, а на сконцентрированном солнечном свете. Система зеркал фокусирует световое пятно на небольшой полупроводниковый элемент, диаметр которого около 20 миллиметров. Установка сразу получается во много раз дешевле. Ведь для получения мощности в один киловатт нужно 30 квадратных сантиметров фотоэлементов. Пока светит солнце, станция заряжает свои Аккумуляторы, от которых потом в люоое время можно получить энергию.
      Полупроводники, на которые концентрируется солнечный свет, не совсем обычные. Они уложены в несколь^° слоев. "Слоеный пирожок" из полу"Р^ОДНИКОВ одет в корпус, предназ^^иный для отвода тепла. У такого ^Х"^чного элемента коэффициент ^Х"^зного действия около 30
      тов. А это неплохой показатель. Ведь даже самые современные тепловые электростанции имеют КПД до 40 процентов.
      ' ^^
      _________J-^__________
      'у ^ЭДв"
      ПЕРВАЯ СОЛНЕЧНАЯ
      Идея создания электростанций, которые могли бы преобразовывать солнечное тепло в электрическую энергию, давно волновала умы людей. Очевиден был и наиболее доступный метод решения проблемы: термодинамическое преобразование солнечной энергии, то есть превращение энергии солнечного излучения сначала в механическую, а затем в электрическую по хорошо известному паротурбинному циклу, который используется на всех тепловых (ТЭС) и атомных (АЭС) электростанциях. Иначе говоря, солнечная электростанция (СЭС) отличается от ТЭС и АЭС только способом получения пара.
      Казалось, что проще - создать котел соответствующей формы и направить на него несколько солнечных зайчиков покрупнее, чтобы получить достаточное количество пара. Ведь все остальные проблемы вроде бы были давным-давно решены. Однако дело оказалось далеко не простым. Реализации идеи мешало множество инженерных, технических трудностей. Ну, скажем, такие: нужно было создать очень точные и надежные системы, которые следили бы за Солнцем, постоянно изменяя положение зеркал с тем, чтобы зайчики, направленные на котел, не меняли своего положения; не менее сложно было позаботиться о том, чтобы солнечная электростанция в пасмурные, облачные дни, а также ночью не оставалась без работы. Вот почему
      лизация проектов СЭС, разработанных в 50-60-е годы, все время откладывалась.
      Однако постепенно все основные трудности были преодолены, и в начале прошлой пятилетки в Крыму началось строительство первой в нашей стране крупной солнечной электростанции СЭС-5 мощностью пять тысяч киловатт. По расчетам ученых, мощность таких станций в принципе может достигать полумиллиона и более киловатт. Проект Крымской СЭС создан в рижском отделении института Атомтеплоэлектропроект при участии ряда проектно-конструкторских организаций Министерства энергетики и электрификации СССР.
      СЭС-5 состоит из концентратора - поля солнечных гелиостатов, солнечного парогенератора, турбины, генератора, системы автоматического слежения за Солнцем и системы теплового аккумулирования.
      Одна из главных проблем, с которой столкнулись создатели СЭС, такова. Удельная плотность лучистого теплового потока на земной поверхности чрезвычайно мала и не превышает 1 киловатта на квадратный метр. А для того чтобы в котле образовался пар под давлением 40 атмосфер и температурой 250 градусов Цельсия, на поверх1 эсти нагрева котла удельная плотность теплового потока должна составлять 250 киловатт на квадратный метр.
      Получить нужную концентрацию солнечной энергии удается с помощью гелиостатов - зеркальных отражателей, следящих за Солнцем и направляющих его лучи на поверхность нагрева парогенератора.
      Всего их 1600; они расположены на плоской кольцевой площадке, окружающей башню высотой 90 метров, на которой установлен солнечный паровой котел. Каждый гелиостат несет зеркала площадью 25 квадратных метров и оборудован электрическими приводами зенитного и азимутного вращения.
      ЭВМ управляет электродвигателя гелиостатов так, что в любой м
      мент времени все отраженные сод ночные лучи направлены строго котел.
      В машинном зале установлены с рийные турбина и генератор. В период максимальной солнечной активност они развивают мощность до 6 тысяч к ловатт. Днем, когда Солнце скрыто за облаками, и ночью турбина может ра. ботать от пароводяного аккумулятора, который заряжается от солнечного пa'. регенератора. Тепловой аккумулятор обеспечивает работу турбины в расчетном режиме в течение 3-4 часов; еще 10 часов станция может давать ток, действуя в пониженном режиме, с мощностью 2,5 тысячи киловатт.
      Надо сказать, что стоимость электроэнергии первой в нашей стране солнечной электростанции будет сравнительно велика - значительно дороже энергии ТЭС и АЭС. Объясняется это относительно высокими затратами на эксплуатацию нового оборудования, большими расходами энергии на привод гелиостатов и т. д. Но уместно вспомнить, что энергия первых АЭС обходилась тоже значительно дороже энергии традиционных тепловых станций, а теперь показатели их экономичности практически сравнялись. Нет сомнений, что и с СЭС со временем произойдет то же самое. К тому же при оценке эффективности таких станции надо принять во внимание, что они совершенно не загрязняют окружающую среду.
      Крымская СЭС - экспериментальная. Здесь будут испытываться различные конструкции гелиостатов-это уникальные устройства, подобных которым нет нигде в мире, конструкция автоматов слежения за Солнцем, солнечный котел. Значительную часть средств, выделенных станции, предусмотрено направить на научно-исследовательские и экспериментальные работы.
      бометров при температуре наружного воздуха 35-40 градусов Цельсия устойчиво сохранялась прохлада в 10- 12 градусов. В таком помещении мож^ но длительно хранить до 3 тонн овощей и фруктов.
      ОХЛАЖДАЕТ... СОЛНЦЕ
      Детом под лучами солнца зреют на деревьях плоды, наливаются соком. Но вот наступает пора уборки, и солнце из друга превращается во врага. Жара подгоняет сборщиков, торопит по^орее вывезти фрукты из сада. Хорошо, если поблизости есть хранилище, а если нет? Тут можно снова привлечь на помощь солнце. Только нужно заставить его своим теплом вырабатывать
      холод.
      Небольшое фруктоовощехранилище с солнечной холодильной установкой построить несложно. Стены из жженого кирпича наполовину заглубляются в землю и изолируются снаружи песчаным грунтом. Дверь и небольшое окошко герметизируются. Внутри устанавливается холодильный агрегат адсорбционного типа (аппараты, действующие на этом принципе, применяются и в быту). Только энергию ему даст не электричество, а солнечные лучи.
      Конечно, солнечный холодильник будет работать не так устойчиво, как электрический. Смена дня и ночи, колебания погоды - все это сделает режим охлаждения прерывистым. Однако даже в районах с устойчивым жарким климатом, таких, скажем, как Средняя Азия, это не страшно. Работа холодильника в течение 6-8 часов ежесуточно там практически гарантирована, а этого вполне достаточно, чтобы р.ержвть в хранилище нужную температуРУ.
      Это подтвердила и опытная эксплуа^Ция построенного в Узбекистане Фруктоовощехранилища с солнечным ^"^дением. В камере высотой всего ^ метра и внутренним объемом 20 ку
      КУКУРУЗА В СТАЛЕПЛАВИЛЬНЫХ ПЕЧАХ
      Руководители агрокомплекса в венгерском городке Агарде решили в виде опыта переработать сухие стебли кукурузы в брикеты и использовать их как топливо. Сто тонн кукурузной соломы пошли в дело. Выяснилось, что тепло от сгорания таких брикетов равно примерно одной трети тепла, получаемого при сжигании нефти (совсем неплохо!). Теперь в Венгрии приступают к широкому использованию брикетов. Как показали опыты, их можно применять даже в металлургии - для получения стали с низким содержанием
      серы.
      Проект "Кукурузные брикеты" - один из более чем тысячи проектов пятилетки по экономии энергии и замене дорогих источников энергии дешевыми. Около пятисот предложений уже внедрено.
      234
      235
      ГОРЮЧЕЕ ИЗ ХЛОПКА
      Речь идет не о нитках или полотнищах ткани. И даже не о белых комочках, которые извлекают из коробочек на хлопковых полях. Предмет исследований ученых Никарагуа - сухие стебли, которые в изобилии остаются после уборки. Их-то ученые Института энергетики и предлагают перерабатывать в газообразное топливо. По их расчетам, из одной тонны растительного сырья можно получить до 300 литров горючего, на котором смогут работать котельные и тепловые электростанции.
      РЫБИЙ ЖИР ЗАМЕНЯЕТ БЕНЗИН
      Не на бензине, а на рыбьем жире начали работать грузовики в Исландии. Моторы "приняли" новый вид топлива без особых возражений. Скорость движения не уменьшилась, а загрязнение воздуха понизилось. И главное в Исландии рыбий жир на 40 процентов дешевле бензина.
      ЕСЛИ ПЕРЕЙТИ НА ГАЗ
      В этом экспериментальном автомо. биле на первый взгляд нет ничего необычного. Все на месте, в том числе и бензобак. Но если открыть багажник увидишь баллоны, от которых тянутся трубки к двигателю. В них-природный газ, а в бензобаке - обычный бензин. Автомобиль, оказывается, работает на двух видах топлива. Запускается двигатель на бензине, а потом переходит на газ.
      Какая уж тут новость, возможно, удивится читатель: газобаллонных автомобилей немало на улицах наших городов. Все верно, но... работают они на газе, который получается из нефти,- так же, как и бензин. А здесь совсем другой, природный. Такой же, на котором мы кипятим чай, жарим котлеты,- запасы его весьма велики.
      Эксперименты убедили даже закоренелых скептиков: природный газотличное топливо для машин. Он дешев - расчеты показывают, что перевод каждого грузовика на газ сэкономит свыше 500 рублей ежегодно. И это с учетом затрат на оборудование автомобиля специальной аппаратурой.
      Газ лучше бензина смешивается с воздухом, поэтому он полнее сгорает в двигателе, значит, и вредных веществ в выхлопных газах меньше. "Чистое" дыхание двигателя объясняется и тем, что при сгорании газа образуются пары воды. Различных присадок, как, на' пример, в этилированном бензине, здесь нет. Октановое число и так У "^' за рекордное -от 105 до 110 единиц. Сравните - у самого высокосортного бензина только 98 единиц.
      Более того, новое топливо продлевает жизнь автомобильного двигателя почти в полтора раза. Нетрудно понять почему - ведь бензин смывает смазку со стенок цилиндров, разжижает ее и портит. Газ не нарушает масляную пленку между трущимися деталями мотора, они меньше изнашиваются.
      Если у природного газа так много преимуществ перед бензином, то почему его до сих пор не использовали? При всех достоинствах у нового топлива есть существенный недостаток - это все-таки газ, его приходится держать под давлением 200 атмосфер в баллонах, которые занимают немало места. Запас хода у такой машины почти вдвое меньше. Если его увеличить, получится скорее "баллон на колесах", чем автомобиль с баллонами. Вот почему конструкторы выбрали двухтопливный вариант, дающий возможность в любой момент подключить к двигателю бензобак. Это оптимальное решение позволит сберечь миллионы тонн бензина, практически не загрязнять атмосферу.
      ЭНЕРГИЯ ОТ "МОРСКИХ ЗВЕЗД"
      С помощью толстых резиновых шлангов намерены использовать энергию морских волн ученые. Причем энергия обещает быть весьма дешевой - по две копейки за киловатт. Главным "рабочим механизмом" такой электростанции будут резиновые шланги диаметром 200 миллиметров и длиной от 15 до 20 метров. Они будут опущены в воду вертикально, верхний конец шланга прикрепят к бую, нижний заякорят на морском дне. Волны
      ют и опускают буй, при этом шланг натягивается, то расслабляется- в (h ^ расслабления шланг наполняется* дои, которая в фазе натяжения выд^ ливается и вращает турбину. Шланг снабжены вентилями. В зависимости высоты волн шланг может развив" мощность до 60 киловатт. Шланги дли. ной от 25 до 30 метров и диаметром 300-400 миллиметров, по расчета проектировщиков, должны обеспечивать мощность в 100 киловатт. Если первая пробная электростанция оправдает возлагаемые на нее надежды, будет построено несколько плавающих электростанций в форме морской звезды' на каждом луче "звезды" укрепят шланги, из которых вода будет выдавливаться в главную трубу, ведущую к турбинам. Это позволит еще более повысить мощность волновых электростанций.
      ВОЛНЫ
      ПОД КОЛПАКОМ
      Близ японского города Цуруока испытывается электростанция, использующая энергию волн прибоя. Небольшая бухточка накрыта "колпаком" с воздушной камерой и отверстием вверху. Над отверстием смонтировано воздушное колесо с генератором. Морские волны колеблют уровень воды в камере и вызывают поток воздуха, который вращает колесо. По приблизительной оценке, волны высотой в метр должны создавать мощность 3 киловатта, двухметровые-12 киловатт Рассчитывают, что среднегодовая мот' ность станции в данном месте составит 10 киловатт. Если эксперимент окажется удачным,
      электростанции предполагается "вменять для снабжения энергией Еденные островки. На случай штиля f" g с прибойной электростанцией ° "п^ан работать обычный движок.
      КАПКАН ДЛЯ ПРИЛИВОВ
      Специалисты подсчитали: мощь морских приливов на земном шаре достигает как минимум миллиарда киловатт. Во многих странах, у берегов которых высота приливных волн превышает пять метров, с ними связывают немалые надежды на будущее энергетики. В отличие от' изменчивого ветра ученых привлекает постоянство приливов: уровень воды в океане вздымается и опускается в такт с фазами Луны. Отсюда и родилась заманчивая идея увязать работу приливных электростанций с графиком речных ГЭС. И за счет этого сократить потери, вызванные суточными "пиками" и "провалами" в потреблении электроэнергии.
      Реальность этого замысла подтверждает опыт Советского Союза, где на побережье Баренцева моря вот уже много лет действует приливная электростанция. Принцип ее действия за^^ресовал специалистов многих ^ран, он использован в проектах подобных электростанций, строящихся в Канаде, Англии, США. Но одновременно идут и поиски новых решений, по^°^*ощих использовать энергию при"^ов с максимальным эффектом. Не^w вблизи шведского порта Гёте°Р" заработала приливная установка, ^^"ная по проекту "Петропомпа". ^° своего рода гибкий шланг из син^^^ого материала с внутренним
      и внешним диаметрами, соответственно, 21 и 28 сантиметров. Вход и выход из него закрывают специальные клапаны.
      Шланг крепится ко дну с таким расчетом, чтобы приливная волна, ворвавшись в него через входной клапан, приводила в движение гидротурбину и связанный с нею электрогенератор. Понятно, что мощность одного такого устройства невелика. Но, по замыслу авторов проекта, приливная электростанция должна состоять из нескольких десятков и даже сотен подобных шлангов. Причем, увеличивая их число, ее мощность можно постепенно наращивать.
      Особое внимание ученых и специалистов привлек проект приливной электростанции, разработанный группой инженеров из национальной технической лаборатории в Глазго. Они предложили соорудить у шотландского острова Льюис цепь из четырех "бетонных капканов" своего рода пустотелых плотин. Каждая из них должна иметь в длину 110 метров, в ширину - 60 и в высоту - 33,6 метра.
      Внутренним камерам плотин, открытым снизу, инженеры придали форму раковины улитки. Поднимающаяся приливная волна должна входить в них с большой скоростью и играть роль поршня - сжимать воздух, заполняющий пространство над поверхностью воды. После этого через систему капканов и направляющих решеток воздух поступит на лопатки турбогенераторов, установленных в машинных залах над камерами.
      Но вот приливная волна откатывается от берега. Уровень воды в бетонных камерах понижается, создавая в них разрежение. И теперь они начинают всасывать воздух снаружи. Этот воздух, прежде чем попасть в камеры, также проходит через турбогенератор. Причем стоящие на его пути клапаны и решетки направляют наружный воздух на лопатки турбин с той же стороны, что и сжатый в камерах.

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26