Современная электронная библиотека ModernLib.Net

Шпаргалка по общей электронике и электротехнике

ModernLib.Net / Косарева Ольга / Шпаргалка по общей электронике и электротехнике - Чтение (стр. 9)
Автор: Косарева Ольга
Жанр:

 

 


      Нейтральной линией, или геометрической нейтралью, называется линия, проходящая через центр якоря и перпендикулярная оси полюсов. Активная сторона витка в этом положении скользит вдоль магнитных линий, не пересекая их. Поэтому ЭДС в витке не наводится и ток в цепи равен нулю. Ширина щетки больше ширины коллекторного деления, образованного пластиной и изолирующим промежутком, и виток, находясь на нейтральной линии, замыкается в этот момент щетки накоротко.
      Для генераторов, работающих с резко изменяющейся нагрузкой (подъемные краны, прокатные станы), применяют иногда компенсационную обмотку, закладываемую в пазы, специально сделанные в полюсных наконечниках. Направление тока компенсационной обмотки должно быть противоположно току в проводниках обмотки якоря. На дуге, охватываемой полюсным наконечником, магнитное поле компенсационной обмотки будет уравновешивать поле реакции якоря, не допуская искажения поля машины. Компенсационная обмотка, так же как обмотка дополнительных полюсов, включается последовательно с обмоткой якоря.

73. ТИПЫ ГЕНЕРАТОРОВ ПОСТОЯННОГО ТОКА

      В зависимости от способа создания магнитного поля генераторы постоянного тока делятся на три группы:
      1) генераторы с постоянными магнитами, или магнитоэлектрические;
      2) генераторы с независимым возбуждением;
      3) генераторы с самовозбуждением. Магнитоэлектрические генераторы состоят из одного или нескольких постоянных магнитов, в поле которых вращается якорь с обмоткой. Ввиду очень малой вырабатываемой мощности генераторы этого типа для промышленных целей не применяются.
      У генератора с независимым возбуждением обмотки полюсов питаются от постороннего, независимого от генератора, источника постоянного напряжения (генератора постоянного тока, выпрямителя и др.).
      Питание обмотки возбуждения полюсов генератора с самовозбуждением осуществляется со щеток якоря самой машины. Принцип самовозбуждения заключается в следующем. При отсутствии тока в обмотке возбуждения якорь генератора вращается в слабом магнитном поле остаточного магнетизма полюсов. Независимая ЭДС, индуктируемая в обмотке якоря в этот момент, посылает слабый ток в обмотку полюсов. Магнитное поле полюсов увеличивается, отчего ЭДС в проводниках якоря также увеличивается, что, в свою очередь, вызовет увеличение тока возбуждения. Так будет продолжаться до тех пор, пока в обмотке возбуждения не установится ток, соответствующий величине сопротивления цепи возбуждения. Самовозбуждение машины может произойти лишь в том случае, если ток, протекающий по обмотке полюсов, будет создавать магнитное поле, усиливающее поле остаточного магнетизма, и если, кроме того, сопротивление цепи возбуждения не превышает некоторой определенной величины.
      Генераторы с самовозбуждением в зависимости от способа соединения обмотки возбуждения с обмоткой якоря делятся на три типа.
      1. Генератор с параллельным возбуждением (шунто-вой), у которого обмотка возбуждения полюсов включена параллельно обмотке якоря.
      2. Генератор с последовательным возбуждением (се-риесный), у которого обмотка возбуждения полюсов включена последовательно с обмоткой якоря.
      3. Генератор со смешанным возбуждением (компаунд-ный), у которого на полюсах имеются две обмотки: одна – включенная параллельно обмотке якоря, и другая – включенная последовательно с обмоткой якоря. Напряжение генератора с независимым возбуждением изменяется с нагрузкой от двух причин:
      1) вследствие падения напряжения в обмотке якоря и переходном контакте щеток;
      2) действие реакции якоря, приводящее к уменьшению магнитного потока и ЭДС машины. У генератора с параллельным возбуждением напряжение с нагрузкой меняется от трех причин: 1)вследствие падения напряжения в обмотке якоря и переходном контакте щеток;
      2) вследствие уменьшения магнитного потока, вызванного действием реакции якоря;
      3) под действием первых двух причин напряжение генератора (или напряжение щеток якоря) с нагрузкой уменьшается.
      Генератор с последовательным возбуждением отличается от генератора с параллельным возбуждением, так как у первого с увеличением нагрузки напряжение увеличивается, а у второго – уменьшается.
      Генератор со смешанным возбуждением объединяет в себе свойства генераторов с параллельным и последовательным возбуждением.

74. ЭЛЕКТРОДВИГАТЕЛИ

      Если машину постоянного тока подключить к источнику напряжения, то она станет работать электрическим двигателем, т. е. превращать электрическую энергию в энергию механическую. Это свойство электрических машин работать как в качестве генератора, так и в качестве двигателя называется обратимостью.
      Электрический двигатель был изобретен в 1834 г. русским академик Б.С. Якоби.
      Устройство электрических двигателей такое же, как генераторов. Принцип действия электрических двигателей постоянного тока основан на взаимодействии тока, протекающего в обмотке якоря, и магнитного поля, создаваемого полюсами электромагнитов. Мощность, потребляемая двигателем из сети, больше мощности на валу на величину потерь на трение в подшипниках, щеток о коллектор, якоря о воздух, потерь в стали на гистерезис и вихревые токи, потерь мощности на нагрев обмоток двигателя и реостатов. КПД электрического двигателя с нагрузкой меняется. При номинальной мощности величина КПД двигателей колеблется от 70 до 93 % в зависимости от мощности, скорости вращения и исполнения двигателей.
      В зависимости от соединения обмотки якоря и обмотки возбуждения электрические двигатели постоянного тока делятся на двигатели с параллельным, последовательным и смешанным возбуждением.
      Проводники обмотки якоря, по которым проходит ток, находясь в магнитном поле, созданном полюсами, испытывают силу, под действием которой они выталкиваются из магнитного поля. Для того чтобы якорь двигателя вращался в какую-либо определенную сторону, необходимо, чтобы направление тока в проводнике изменялось на обратное, как только проводник выйдет из зоны действия одного полюса, пересечет нейтральную линию и войдет в зону действия соседнего, разноименного полюса. Для направления тока в проводниках обмотки якоря двигателя в момент, когда проводники проходят нейтральную линию, служит коллектор.
      В электродвигателе с параллельным возбуждением обмотка возбуждения включена параллельно в сеть и при постоянном сопротивлении цепи возбуждения и напряжения сети магнитный поток двигателя должен быть постоянным. С увеличением нагрузки двигателя реакция якоря ослабляет магнитный поток, что приводит к некоторому увеличению скорости. На практике падение напряжения в обмотке якоря подбирают таким, чтобы его влияние на скорость двигателя было почти компенсировано реакцией якоря. Характерным свойством двигателя с параллельным возбуждением является почти постоянная скорость вращения при изменении нагрузки на его валу.
      У двигателей с последовательным возбуждением обмотки якоря и возбуждения соединены последовательно. Поэтому ток, протекающий по обеим обмоткам двигателя, будет одинаков. При малых насыщениях стали магнитопровода двигателя магнитный поток пропорционален току якоря.
      В электродвигателе со смешанным возбуждением наличие на полюсах двигателя двух обмоток позволяет использовать преимущества двигателей параллельного и смешанного возбуждения. Этими преимуществами являются постоянство скорости и большой вращающий момент при пуске двигателя. Регулировка скорости двигателя со смешанным возбуждением выполняется регулировочным реостатом, включенным в цепь параллельной обмотки возбуждения.

75. ВЫПРЯМИТЕЛИ

       Двигатель-генераторыприменяются редко и обычно пользуются специальными устройствами, преобразующими переменный ток в постоянный и называемыми выпрямителями.В технике наибольшее применение получили два типа выпрямителей:
      1) твердые выпрямители;
      2) ртутные выпрямители.
      Твердыми выпрямителями называют такие, у которых отдельные части изготовлены из твердых тел. Из твердых выпрямителей распространение в технике получили медно-закисные (купроксные), селеновые, кремниевые и германиевые.
      Ртутные выпрямители бывают:
      1) стеклянные;
      2) металлические.
      Кроме твердых и ртутных выпрямителей, существуют еще выпрямители: механические, кенотроны, газотроны, электролитические. Кенотроны (ламповые выпрямители) широко применяются в радиотехнике, имеются в большинстве современных радиоприемников, питаемых от сетей переменного тока и т. д. Медно-закисные (купроксные) выпрямители состоят из трех слоев:
      1) металл, обладающий свободными электронами в большой концентрации;
      2) изоляционный (запирающий), не имеющий свободных электронов;
      3) полупроводник, имеющий малое количество свободных электронов. При наличии на малых слоях разности потенциалов в запирающем слое возникает сильное электрическое поле, которое способствует вырыванию свободных электронов из прилегающих к нему слоев.
      В селеновых выпрямителях одним электродом является железная никелированная шайба с нанесенным на ней тонким слоем селена. Вторым электродом служит слой из специального, хорошо проводящего сплава висмута, олова и кадмия, напыленного на селен. К этому слою прижата контактная латунная шайба. Для включения элемента в цепь служат пластинки, касающиеся обоих электродов. На границе между покровным слоем и слоем селена возникает запирающий слой.
      Действие ртутного выпрямителя основано на так называемой вентильной (односторонней) способности электрической дуги, возникшей в откачанном и заполненном ртутью сосуде, пропускать ток только в одном направлении. Вентиль представляет собой устройство, имеющее малое сопротивление для тока прямого направления и большое сопротивление для тока обратного направления.
      Для токов свыше 500 А применяются металлические ртутные выпрямители. Металлический корпус выпрямителя имеет водяное охлаждение. Катодная чаша, изолированная от корпуса, наполнена ртутью. Главные аноды пропущены через анодные рукава, которые предохраняют аноды от ртути, сконденсированной из ее паров. Внутри выпрямителя помещены анод зажигания и аноды независимого возбуждения. Верхний конец анода зажигания прикреплен к стальному сердечнику, помещенному в соленоиде. Если замкнуть цепь тока, питающего соленоид, то сердечник втягивается и опускает анод зажигания, который на короткое время погружается в ртуть и затем под действие пружины возвращается в прежнее положение. Дуга, возникшая между анодом зажигания и ртутью, перекидывается на аноды возбуждения, которые поддерживают дугу, не давая ей погаснуть.
      Регулировка выпрямленного напряжения у выпрямителей производится при помощи секционированного трансформатора или автотрансформатора, имеющих ряд ответвлений от своих обмоток. Изменяя величину напряжения переменного тока, питающего выпрямитель, меняют величину выпрямленного напряжения.

76. ЭЛЕКТРОИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ

      Для измерения электрических величин применяются специальные электроизмерительные приборы. Электроизмерительные приборы нашли себе широкое применение для рациональной эксплуатации, контроля и защиты электрических установок в различных отраслях народного хозяйства.
      В электроизмерительных приборах различают подвижную и неподвижную части прибора. Проявление электрического тока, например его тепловые, магнитные и механические действия, положены в основу взаимодействия подвижной и неподвижной частей прибора. Возникающий вследствие этого вращающий момент поворачивает подвижную часть прибора вместе с указателем (стрелкой).
      Под действием вращающего момента подвижная система поворачивается на угол тем больший, чем больше будет измеряемая величина. В противовес вращающему моменту должен быть создан равный и противоположный противодействующий момент, так как иначе при любых значениях измеряемой величины (кроме нуля) стрелка будет отклоняться в конец шкалы до упора.
      Обычно противодействующий момент создается при помощи спиральных пружин из фосфористой бронзы.
      Трение, как известно, направлено всегда против движения. Поэтому при движении подвижной части прибора трение будет мешать этому и искажать показания прибора. Для уменьшения трения подвижная часть в некоторых конструкциях крепится на кернах в подпятниках из камня высокой твердости (рубина, сапфира, агата). Для предохранения кернов и подпятников от разрушения при переносе или транспортировке некоторые приборы имеют приспособление, называемое арретиром,которое поднимает подвижную часть и закрепляет ее неподвижно.
      Под влиянием тех или иных причин противодействующий момент прибора изменяется. Например, при различных температурах спиральные пружины имеют неодинаковую упругость. В этом случае стрелка прибора будет отходить от нулевого деления. Для установки стрелки в нулевое положение служит приспособление, называемое корректором. Измеряющий механизм прибора заключен в корпус, защищающий его от механических воздействий и попадания пыли, воды, газов.
      Одним из условий, предъявляемых к прибору, является быстрое успокоение его подвижной части, достигнутое путем устройства успокоителей, использующих механическое сопротивление среды (воздух, масло) или магнитоиндукционное торможение.
      Электроизмерительные приборы различают по следующим признакам: 1)по роду измеряемой величины;
      2) по роду тока;
      3) по степени точности;
      4) по принципу действия;
      5) по способу получения отсчета;
      6) по характеру применения.
      Кроме этих признаков, электроизмерительные приборы можно также отличить:
      1) по способу монтирования;
      2) способу защиты от внешних магнитных или электрических полей;
      3) выносливости в отношении перегрузок;
      4) пригодности к применению при различных температурах;
      5) габаритным размерам и другим признакам.
      По роду тока приборы делятся на приборы постоянного тока, приборы переменного тока и приборы постоянного и переменного тока.
      По принципу действия приборы подразделяются на магнитоэлектрические, электромагнитные, электродинамические (ферродинамические), индукционные, тепловые, вибрационные, термоэлектрические, детекторные и др.

77. УСТРОЙСТВО ИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ

      Приборы магнитоэлектрической системы работают на принципе взаимодействия катушки с током и поля постоянного магнита. Сильный постоянный подковообразный магнит, изготовленный из кобальтовой, вольфрамовой или никель-алюминиевой стали, создает магнитное поле. К концам магнита приведены полюсные наконечники из мягкой стали, имеющие цилиндрические выточки. Между полюсными наконечниками неподвижно укреплен стальной цилиндр, служащий для уменьшения сопротивления магнитной цепи. Магнитные линии выходят из полюсных наконечников и в силу того, что магнитная проницаемость стали значительно больше, чем у воздуха, радикально входят в цилиндр, образуя в воздушном зазоре практически однородное магнитное поле. Такое же поле создается при выходе магнитных линий из цилиндра. Цилиндр охватывает легкая алюминиевая рамка с намотанной на ней обмоткой (катушкой), выполненной из изолированной медной проволоки. Рамка сидит на оси, лежащей в подпятниках. На оси крепится также алюминиевая стрелка. Противодействующий момент создается двумя плоскими спиральными пружинами, служащими одновременно для подвода тока к обмотке прибора.
      Электромагнитные приборы работают на принципе взаимодействия между током катушки и магнитным полем подвижного сердечника из ферромагнитного материала. По конструкции электромагнитные приборы делятся на два типа: приборы с плоской катушкой и приборы с круглой катушкой.
      Принцип действия электродинамических приборов основан на взаимодействии магнитных полей двух катушек: одной, неподвижно закрепленной, и другой, сидящей на оси и поворачивающейся.
      Принцип действия тепловых приборов основан на удлинении металлической нити при нагревании ее током, которое затем преобразуется во вращательное движение подвижной части прибора.
      Индукционные измерительные приборы характеризуются применением нескольких неподвижных катушек, питаемых переменным током и создающих вращающееся или бегущее магнитное поле, которое индуктирует токи в подвижной части прибора и вызывает ее движение. Индукционные приборы применяются только при переменном токе в качестве ваттметров и счетчиков электрической энергии.
      Принцип действия приборов термоэлектрической системы основан на использовании электродвижущей силы, возникающей в цепи, состоящей из разнородных проводников, если место соединения этих проводников имеет температуру, отличную от температуры остальной части цепи.
      Приборы детекторной системы представляют собой сочетание магнитоэлектрического измерительного прибора и одного или нескольких полупроводниковых выпрямителей (детекторов), соединенных вместе в одну схему. В качестве выпрямителей обычно используют медно-закисные выпрямители.
      Приборы вибрационной системы характеризуются применением ряда настроенных пластин, имеющих разные периоды собственных колебаний и позволяющих производить измерение частоты благодаря резонансу частоты колеблющейся пластины с измеряемой частотой. Вибрационные приборы строятся только в качестве частотомеров.

78. ИЗМЕРИТЕЛЬНЫЕ ТРАНСФОРМАТОРЫ

      В сетях переменного тока для отделения измерительных приборов в целях безопасности от проводов высокого напряжения, а также для расширения пределов измерения приборов применяются измерительные трансформаторы напряжения и тока.
      Для обеспечения высокой точности измерений трансформаторы напряжения (тока) не должны менять свой коэффициент трансформации и иметь постоянный угол в 180омежду векторами первичного и вторичного напряжения (тока). Последнее условие необходимо при включении через трансформаторы напряжения (тока) таких приборов, показания которых зависят от угла сдвига между напряжением и током сетки.
      Однако на практике трансформаторы напряжения (тока) имеют так называемую погрешность в коэффициенте трансформации и угловую погрешность.
      Относительной погрешностью в коэффициенте трансформации называется разность между вторичным напряжением (током), умноженным на коэффициент трансформации, и действительной величиной первичного напряжения (тока).
       Угловой погрешностью измерительного трансформаторанапряжения (тока) называется угол между вектором первичного напряжения (тока) и повернутым на 180овектором вторичного напряжения (тока). Погрешность в коэффициенте трансформации и угловая погрешность увеличиваются с нагрузкой. Поэтому трансформаторы нельзя нагружать сверх номинальной (указанной на паспорте) мощности.
      Первичная и вторичная обмотки измерительного трансформатора напряжения выполняются из медной изолированной проволоки и надеваются на замкнутый сердечник, собранный из отдельных листов трансформаторной стали. Трансформаторы напряжения изготовляются однофазными и трехфазными. Для защиты трансформатора от перегрузок и коротких замыканий в цепи измерительных приборов во вторичную обмотку включаются низковольтный плавкий предохранитель. В случае пробоя изоляции высоковольтной обмотки сердечник и вторичная обмотка могут получить высокий потенциал. Во избежание этого вторичная обмотка и металлические части трансформатора заземляются.
      Трансформаторы тока служат для преобразования тока большой величины в ток малой величины. На сердечник, собранный из отдельных листов трансформаторной стали, наматываются две обмотки: первичная, состоящая из небольшого количества витков, включаемая последовательно в цепь, по которой проходит измеряемый ток, и вторичная, состоящая из большого числа витков, к которой подключены измерительные приборы. При измерении тока в сетях высокого напряжения измерительные приборы оказываются отделенными и изолированными от высоковольтныхпроводов. Вторичная обмотка трансформатора тока выполняется обычно на ток 5 А (иногда на 10 А), первичные номинальные токи могут быть от 5 до 15 000 А.
      Отношение первичного тока ко вторичному, равное приближенно обратному отношению витков обмоток, называется коэффициентом трансформации тока. Номинальный коэффициент трансформации указывается на паспорте трансформатора в виде дроби, в числителе которой указывается номинальный первичный ток, а в знаменателе – номинальный вторичный ток.

79. РЕОСТАТЫ

      В электроизмерительной практике, а также при эксплуатации электрических машин применяются различные реостаты.
      Реостатом называется прибор, обладающий некоторым сопротивлением, которое можно изменять, меняя тем самым ток и напряжение цепи. Реостаты бывают со скользящим контактом, рычажные, жидкостные, ламповые и штепсельные.
       Реостат со скользящим контактом.На фарфоровую трубку наматывается голая проволока. В результате специальной обработки поверхность проволоки покрывается тонкой пленкой окиси, не проводящей ток. По металлической планке, прижимаясь к проволоке реостата, скользит ползунок. Так как последовательно с электрической лампой в цепь введена часть сопротивления реостата, то ток, протекающий через нить лампы, будет уменьшен и лампа в этом случае будет гореть слабее. Передвигая ползунок вправо, мы будем уменьшать сопротивление реостата, и сила света лампы будет увеличиваться. Реостаты со скользящим контактом применяются там, где необходимо плавное, медленное изменение тока в цепи.
       Рычажный реостат.На раме из изоляционного материала натягиваются спирали из проволоки. Спирали соединены последовательно. От начала, конца и мест соединений отдельных спиралей сделаны ответвления к контактам. Ставя рычаг на определенный контакт реостата, мы можем менять сопротивление, а вместе с этим и ток в цепи. Однако изменения эти происходят не плавно, а скачкообразно.
      Материалом для проволочных реостатов чаще всего служат железо, никелин, константан, манганин, нихром.
       Жидкостный реостат.Реостат представляет собой металлический сосуд с раствором соды. На шарнире укреплен рычаг, на котором имеется железный или медный нож. Рычаг с ножом изолирован от металлического ящика прокладкой. Поднимая или опуская нож в раствор соды, можем менять ток в цепи. Опуская нож в раствор, мы увеличиваем площадь соприкосновения ножа с раствором и увеличиваем ток, проходящий через реостат. При дальнейшем погружении ножа контакт ручки войдет в зажим на металлическом корпусе и реостат будет замкнут накоротко, т. е. выключен из работы.
      Жидкостные реостаты применяются в цепях при больших токах.
       Ламповый реостат.Представляет набор нескольких параллельно включаемых электрических ламп. Известно, что если одна лампа накаливания будет иметь сопротивление в 150 Ом, то две такие же лампы будут иметь общее сопротивление уже только 75 Ом, три лампы – 50 Ом и т. д.
      Таким образом, общее сопротивление нескольких одинаковых, параллельно включенных ламп будет равно сопротивлению одной лампы, деленному на число включенных ламп.
       Штепсельные реостаты.Часто называемые магазинами сопротивлений, представляют набор определенных точно выверенных сопротивлений. Концы катушек сопротивлений присоединяются к разрезанной медной планке. Когда в вырезы планки вставляется медный штепсель, то он соединяет собой две соседние части планки. Этим сопротивление, подключенное своими концами к соседним частям планки, выключается из цепи или, как говорят, закорачивается (замыкается накоротко).
      Вынутый штепсель заставляет электрический ток проходить по катушке сопротивления.
      Магазины сопротивлений позволяют легко включать в цепь сопротивления точно определенной величины и применяются при электрических измерениях.

80. ИЗМЕРЕНИЕ АКТИВНОЙ ЭЛЕКТРИЧЕСКОЙ МОЩНОСТИ

       Постоянный ток.Из формулы мощности постоянного тока P =UI видно, что определение мощности может быть произведено путем умножения показаний амперметра и вольтметра. Однако на практике измерение мощности обычно производится при помощи специальных приборов – ваттметров.Ваттметр состоит из двух катушек: неподвижной, состоящей из небольшого числа витков толстой проволоки, и подвижной, состоящей из большого числа витков тонкой проволоки. При включении ваттметра ток нагрузки проходит через неподвижную катушку, последовательно включенную в цепь, а подвижная катушка включается параллельно потребителю. Для уменьшения потребляемой мощности в параллельной обмотке и уменьшения веса подвижной катушки последовательно с ней включается добавочное сопротивление из манганина. В результате взаимодействия магнитных полей подвижной и неподвижной катушек возникает момент вращения, пропорциональный токам обеих катушек. Вращающий момент прибора пропорционален мощности, потребляемой в цепи.
      Чтобы стрелка прибора отклонялась от нуля вправо, необходимо ток через катушку пропускать в определенном направлении.
      Кроме электродинамических ваттметров, для измерения мощности в цепях постоянного тока употребляются также ваттметры ферродинамической системы.
       Однофазный переменный ток.При включении электродинамического ваттметра в цепь переменного тока магнитные поля подвижной и неподвижной катушек, взаимодействуя между собой, вызовут поворот подвижной катушки. Мгновенный момент вращения подвижной части прибора пропорционален произведению мгновенных значений токов в обеих катушках прибора. Но вследствие быстрых изменений токов подвижная система не сможет следовать за этими изменениями и момент вращения прибора будет пропорционален средней или активной мощности P = U·I·cos?.. Следовательно, по углу поворота подвижной части ваттметра можно судить о величине активной мощности, потребляемой цепью.
      Для измерения мощности переменного тока пользуются также ваттметрами индукционной системы.
      При измерении ваттметром мощности в сетях низкого напряжения с большими токами применяют трансформаторы тока. Для уменьшения разности потенциалов между обмотками ваттметра первичная и вторичная цепи трансформатора тока имеют общую точку. Вторичная обмотка трансформатора не заземляется, так как это означало бы заземление одного провода сети.
      Для определения мощности сети в этом случае нужно показание ваттметра умножить на коэффициент трансформации трансформатора.
       Трехфазный переменный ток.При равномерной нагрузке трехфазной системы для измерения мощности пользуются одним однофазным ваттметром. По последовательной обмотке ваттметра в этом случае протекает фазный ток, а параллельная обмотка включена к фазному напряжению. Поэтому ваттметр покажет мощность одной фазы. Для получения мощности трехфазной системы нужно показание однофазного ваттметра умножить на три.
      В сетях высокого напряжения трехфазный ваттметр включается при помощи измерительных трансформаторов напряжения и тока.

81. ИЗМЕРЕНИЕ АКТИВНОЙ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ

       Постоянный ток.Для измерения расхода энергии при постоянном токе применяют счетчики трех систем: электродинамической, магнитоэлектрической и электролитической. Наибольшее распространение получили счетчики электродинамической системы. Неподвижные токовые катушки, состоящие из небольшого числа витков толстой проволоки, последовательно включены в сеть. Подвижная катушка шарообразной формы, называемая якорем, укреплена на оси, которая может вращаться в подпятниках. Обмотка якоря выполнена из большого числа витков тонкой проволоки и разделена на несколько секций. Концы секций припаяны к пластинам коллектора, которого касаются металлические плоские щетки. Напряжение сети подается в обмотку якоря через добавочное сопротивление. При работе счетчика в результате взаимодействия тока в обмотке якоря и магнитного потока неподвижных токов катушек создает момент вращения, под влиянием которого якорь начнет поворачиваться. О количестве энергии, потребляемой в сети, можно судить по числу оборотов, сделанных якорем (диском). Количество энергии, приходящееся на один оборот якоря, называется постоянной счетчика. Число оборотов якоря, приходящееся на единицу учтенной электрической энергии, называется передаточным числом.
       Однофазный переменный ток.Для измерения активной энергии в цепях однофазного переменного тока применяют счетчики индукционной системы. Устройство индукционного счетчика почти такое же, как и индукционного ваттметра. Разница состоит в том, что счетчик не имеет пружин, создающих противодействующий момент, отчего диск счетчика может свободно вращаться. Стрелка и шкала ваттметра заме-'нены в счетчике счетным механизмом. Постоянный магнит, служащий в ваттметре для успокоения, в счетчике создает тормозящий момент.
       Трехфазный переменный ток.Активную энергию трехфазного переменного тока можно измерить с помощью двух однофазных счетчиков, включенной в цепь по схеме, аналогичной схеме двух ваттметров. Удобнее измерить энергию трехфазным счетчиком активной энергии, объединяющим в одном приборе работу двух однофазных счетчиков. Схема включения двухэлементного трехфазного счетчика активной энергии та же, что и схема соответствующего ваттметра.
      В четырехпроводной сети трехфазного тока для измерения активной энергии применяют схему, аналогичную схеме трех ваттметров, или употребляют трехэлементный трехфазный счетчик. В сетях высокого напряжения включение счетчиков производится при помощи измерительных трансформаторов напряжения и тока.
      Реактивную энергию однофазного тока можно определить по показанию амперметра, вольтметра, фазометра и секундомера.
      Для учета реактивной энергии в сетях трехфазного тока можно применять нормальные счетчики активной энергии и специальные счетчики реактивной энергии.
      Рассмотрим устройство специального трехфазного счетчика реактивной энергии. Устройство счетчика этого типа такое же, как и устройство двухэлементного трехфазного ваттметра. Параллельные обмотки двух элементов включаются в сеть. На U-образные сердечники накладываются не две, а четыре последовательные обмотки. Причем на один из отростков U-образного сердечника первого элемента наматывается одна последовательная обмотка. Вторая токовая обмотка помещается на втором отростке сердечника первой системы и третья токовая обмотка помещается на первом отростке второй системы. Четвертая токовая обмотка помещается на втором отростке U-образного сердечника второго элемента.

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10