Современная электронная библиотека ModernLib.Net

Эврика-86

ModernLib.Net / Неизвестен Автор / Эврика-86 - Чтение (стр. 2)
Автор: Неизвестен Автор
Жанр:

 

 


Исследование же объекта СС 433 вовсе не дело случая. Маргон работал в рамках общей программы отождествления рентгеновских источников. В семидесятых годах американские спутники "УХУРУ" и САС-З и английский "Ариэль" завершили предварительные обзоры неба в рентгеновском диапазоне. Были открыты и нанесены на карты сотни источников. Для многих из них уже стали известны и оптические аналоги. Однако сопоставить оптические объемы с рентгеновскими удавалось далеко не всегда.
      Что ожидал обнаружить Маргон? Он предполагал, что найдет затмения, которые говорили бы, что СС 433 - двойная система. Ожидал, что найдет, например, пульсации оптического излучения. Природа преподнесла сюрприз, и началось восхождение на первый виток спирали исследований. Впоследствии, когда спираль завершила этот виток, все то, что ожидали обнаружить у СС 433, было обнаружено - и
      ния, и оптическая переменность. В этом смысле объект оправдал ожидания теоретиков. Но к тому времени все они так увлеклись поисками разгадки, обнаруженной летом 1978 года странности, что все прочие особенности оказались в тени.
      Все более ранние отождествления рентгеновских источников с оптическими звездами (а Маргон сделал немало таких работ) сенсаций не вызвали. В основном наблюдения не противоречили главной идее: рентгеновские источники в нашей Галактике - это двойные звездные системы. В них одна звезда обычная, гигант или карлик, горячая или не очень. Вторая звезда интереснее - это нейтронная звезда или, возможно, "черная дыра". Нормальная звезда теряет часть своего вещества, а нейтронная звезда это вещество "заглатывает". В этом причина рентгеновского излучения и всех любопытных эффектов, которые в таких системах наблюдаются.
      Но СС 433 такие предположения опроверг. Возникло противоречие.
      ОТСТУПЛЕНИЕ ПЕРВОЕ: НАУЧНЫЕ ПРОТИВОРЕЧИЯ
      Именно противоречия двигают науку вперед. Не потому, что существуют, а потому, что от них так или иначе удается избавиться. Разрешая противоречия, ученые действуют методом проб и ошибок. Известно немало способов объяснить смещение спектральных линий- все эти способы рассматриваются в той или иной последовательности и, естественно, отвергаются сразу или со временем. Естественно - потому что объяснений много, а истина одна.
      Ученый, которому в голову пришла идея объяснения, не расстается с ней месяцами. И другой ученый, и третий, и четвертый. Часто идеи повторяют друг друга, но если посмотреть как бы "сверху" на картину работы над проблемой, окажется, что почти все мыслимые идеи были высказаны в то или иное
      время. Но именно в то или иное. Вре^я-то идет. Метод проб и ошибок работает медленно.
      Поэтому довольно часто (когда это удается организовать) устраиваются конференции. Дискутировать на страницах журналов - дело долгое. Состоялась конференция и по поводу тайны СС 433 в Мюнхене в декабре 1978 года.
      Если прибегать к терминам науковедения, то конференция - это способ организации метода проб и ошибок. В инженерном деле есть метод активизации творческого процесса, называемый мозговым штурмом. Во время него высказываются разные идеи о решении выбранной проблемы. Научная конференция тоже хороша именно тем, что здесь не теряется время, свободно высказываются и сталкиваются мнения.
      Но она страдает тем недостатком, что критика на ней поощряется. В спорах, говорят, рождается истина. В принципе верно, но верно чаще всего в тех случаях, когда приходится выбирать из двух решений и при этом ясно, что одно из решений и есть истина. А когда все в проблеме туманно, нужно туман сначала рассеять. Для этого необходимо иметь полную картину всех возможных в принципе объяснений. Всех и сразу. И не нужно критиковать - все новые идеи уязвимы, и потому верной может показаться та, которая меньше подверглась критике.
      Так случилось и на конференции в Мюнхене. Меньше прочих критиковалась идея о том, что смещения спектральных линий могут вызываться сильным магнитным полем (эффект Зеемана) и что к реальным движениям в объекте наблюдаемая картина отношения не имеет. А то, что линии постоянно смещаются, может говорить о том, что магнитное поле переменно. Конечно, величина поля нужна фантастическая, хотя в обычных звездах нет полей, способных вызвать такие смещения. "К счастью,- писал американский астрофизик Дж. Катц,-мы так никогда и не
      2 Эврика-86 1
      опубликовали эти теории". Вот случай действия метода проб и ошибок, случай, когда спор привел к удалению от истины, ведь идея о сильных переменных магнитных полях отношения к реальности не имела. Противоречие осталось.
      КОСМИЧЕСКИЙ ФОНТАН?
      Метод проб и ошибок продолжал действовать. В 1979 году была предложена красивая идея. Она разрешала основное противоречие, но создавала новое, и более глубокое. Собственно, идея объясняла, как говорят философы, лишь видимость явления, а не его сущность. Она была названа кинематической именно потому, что рассказывала о том, к а к происходят движения в СС 433, но не почему они происходят.
      Прямолинейное движение (например, расширение газа) было совмещено с вращением. Представьте себе некое компактное тело, вращающееся вокруг своей оси. И вообразите, что на его полюсах поставили по водомету вдоль оси с большой силой бьют в разные стороны две узкие струи. В данном случае речь идет о струях плазмы, а не воды, но принцип не меняется. Если вы смотрите на волчок со стороны одного из полюсов, то видите только одну из струй, направленную прямо на вас. По эффекту Доплера вы можете определить и скорость, с которой к вам приближаются частицы вещества в этой струе. Затем иная ситуация - вы смотрите на волчок сбоку, видите обе струи, но они движутся, как говорят астрономы, "в картинной плоскости", не удаляясь и не приближаясь к вам. Никакого смещения спектральных линий вы не отметите, скорость движения частиц в струе не определите.
      Что ж, а теперь представьте промежуточную картину- вы видите волчок под некоторым углом к его оси вращения. Видны обе струи, в одной из них частицы приближаются к вам, в
      гой - удаляются. Вот вам уже две системы линий, которые вы сможете наблюдать. Одни линии сильно смещены в красную сторону, а другие - в фиолетовую. Однако это ведь постоянные скорости, а вовсе не переменные!
      Противоречие осталось? Нет. Нужно только представить, что струи бьют не точно по оси вращения, а под некоторым углом к ней. Тогда картина движения будет меняться и повторяться через каждый оборот волчка. Будет периодически меняться и измеряемая по доплеровским смещениям скорость движения частиц.
      Именно такая модель и была предложена Б. Маргоном и Дж. Эйбеллом (США). Из таинственного космического тела под углом к его оси вращения бьют две струи плазмы, узкие, как луч лазера. Бьют с огромной скоростью - больше одной четверти скорости света!
      Так удалось нарисовать картину видимого движения в СС 433. Впоследствии она, конечно, видоизменялась и уточнялась. Но возникло новое противоречие, еще более важное. Почему бьют струи? Почему они такие узкие? Уже первые оценки показали, что ежесекундно струи могут уносить из СС 433 энергию, равную миллиону светимости нашего Солнца! И самое странное - вещество в струях остается при этом холодным! Земная физика не знает пока способа такого аккумулирования огромной кинетической энергии в узких струях: здесь оказалась загадка не только для астрофизиков, но и для физиков.
      Кроме линий излучения вещества в узких струях плазмы, в спектре СС 433 есть и обычные линии водорода, гелия и некоторых других элементов, расположенные там, где им и полагается быть. Эти несмещенные линии до поры до времени не привлекали внимания. Однако в наблюдательный сезон 1979 года астрофизики обнаружили, что и эти линии периодически сдвигаются, правда, незначительно. Был
      тановлен и период- 13 дней. Два периода у одного волчка?
      Парадокс такого рода, однако, известен астрофизикам, и объяснение дали сразу: большой период (164 дня) может быть связан с объектом, испускающим струи. А короткий период (13 дней) возникает из-за того, что сам объект обращается по орбите около какого-то второго тела. Попросту говоря, СС 433 - двойная система.
      Это предположение устраняло сразу несколько противоречий. Стало возможным объяснить основное, как говорят астрофизики, непрерывное излучение, на фоне которого и видны смещенные линии: часть излучения исходит от обычной звезды, около которой вращается неизвестный объект, а другая часть - от газовых потоков, текущих от нормальной звезды к "ненормальной". Эта "ненормальная" звезда и есть тот таинственный волчок, источник двух удивительных струй.
      ОТСТУПЛЕНИЕ ВТОРОЕ: МОРФОЛОГИЧЕСКИЙ АНАЛИЗ
      Что за странные термины: нормальная звезда, ненормальная звезда... У звезд есть классы, типы светимостей, и, вероятцр, астрофизики в своих статьях не пользуются такими неопределенными терминами? Верно, не пользуются. Но... Каждый из исследователей придерживается своего взгляда на то, какие именно типы звезд образуют двойную систему СС 433. Истинное решение еще не найдено, происходит перебор вариантов методом проб и ошибок. Между тем существует современная модернизация этого метода - морфологический анализ, то есть систематический перебор всех мыслимых вариантов. Попробуем сейчас провести такой анализ для того, чтобы разобраться в системе СС 433.
      Будем исходить из того, что это - двойная система. В том или ином сочетании в нее могут входить: а) нормальная звезда, б) белый карлик, в)
      тронная звезда, г) "черная дыра". Объединим элементы по два. Вот какие получаются двойные системы; 1) нормальная звезда-1-нормальная
      звезда;
      2) нормальная звезда-+-белый карлик; 3) нормальная звезда-}-нейтронная
      звезда; 4) нормальная звезда+"черная
      ра";
      5) белый карлик+белый карлик;
      6) белый карлик-}-нейтронная звезда;
      7) белый карлик+"черная дыра";
      8) нейтронная звезда-)-нейтронная звезда;
      9) нейтронная звезда-)-"черная дыра";
      10) "черная дыра"-)-"черная дыра". Итак, десять типов двойных систем. Плюс четыре случая, когда второго компонента просто нет! Всего четырнадцать. Какие варианты уже рассмотрены учеными? Не будем перечислять авторов и гипотез, скажем только, что уже обсуждались системы под номерами 1,3,4,6, 10. В каждом из случаев рассматривались разные модификации моделей. Например, если изучалась система, состоящая из нормальной и нейтронной звезд (N 3), то ведь можно было брать нормальную звезду большой массы, а можно - немассивиую, чуть побольше Солнца. Вы можете сказать, что нельзя же просто так перебирать варианты, ведь гипотезы должны соответствовать наблюдениям! Но дело в том, что наблюдения пока довольно разноречивы и дают простор для гипотез. Всех фактов не объясняет ни одна из них, а если намеренно оставлять вне рассмотрения ту или иную наблюдаемую "мелочь", то любая из гипотез оказывается не хуже Других. Сейчас большинство теоретиков склоняется к мысли, что СС 433 - система из нормальной массивной звезды и ее нейтронной соседки. Но... это лишь достаточно аргументированное мнение, а не доказательство.
      ЗАГАДКА ОСТАЕТСЯ
      Может показаться странным, что, перебирая возможности и гипотезы, мы ни слова не сказали о самой странной особенности СС 433 - струях плазмы, движущихся со скоростью 80 тысяч километров в секунду. Верно. Дело в том, что ни одна из гипотез не объясняет происхождения струй. Каждая, конечно, что-нибудь говорит о них. Например, известный советский ученый доктор физико-математических наук И. Новиков и его коллеги считают, что струи выбрасываются в плоскости газового диска около нейтронной звезды. Их американские коллеги полагают, что струи выбрасываются перпендикулярно диску. Есть идеи и о том, что струи возникают в области магнитных полюсов нормальной звезды. Как говорится, возможны варианты. Но ведь научная гипотеза нужна, чтобы устранить противоречие. Оно же состоит в том, что струи уносят колоссальную кинетическую энергию, которой вроде бы неоткуда взяться. Если даже удается придумать источник энергии, то оказывается, что она заключена совсем в иной форме, не в кинетической, и не является энергией поступательного движения. Скажем, нормальная звезда в двойной системе очень быстро теряет свое вещество, и это вещество "течет" к нейтронной звезде, собираясь около нее в диск. Если вещества много, то и энергия его может быть очень велика.
      Можно привести аналогию: газовый диск около нейтронной звезды - это бассейн. Через одну трубу (широкую) в него втекает плазма, через другую (узкую) вытекает. Источник втекающей в бассейн плазмы нормальная звезда. Он может быть весьма мощным, ведь массивная звезда способна терять очень много вещества. Вторая трубаэто сток плазмы из диска на поверхность нейтронной звезды. Эта труба не может быть очень широкой, потому что нейтронная звезда не способна "принять" сколь угодно много
      ва. И тогда плазма начнет переливаться через край бассейна - иными словами, вытекать из диска в окружающий космос и уносить избыточную энергию. Но вот почему она должна при этом вытекать в виде двух узких струй? И еще: в диске плазма горячая, ее температура-миллионы градусов. В струях плазма холодная - 10-20 тысяч градусов. В диске энергия в основном тепловая, в струях - кинетическая. Вот и нужно придумать механизм эффективной переработки тепла в движение. Современная физика плазмы такого механизма не знает! А если бы знала, представилась бы прекрасная возможность создать очень эффективный ракетный двигатель.
      ФОТОПОРТРЕТЫ СС 433
      Оптическая звезда из каталога Стефенсона и Сандулека находится почти в центре радиотуманности. Астрофизикам эта туманность известна давно, у нее неправильная, вытянутая форма. Когда-то на этом месте была двойная система из двух нормальных звезд. Потом одна из них завершила свой жизненный путь и взорвалась, раскидав во все стороны оболочку. Та непрерывно расширяется, и через десяток тысячелетий после взрыва занимает большое пространство-несколько световых лет. В оболочке (ее называют остатком Сверхновой) множество быстрых электронов, летящих по всем направлениям. Кроме того, в туманности довольно сильное магнитное поле. Двигаясь в этом поле, частицы излучают свою энергию, причем именно в радиодиапазоне. И на небе появляется радиотуманность. В ней-то и находится СС 433. И вот на радиоизображениях этой туманности, сделанных на лучших современных радиотелескопах, можно увидеть две струи, вытекающие будто из одной точки, из той, где в оптические телескопы виден объект СС 433. Конечно, эти струи не могут быть очень узкими - простираясь на световые
      ды, они расширяются. Более того, сама форма радиотуманности определяется именно струями-она вытянута в направлениях, куда те бьют. И тогда возникла у астрофизиков довольно крамольная идея: может, вся туманность возникла из-за струй? Может, взрыв звезды ни при чем? И действительно, довольно простой расчет показывает, что за десять тысяч лет струи вполне успели бы "накачать" в туманность нужное количество энергии. Вся она - это вещество, выброшенное из двойной системы. Вся огромная туманность - расплывшиеся в космосе струи...
      Они видны и на рентгеновской фотографии, сделанной с помощью приборов американского спутника "Эйнштейн". Этот снимок похож на радиоизображение, Такая же вытянутая туманность и две струи, бьющие в противоположных направлениях. Будто в космосе фонтанирует скважина, создавая вокруг себя озеро плазмы...
      АНАЛОГИИ
      Противоречие не разрешено, и как это часто бывает, астрофизики ищут для СС 433 аналогии. Может быть, нечто подобное уже наблюдалось у других типов небесных тел? Может, стоит поискать решение "на стороне"? Для методологии решения научных задач этот метод характерен. Например, в книге Д. Пойа "Как решать задачу" на этот счет есть четкое указание: если задача не решается в "лоб", попробуйте взять более общую задачу, возможно, ее решить легче.
      Что же астрофизики? Они ищут явления, подобные струям в СС 433, и находят их, например, в далеких радиогалактиках. Из ядер некоторых активных галактик и квазаров, оказывается, тоже вылетают с большими скоростями струи плазмы, и более того - эти струи тоже крутятся около некоторой оси. Явления несопоставимы по масштабам - СС 433 по сравнению с ква^ зарами подобен комару рядом с китом*
      для примера только такой факт: период обращения струй в СС 433 равен ста щестидесяти четырем суткам, а в кваздрах - миллионам лет!
      Есть аналогии и в нашей Галактике. Например, на радиокарте окрестностей знаменитого рентгеновского источника "Скорпион Х-1" ясно видна вытянутая в линию структура, в центре которой он и расположен. Как видно, СС 433 - не такая уж редкость в небесном паноптикуме. Просто удивительные свойства струй в данном случае предстали наиболее рельефно.
      И у квазаров, и у галактических рентгеновских источников есть отдельные особенности, которые оказались собраны вместе лишь в СС 433. В этом смысле система уникальна. И значит, интерес к странному объекту еще долго не ослабнет. Пробуя и ошибаясь, предлагая десятки гипотез, из которых выживут лишь единицы, ученые разрешат противоречие и скажут наконец: все ясно в системе СС 433. А может, удивительная система в действительности еще удивительнее, чем мы сейчас думаем? Не окажется ли, что благодаря ей удастся открыть новый закон природы и лишь тогда объяснить тайну рождения струй?
      Астрономия не впервые предлагает открытия, которые впоследствии повторяются физиками. Так было, например, с открытием гелия. Может быть, история повторяется?
      ГАЛАКТИКИ С КОЛЬЦАМИ
      Кольца Сатурна были открыты вскоре после изобретения телескопа. Найти кольца у Юпитера и Урана удалось
      лишь недавно с помощью космических автоматических станций. Сейчас обнаружено, что и некоторые галактики окружены кольцами. В этом случае кольца состоят из звезд.
      Первая такая галактика открыта в созвездии Кита. С тех пор, просматривая старые фотоснимки различных областей неба, астрономы нашли еще десятка два галактик, окруженных кольцами. Интересно, что во всех известных пока случаях ось вращения колец перпендикулярна к оси вращения основного тела галактики.
      Полагают, что такое образование возникает иногда при близком прохождении двух звездных миров: одна из галактик захватывает звезды другой, и они располагаются в форме кольца. Встречи галактик, разумеется, происходят под самыми разными углами, и перпендикулярность осей, по-видимому, объясняется тем, что это самая устойчивая конфигурация. Остальные варианты расположения колец просто не сохраняются, чужие звезды из кольца сравнительно быстро (по астрономическим масштабам) переходят в основную массу.
      В ГЛУБИНЫ ВСЕЛЕННОЙ
      Изучение астрономических объектов по их радиоизлучению довольно долго не приносило существенных результатов, поскольку разрешающая способность даже крупных радиотелескопов очень невелика. Но два десятилетия назад в нашей стране родился метод сверхдальней радиоинтерферометрии, и возможности радиоастрономии, а значит, и всей астрономии в целом,
      20
      ко возросли. Стало возможным наблюдать объекты, которые раньше из-за своих размеров и удаленности были принципиально недоступны для изучения. Именно радиоастрономические наблюдения дали доказательства общих представлений об эволюции горячей Вселенной.
      В чем же суть метода? В одновременном наблюдении одного объекта двумя или несколькими радиотелескопами, находящимися на сверхдальнем расстоянии друг от друга (скажем, один - в Европе, другой - в Америке). Тем самым они составляют единый инструмент радиоинтерферометр, разрешающая способность (угловое разрешение) которого значительно превосходит лучшие оптические телескопы. Благодаря этому радиоастрономия получила возможности изучать не только сами астрономические объекты, но и их движение. Много нового узнали ученые о квазарах и пульсарах, о нейтронных звездах и газопылевых комплексах, о строении галактик и многих других объектах Вселенной.
      Но метод сверхдальней радиоинтерферометрии нашел применение не только в астрофизике. Благодаря ему возникли новые научные дисциплины, например, астронавигация, а геодезия и астрометрия получили возможность измерять земные расстояния с точностью до нескольких сантиметров. Этот же метод позволяет с высокой точностью контролировать полеты космических кораблей и межпланетных автоматических станций.
      Сейчас все крупнейшие радиотелескопы мира объединены в единый глобальный радиоинтерферометр. А следующий шаг в развитии этого метода - вывод радиотелескопа на околоземную орбиту искусственного спутника Земли. Он образует единый инструмент с наземными телескопами, и это повысит угловое разрешение в десятки, сотни, тысячи раз. Появится возможность исследовать пространство около ближайших звезд в поисках планет, измерять
      со сверхвысокой точностью координаты на поверхности Земли, определять дрейф континентов, наблюдать явления, предшествующие землетрясениям, и решать многие другие научные задачи.
      САМАЯ ДАЛЕКАЯ
      Наиболее удаленную звезду нашей Галактики открыли недавно астрономы, исследуя участок неба в созвездии Весов. Звезда - красный гигант 18-й звездной величины, ее удаление от Земли составляет около 400 тысяч световых лет. Это примерно в четыре раза больше диаметра нашей Галактики, так что новооткрытая звезда лежит в так называемом галактическом гало, в "пригородах" Галактики. Расстояние удалось оценить на основании того, что известна абсолютная яркость других звезд такого типа, и, зная, что расстояние ослабило ее до 18-й величины, можно приблизительно рассчитать удаленность светила. \
      Интересно, что открытую сейчас зве- - зду позже нашли и на снимках, сделанных 25 лет назад. Тогда никто не обратил внимания на слабое пятнышко на' фотопластинке.
      В НАШЕЙ ГАЛАКТИКЕ ОБЛАЧНО
      Астрономы обнаружили в нашей Галактике облака горячего ионизированного газа. Они состоят из своеобразных "прядей" длиною до 150 и шириною в несколько световых лет. По мнению ученых, эти облака удерживаются от рассасывания сильным магнитным полем, направленным перпендикулярно плоскости Галактики, происхождение которого пока не выяснено.
      ЕСТЬ ЛИ У СОЛНЦА СПУТНИК?
      Ответить на этот вопрос легче легкого: конечно, есть и не один, а девять - все планеты Солнечной системы - спутники нашего светила. Но, кажется, существует еще один, о котором астрономы только догадываются, а знают о нем лишь одно - это не планета, а гипотетическая звезда Немезида.
      Догадку о ее существовании ученые высказали в связи с "кометными дождями", которыми сейчас объясняют периодическую массовую гибель на Земле некоторых видов животных. Предполагают, что Немезида, двигаясь по своей орбите, каждые 26 миллионов лет проходит близ одного из крупных кометных скоплений и провоцирует усиленную бомбардировку нашей
      неты кометами. Словом, Немезида должна быть одной из ближайших к нам звезд - красных карликов - с самым большим параллаксом. Проще говоря, ее смещение на карте звездного неба за какой-то промежуток времени должно быть достаточно заметным.
      Астрономы сфотографировали пять тысяч звезд и решили через несколько месяцев повторить "перепись" небожителей, чтобы потом сравнить результаты и выбрать наиболее подвижную звезду. Если обнаружить Немезиду на северной части неба не удастся, придется искать ее в Южном полушарии.
      ПЫЛЕВОЕ КОЛЬЦО ВОКРУГ СОЛНЦА
      Астрономы давно знают, что вокруг Солнца имеется скопление пылевых частиц - остатков вещества, из которого образовались планеты Солнечной системы. В южных широтах сразу после заката виден так называемый зодиакальный свет - отражение солнечного света от этих частиц. Но наблюдать впрямую это скопление до сих пор не удавалось: оно расположено слишком близко к Солнцу и теряется в его лучах.
      Группа астрономов во время затмения Солнца смогла получить изображения околосолнечного пылевого кольца со стратостата, поднявшегося на высоту более 30 километров. В гондоле стратостата находились автоматические приборы - телескоп с телекамерой и инфракрасный телескоп. Наблюдения, сделанные за 3 минуты 50 секунд полного солнечного затмения на четырех видимых и четырех инфракрасных участках спектра, показали: на расстоянии примерно 3,8 солнечного радиуса
      от нашего светила существует плоский диск состоящий в основном из частиц общей массой около миллиона тонн, разогретых примерно до 1300 градусов Цельсия.
      КАК МЕНЯЮТСЯ РАЗМЕРЫ СОЛНЦА
      Размеры солнечного шара непостоянны, считают ученые. Диаметр светила меняется регулярно в течение около ста лет примерно на 0,3 процента. Но даже эти малые изменения сказываются на климате Земли. При увеличении размеров Солнца наступало потепление, уменьшение диаметра вело к похолоданию на нашей планете. С увеличением диаметра активность нарастает. Сопоставляя закономерности длительных колебаний Солнце на протяжении нескольких прошлых веков, советский астроном В. Честяков пришел к выводу, что очередное понижение солнечной активности и уменьшение размеров светила следует ожидать в конце текущего столетия.
      СВЕРХТОЧНЫЕ ИНСТРУМЕНТЫ АСТРОНОМОВ
      С точностью до нескольких метров ^°"УТ определять теперь положение """W7 - соседей Земли по Солнечной системе-астрономы Пулковской обсерватории. Достичь высочайшего
      уровня сверхдальних измерений планет, звезд, квазаров и галактик позволяет новый прибор - фотографический вертикальный круг, созданный советскими специалистами при участии коллег из Дрезденского технического университета.
      ВЕНЕРА В АЛГОРИТМАХ И В ДЕЙСТВИТЕЛЬНОСТИ
      Венеру долгое время считали очень похожей на Землю, ведь она почти таких же размеров, ее масса и плотность почти равны земным, она имеет мощную атмосферу... Теперь мы знаем, что венерианская поверхность представляет собой раскаленную безжизненную пустыню, а ее история это несбывшийся путь геологической истории Земли. Если бы земной углерод не был прочно связан в составе коры, то выделение в атмосферу углекислого газа - продукта вулканической деятельности - привело бы к необратимому разогреву поверхности, океаны испарились, а Земля превратилась бы в... Венеру.
      Впрочем, такой нежелательный "сце,нарий" весьма серьезно рассматривается при обсуждении угрозы изменения климата из-за поступления в атмосферу промышленных отходов - углекислого и сернистого газов. Как раз эти газы и определяют метеорологию Венеры. Получается, что чем лучше мы будем знать своих соседей по Солнечной системе - Венеру, Марс, Меркурий, Луну, - тем глубже будет понимание истории и даже будущего Земли.
      В марте 1982 года на поверхность Венеры совершили посадку спускаемые
      аппараты "Венера-13" и "Венера-14". Принципиально новым шагом в исследовании планет стал анализ химического состава венерианского грунта. Попытки теоретически предсказать минералогию Венеры были сделаны за несколько лет до этого космического полета. Наступило время сопоставить прогноз и эксперимент.
      ОРАНЖЕВОЕ НЕБО, ОРАНЖЕВЫЕ КАМНИ...
      Каких только гипотез не выдвигали по поводу характера поверхности Венеры! Ведь планета постоянно окутана непроницаемой вуалью облаков, и вплоть до полета советской автоматической станции "Венера-4" сведения об условиях на ее поверхности были столь противоречивы, что допускали существование морей из нефти, из обычной воды, а во времена увлечения астроботаникой казалось, что планета - близнец Земли и вполне пригодна для развития пышной флоры и фауны.
      В конце 1975 года состоялся первый телерепортаж с поверхности Венеры, когда были переданы панорамы мест посадки спускаемых аппаратов "Венера-9" и "Венера-10". Планета оказалась совершенно безжизненной под покровом непроницаемых облаков таится мир раскаленных до 450 градусов Цельсия каменистых пустынь. Через несколько лет исследований ученые с помощью радиолокатора на спутнике, выведенном на орбиту вокруг Венеры, сумели построить топографическую карту планеты. Выяснилось, что две трети поверхности - это всхолмленные равнины высотой до двух с половиной километров со множеством кратеров, а на оставшейся площади есть гористые плато, рассеченные глубокими каньонами, там прохладнее градусов на пятьдесят. В гористых областях обнаружены вулканы, один из которых выше Эвереста (высота его превышает 1 1 километров), но более чем вдвое уступает марсианскому Олимпу (27 километров).
      Около 30 процентов площади планеты заняты плоскими низинами, напоминающими лунные "моря".
      Ветры в венерианском пекле слабые, ) не превышают одного метра в секунду, 1 но это не значит, что они незаметны. Советский астрофизик В. Мороз счита-) ет, что динамический напор ветра при^ венерианском атмосферном давлении (100 атмосфер) настолько велик, что земной наблюдатель должен чувствовать себя, как на оживленной улице, настолько шумно в венерианской пустыне.
      Расчеты и специальные имитации показали, что для переноса одинаковых пылинок на Венере и Земле сила ветра i должна быть разной: на Венере достаточен ветер в десять раз слабее земного. Однако бури в плотной венерианской атмосфере напоминают взмучивание ила при посадке батискафа на морское дно. Именно так ведет себя пылевое облако, поднятое с поверхности Венеры после посадки спускаемого аппарата.
      Голубого неба на Венере нет - высокая плотность атмосферы приводит к рассеиванию большей части фиолетовых, синих, голубых лучей. Поэтому не- ' бо Венеры оранжево-желтое, может быть, с зеленым оттенком. И венерианские скалы и камни выглядят оранжевожелтыми, именно так, как на панорамах "Венеры-13" и "Венеры-14" после синтезирования цветопередачи, j
      Из чего же состоят оранжевые камни Венеры? Насколько они похожи на земные? На этот вопрос "фотопортрет", разумеется, не ответит.
      Ориентировочные оценки пород на Венере были все-таки получены. В местах посадки автоматических станций "Венера-8" (1973 год), "Венера-9" и "Венера-10" (1975 год) с помощью спе- j циальных радиометров удалось изме- : рить содержание естественных радиоактивных элементов - калия, урана и Х тория. Радиометрия показала, что на Венере можно встретить породы, похожие по уровню радиоактивности как на
      земные базальты, так и на граниты. Эти опыты еще раз подтвердили, что в твердых оболочках всех планет земной группы шли или продолжают идти активные геологические процессы - происходит дифференциация планетарного вещества по химическому составу.
      Возвращение на Землю контейнеров с венерианским грунтом - задача в обозримом будущем невыполнимая, ведь воображаемой ракете с Венеры придется взлетать как бы со дна земного моря, поскольку давление горячего углекислого газа, из которого в основном состоит венерианский "воздух", в сто раз больше земного. Выполнить анализ грунта Венеры лет пятнадцать назад казалось почти такой же фантастикой, поэтому на повестку дня был поставлен теоретический прогноз.

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26