Современная электронная библиотека ModernLib.Net

Шпаргалка по общей электронике и электротехнике

ModernLib.Net / Косарева Ольга / Шпаргалка по общей электронике и электротехнике - Чтение (стр. 4)
Автор: Косарева Ольга
Жанр:

 

 


      Рассмотрим вывод формулы закона степени трех вторых для диода с плоскими электродами. Будем считать, что объемный заряд q,в который входят все электроны, летящие к аноду, расположен так близко к катоду, что расстояние между этим зарядом и «анодом» можно принять равным расстоянию анод – катод dа.к. Если время пролета электронов вдоль расстояния dа.к. равно t,то величина анодного тока равна: ia, = q/ t.
      Заряд qможно выразить через анодное напряжение и емкость анод – катод Сак: q= Са.к. Uа.
      При этом для емкости Са.к. имеем формулу: Са.к. = ?0Qа / dа.к., где ?0 = 8,86 · 10-16Ф/м – диэлектрическая проницаемость вакуума, а Q а– площадь анода. Время пролета t определим через среднюю скорость: t= dа. к. / ?ср, но ?ср = v/2, где v– конечная скорость.
      В действительности вследствие неоднородности поля средняя скорость несколько меньше, чем определенная по вышеуказанным формулам.
      Вследствие приближенности вывода постоянный коэффициент в этом выражении несколько завышен. Более строгий вывод дает более точное значение постоянного коэффициента, но этот вывод также основан на допущениях, не соответствующих действительности. В частности, начальная скорость электронов полагается равной нулю, а распределение потенциала принимается таким, как в режиме насыщения, хотя закон степени трех вторых относится только к режиму объемного заряда.

28. ФИЗИЧЕСКИЕ ПРОЦЕССЫ В ТРИОДЕ

      Катод и анод работают в триоде так же, как в диоде. В режиме объемного заряда около катода образуется потенциальный барьер. Как и в диоде, величина катодного тока зависит от высоты этого барьера.
       Управляющее действие сетки в триодеподобно действию анода в диоде. Если изменить напряжение сетки, то изменяется напряженность поля, создаваемого сеткой. Под влиянием этого изменяется высота потенциального барьера около катода. Следовательно, будет изменяться количество электронов, преодолевающих этот барьер, т. е. величина барьерного тока.
      Когда напряжение сетки изменяется в положительную строну, то потенциальный барьер понижается, его преодолевает большее количество эмитированных электронов, меньше их возвращается на катод и катодный ток возрастает. А при изменении сеточного напряжения в отрицательную сторону потенциальный барьер у катода повышается. Тогда его сможет преодолеть меньшее количество электронов. Увеличится число электронов, возвращающихся на катод, и катодный ток уменьшится.
      Сетка действует на катодный ток значительно сильнее, чем анод, потому что она расположена к катоду ближе, чем анод, и является экраном для электрического поля анода.
      Соотношение влияний сетки и анода на анодный ток характеризует важнейший параметр триода – коэффициент усиления. Коэффициент усиления – это отвлеченное число, показывающее, во сколько раз напряжение сетки действует на анодный ток сильнее, чем напряжение анода.
      Сравнительно небольшое отрицательное напряжение сетки может значительно уменьшить анодный ток и даже совсем его прекратить.
      Увеличение сеточного напряжения сетки сопровождается ростом анодного и сеточного токов.
      При больших положительных анодных напряжениях сетки ток сетки настолько возрастает, что анодный ток может даже уменьшиться.
      Значительное влияние на работу триода оказывает так называемый островковый эффект.Из-за неоднородной структуры сетки поле, создаваемое сеткой, также неоднородно, и оно влияет на потенциальный барьер около катода в различных его участках неодинаково. Сетка своим полем сильнее действует на потенциальный барьер около тех участков катода, которые ближе к проводникам сетки.
      Характеристики триода при работе его на постоянном токе и без нагрузки называются статическими.
      Различают теоретические и действительные характеристики триодов. Теоретические характеристики могут быть построены на основании закона трех вторых и не являются точными. Действительные характеристики снимаются экспериментально. Они более точны. Причины отклонения действительных характеристик от теоретических у триода те же, что и у диода. Значительное влияние оказывают неодинаковость температуры в разных точках катода, неэквипотенциаль-ность катода, дополнительный подогрев катода анодным током. На участки характеристик для малых анодных токов сильное влияние оказывают начальная скорость электронов, контактная разность потенциалов и термо-ЭДС.
      В триоде эти факторы влияют сильнее, нежели в диоде, так как их действие распространяется не только на анодную цепь, но и на цепь сетки.

29. ДЕЙСТВУЮЩЕЕ НАПРЯЖЕНИЕ И ЗАКОН СТЕПЕНИ ТРЕХ ВТОРЫХ ДЛЯ ТРИОДА

       Действующее напряжение триодапозволяет рассчитать катодный ток триода путем замены триода эквивалентным диодом. Эта замена состоит в следующем. Если в триоде на место сетки поместить анод, имеющий такую же поверхность, какую занимает сетка, то в этом диоде при некотором его анодном напряжении анодный ток получается равным катодному току в триоде. Напряжение, приложенное к аноду эквивалентного диода и создающее в нем анодный ток, равный катодному току реального диода, называется действующем напряжением ид. Его действие эквивалентно совместному действию сеточного и анодного напряжений. То есть действующее напряжение должно создавать около катода эквивалентного диода такую же напряженность поля, какая создается около катода триода.
      Величина действующего напряжения определяется приближенно формулой Uд ~ Uс + Dиа =Uс + Uа /?.
      Напряжение сетки действует своим полем без ослабления, а поле, создаваемое анодным напряжением в пространстве «сетка – катод», ослаблено за счет экранирующего действия сетки. Ослабление действия анода характеризуется проницаемостью D или коэффициентом усиления ?. Поэтому величину Uа нельзя складывать с Uс, а нужно сначала умножить ее на Dили разделить на ? (? и Dявляются обратными величинами только при iс = 0).
      Приближенная формула для является приближенной, так как не учитывает, что поле около катода может быть неоднородным. Эта формула применяется в тех случаях, когда сетка не слишком редкая (при D<0,1 или ?>10).
      Действующий заряд должен быть равен сумме заряда q1,созданного на катоде действием поля сетки, и заряда q2, созданного полем, проникающим сквозь сетку от анода. Выразим эти заряды через напряжения и емкости: q1= Сск, Uс и q2 = Сак Uа. Заряд q2 на катод равен той небольшой части всего заряда анода, от которой электрические силовые линии проходят сквозь сетку до катода. Заменяя qД суммой q1 + q2, получаем: uд = (q1 + q2) / Сс.к. = (Сс.к. uс +Са.к. uа) / Сс.к. = uс + uаСа.к. / Сск. Обозначим D= Са.к. / Сск. Тогда окончательно получим: uд = uс +DUa,
      В эквивалентном диоде анодный ток равен катодному току триода, а роль анодного напряжения выполняет действующее напряжение. Поэтому закон степени трех вторых для триода можно написать так: iк =дuд3/2 =g (ис +Duа)3/2.
      Учитывая, что в эквивалентном диоде анод расположен на месте сетки реального триода, коэффициент g для триода с плоскими электродами равен: g = 2,33 · 10-6(Q а/ d2с.к.).
      Поверхность анода эквивалентного диода в этом случае равна поверхности действительного анода.
      Закон степени трех вторых для триодов является весьма приближенным. Существенное значение имеет неточность определения действующего напряжения. Тем не менее закон степени трех вторых полезен при рассмотрении теории работы триода и при конструировании ламп.

30. ТОК СЕТКИ В ТРИОДЕ

      За счет начальных скоростей электронов, вылетающих из катода, контактной разности потенциалов и тер-мо-ЭДС, действующих в сеточной цепи, характеристика тока сетки начинается в области небольших отрицательных сеточных напряжений.Хотя ток сетки в этой области весьма невелик и у приемно-усилительных ламп составляет малые доли миллиампера, во многих случаях с ним приходится считаться. Реже встречаются характеристики тока сетки, начинающиеся в области положительных сеточных напряжений. Они получаются тогда, когда контактная разность потенциалов создает на сетке отрицательное напряжение и действует сильнее начальной скорости электронов.
      В лампах, работающих при значительных положительных напряжениях на сетке, например генераторных, при возрастании положительного сеточного напряжения ток сетки сначала увеличивается и достигает максимума, который иногда располагается в области отрицательных значений тока. При дальнейшем увеличении напряжения сетки ток снова растет.
      Такое явление объясняется вторичной эмиссией сетки. Под ударами первичных электронов при положительном напряжении сетки из нее выбиваются вторичные электроны. С увеличением сеточного напряжения коэффициент вторичной эмиссии растет и увеличивается поток первичных электронов, бомбардирующих сетку. Вследствие этого возрастает число вторичных электронов. Их поток направлен на анод, имеющий более высокий положительный потенциал.
      В цепи сетки появляется ток вторичных электронов, имеющий направление, обратное току первич– ных электронов. Результирующий ток сетки уменьшается и может даже изменить направление на обратное, если коэффициент вторичной эмиссии больше 1. При этом ток анода возрастает, так как к току первичных электронов, летящих от катода, добавляется ток вторичных электронов.
      Явление возникновения тока вторичных электронов называется динатронным эффектом.
      Когда сеточное напряжение превысит анодное, то поле между анодом и сеткой станет тормозящим для вторичных электронов сетки и они будут возвращаться на сетку. Но зато вторичные электроны, выбиваемые из анода, будут ускоряться этим полем и лететь к сетке, т. е. возникает динатронный эффект со стороны анода. При этом ток сетки дополнительно возрастает за счет тока вторичных электронов, а ток анода несколько уменьшится.
      При отрицательном сеточном напряжении существует очень небольшой сеточный ток. Он называется обратным сеточным током, потому что его направление противоположно направлению сеточного тока при положительном напряжении сетки (электроны обратного тока во внешних проводах сеточной цепи движутся по направлению к сетке). Обратный сеточный ток имеет несколько составляющих: ионный ток, тер-моток и ток утечки.
      С уменьшением отрицательного напряжения сетки увеличивается анодный ток и возрастает ионизация. К сетке подходит большее число ионов, ионный ток растет. При положительном напряжении сетки электронный ток резко возрастает и настолько преобладает над ионным, что последний уже практически не играет роли. Если сетка имеет высокую температуру, то может возникнуть ток термоэлектронной эмиссии (термоток) сетки. Для уменьшения этого тока сетки делают из металла с большой работой выхода и малым коэффициентом вторичной эмиссии.

31. РАБОЧИЕ ХАРАКТЕРИСТИКИ ТРИОДА

       Анодно-сеточной характеристикойназывается график зависимости анодного тока от сеточного напряжения при постоянных значениях напряжения анодного источника и сопротивления нагрузки. В отличие от статических характеристик для рабочей характеристики не ставится условие постоянства анодного напряжения, так как оно в рабочем режиме меняется. Форма рабочей характеристики и ее положение зависят от величины и характера анодного нагрузочного сопротивления.
      Для построения анодно-сеточной рабочей характеристики должны быть заданы семейство анодно-сеточных статических характеристик, напряжение анодного источника и сопротивление нагрузки.
      Если напряжение анода равно напряжению анодного источника, а ток равен нулю, то лампа заперта, так как только в этом случае нет падения напряжения на сопротивлении нагрузки.
      Рабочая анодно-сеточная характеристика имеет меньшую крутизну, чем статические характеристики. Чем больше анодный ток, тем меньше становится анодное напряжение. Поэтому рабочая характеристика всегда проходит, пересекая статические характеристики. Наклон рабочей характеристики зависит от сопротивления нагрузки. С увеличением сопротивления нагрузки анодный ток уменьшается и рабочая характеристика проходит более полого. Когда сопротивление нагрузки постоянно, то рабочая характеристика сдвигается вправо, если напряжение анодного источника уменьшается, или влево, если анодное напряжение увеличивается.
      С помощью рабочей характеристики можно рассчитать изменения анодного тока при изменении сеточного напряжения. Можно определить и анодное напряжение, если учесть, что каждая точка рабочей характеристики соответствует некоторому анодному напряжению.
      Для построения анодной рабочей характеристики должны быть заданы семейство статических анодных характеристик, а также анодное напряжение и сопротивление нагрузки. Рабочая характеристика представляет собой линию нагрузки.
      С помощью линии нагрузки можно определить анодный ток и анодное напряжение при любом напряжении сетки. Линия нагрузки позволяет решать и другие задачи. Можно, например, найти, при каком сеточном напряжении получается анодный ток нужной величины.
      Рабочая анодная характеристика по сравнению с анодно-сеточной имеет некоторые преимущества. Поскольку она является прямой, то строится по двум точкам и получается точнее. С ее помощью удобнее определяется анодное напряжение, так как оно отложено по оси абсцисс. Для практических расчетов чаще используют рабочую анодную характеристику, хотя в некоторых случаях более удобной оказывается анодно-сеточная характеристика.
      Наклон рассматриваемой характеристики зависит от сопротивления нагрузки. Чем больше сопротивление нагрузки, тем более полого идет линия нагрузки. Если сопротивление нагрузки равно нулю, то линия нагрузки превращается в вертикальную прямую.
      При напряжении нагрузки равной бесконечности линия нагрузки совпадает с осью абсцисс. В этом случае при любых напряжениях анодный ток равен нулю.
      В некоторых случаях необходимо построить анод-но-сеточную рабочую характеристику, если имеются только анодные статические характеристики.

32. УСТРОЙСТВО И РАБОТА ТЕТРОДА

      Четырехэлектродные лампы, или тетроды,имеют вторую сетку, называемую экранирующей, или экранной, и расположенную между управляющей сеткой и анодом. Назначением экранирующей сетки является повышение коэффициента усиления и внутреннего сопротивления и уменьшение проходной емкости.
      Если экранирующая сетка соединена с катодом, то она экранирует катод и управляющую сетку от действия анода. Экранирующая сетка перехватывает большую часть электрического поля анода. Можно сказать, что сквозь экранирующую сетку проникает лишь небольшая доля электрических силовых линий, выходящих из анода. Ослабление поля анода экранирующей сетки учитывается величиной проницаемости этой сетки.
      Электрическое поле, проникающее через экранирующую сетку, далее перехватывается управляющей сеткой, через которую также проникает небольшая часть силовых линий. Ослабление поля анода управляющей сеткой зависит от ее проницаемости. Сквозь обе сетки от анода к потенциальному барьеру около катода проникает ничтожная часть общего числа силовых линий, которая характеризуется произведением проницаемостей сеток. Эта результирующая проницаемость обеих сеток называется проницаемостью тетрода.
      Проницаемость тетрода характеризует соотношение воздействий анода и управляющей сетки на катодный ток. Она показывает, какую долю воздействия напряжения управляющей сетки на катодный ток составляет воздействие напряжения анода.
      С помощью двух не очень густых сеток достигаются высокий коэффициент усиления и высокое внутреннее сопротивление. При этом, если на экранирующую сетку подано значительное положительное напряжение, то анодно-сеточные характеристики тетрода получаются «левыми», т. е. тетрод может нормально работать в области отрицательных сеточных напряжений.
      Катодный ток в тетроде является суммой токов анода, экранирующей и управляющей сеток.
      На экранирующую сетку подается постоянное положительное напряжение, составляющее 20–50 % анодного напряжения. Оно создается на участке «катод – экранирующая сетка – ускоряющее поле», понижает потенциальный барьер у катода. Это необходимо для движения электронов к аноду.
      Анод через две сетки очень слабо действует на потенциальный барьер около катода. Если напряжение экранирующей сетки равно нулю, то тормозящее поле, создаваемое отрицательным напряжением управляющей сетки, значительно сильнее слабого ускоряющего поля, проникающего от анода. Результирующее поле на участке «управляющая сетка – катод» получается тормозящим. Иначе говоря, действующее напряжение в этом случае отрицательно и потенциальный барьер у катода настолько высок, что электроны его не могут преодолеть. Следовательно, лампа заперта и анодный ток равен нулю.
      Проходная емкость между электродами лампы уменьшается примерно во столько раз, во сколько увеличивается коэффициент усиления. Чем гуще экранирующая сетка, тем меньше ее проницаемость, тем в большей степени уменьшается проходная емкость. Если бы экранирующая сетка была сплошной, то проходная емкость уменьшилась бы до нуля, но сетка перестала бы пропускать электроны к аноду.

33. ДИНАТРОННЫЙ ЭФФЕКТ В ТЕТРОДЕ

      Существенным недостатком тетрода является динатронный эффект анода.Электроны, ударяя в анод, выбивают из него вторичные электроны. Вторичная эмиссия из анода существует во всех лампах, но в диодах и триодах она не вызывает последствий и остается незаметной. В этих лампах вторичные электроны, вылетевшие из анода, все возвращаются на него, так как анод имеет наибольший положительный потенциал по сравнению с потенциалами других электродов. Поэтому никакого тока вторичных электронов не возникает.
      В тетроде вторичная эмиссия анода не проявляет себя, если напряжение экранирующей сетки меньше напряжения анода. При этом условии вторичные электроны возвращаются на анод. Если же тетрод работает в режиме нагрузки, то при увеличении анодного тока возрастает падение напряжения на нагрузке, а напряжение анода в некоторые промежутки времени может стать меньше постоянного напряжения экранирующей сетки. Тогда вторичные электроны, вылетев с анода, не возвращаются на него, а притягиваются к экранирующей сетке, имеющей более высокий положительный потенциал. Возникает ток вторичных электронов, направленный противоположно току первичных электронов. Общий анодный ток уменьшается, а ток экранирующей сетки увеличивается. Такое явление называют динатронным эффектом анода.
      Динатронный эффект существенно влияет на анодные характеристики тетрода. При нулевом анодном напряжении существует очень небольшой начальный анодный ток, которым обычно можно пренебречь. Ток экранирующей сетки при этом наибольший. Подобно тому, как было в триоде режим возврата, в данном случае электроны, которые пролетели сквозь экранирующую сетку, участвуют в создании ее тока вместе с теми электронами, которые перехватываются этой сеткой. Изменение анодного напряжения изменяет iвысоту этого барьера, в результате чего резко изменяется распределение электронного потока между анодом и экранирующей сеткой.
      В анодных характеристиках тетрода можно отметить четыре области. Первая область соответствует небольшим анодным напряжениям, примерно до 10–20 В. Вторичной эмиссии из анода еще нет, так как скорость первичных электронов недостаточна для выбивания вторичных электронов. С увеличением анодного напряжения наблюдается резкое возрастание анодного тока и уменьшение тока экранирующей сетки, что характерно для режима возврата.
      Анодное напряжение слабо влияет на катодный ток, так как поле анода действует на потенциальный барьер у катода через две сетки. Поэтому катодный ток изменяется мало и его характеристика идет с небольшим подъемом.
      Если напряжение анода превысит 10–20 В, то появляется вторичная эмиссия и возникает динатрон-ный эффект. С увеличением анодного напряжения вторичная эмиссия анода увеличивается, ток анода уменьшается, а ток экранирующей сетки возрастает. Минимум анодного тока получается при наиболее сильно выраженном динатронном эффекте. В подобном режиме ток вторичных электронов наибольший. Этот ток зависит от величины вторичной эмиссии и напряжения экранирующей сетки-анода, которое создает ускоряющее поле для вторичных электронов.
      Когда анодное напряжение становится выше напряжения экранирующей сетки, то наблюдается небольшой рост анодного тока и незначительное уменьшение тока экранирующей сетки. Вторичная эмиссия анода в этой области существует, но вторичные электроны все возвращаются на анод, т. е. динатронного эффекта со стороны анода нет. Зато происходит попадание на анод вторичных электронов, выбитых с экранирующей сетки, за счет которых анодный ток несколько возрастает, а ток экранирующей сетки уменьшается.
      Чтобы динатронный эффект не мог возникнуть, напряжение экранирующей сетки должно быть всегда меньше анодного напряжения.

34. УСТРОЙСТВО И РАБОТА ПЕНТОДА

      Основной недостаток тетрода – динатронный эффект – привел к тому, что были разработаны и получили широкое распространение пятиэлектродные лампы, называемые пентодами.В них еще сильнее выражены все положительные свойства тетродов и вместе с тем устранен динатронный эффект.
      В пентоде для устранения динатронного эффекта имеется еще одна сетка, расположенная между анодом и экранирующей сеткой. Ее называют защитной сеткой, так как она защищает лампу от возникновения динатронного эффекта. Встречаются также и другие названия этой сетки: антидинатронная, противодинат-ронная, пентодная, третья.
      Защитная сетка обычно соединяется с катодом, т. е. имеет нулевой потенциал относительно катода и отрицательный относительно анода. В некоторых случаях на защитную сетку подается небольшое постоянное напряжение. Например, для увеличения полезной мощности генераторные пентоды работают при положительном напряжении на защитной сетке, а для модуляции колебаний путем изменения напряжения защитной сетки на ней устанавливается отрицательное смещение. Однако и в этих случаях потенциал защитной сетки обычно остается гораздо ниже потенциала анода и антидинатронное действие этой сетки примерно такое же, как и при нулевом ее потенциале.
      Во многих пентодах соединение защитной сетки с катодом делают внутри лампы, и тогда на этой сетке напряжение всегда равно нулю. Если же имеется вывод защитной сетки, то соединение ее с катодом производят в монтаже схемы.
      Роль защитной сетки состоит в том, что между ней и анодом создается электрическое поле, которое тормозит, останавливает и возвращает на анод вторичные электроны, выбитые из анода. Они не могут проникнуть на экранирующую сетку, даже если ее напряжение выше анодного, и динатронный эффект полностью устраняется.
      На участке между экранирующей и защитной сетками для электронов, летящих от катода, создается тормозящее поле, и может показаться, что это вызовет уменьшение анодного тока. Однако электроны, получив большую скорость под действием ускоряющего поля экранирующей сетки и пролетев через нее, долетают до защитной сетки и не теряют полностью своей скорости, так как в пространстве между витками этой сетки потенциал не нулевой, а положительный.
      Нулевой потенциал имеется на проводниках защитной сетки, а в промежутках между ними потенциал выше нуля, но ниже, чем на аноде. В промежутке анод – экранирующая сетка создается вторичный потенциальный барьер, который не могут преодолеть вторичные электроны, выбитые из анода. Этотбарьер существенно влияет на процесс токораспреде-ления в пентоде.
      Пентоды отличаются от тетродов более высоким коэффициентом усиления, достигающим у некоторых пентодов несколько тысяч. Это объясняется тем, что защитная сетка выполняет роль дополнительной экранирующей сетки. Следовательно, в пентоде действие анода по сравнению с действием управляющей сетки еще слабее, нежели в тетроде. Соответственно возрастает и внутреннее сопротивление, которое у некоторых пентодов доходит до миллионов Ом. Проходная емкость становится еще меньше, чем у тетродов. Крутизна пентодов такого же порядка, как у триодов и тетродов, т. е. в пределах 1-50 мА/В.
      Пентод можно привести к эквивалентному диоду таким же путем, как это было сделано для тетрода. Проницаемость пентода – весьма малая величина. Следовательно, коэффициент усиления пентода может быть очень большим.

35. ПАРАМЕТРЫ ТЕТРОДОВ И ПЕНТОДОВ

       Статические параметры тетродов и пентодовопределяются аналогично параметрам триода. Для практического определения параметров берут отношение конечных приращений.
      Управляющая сетка в тетродах и пентодах расположена относительно катода так же, как и в триодах. Поэтому крутизна у тетродов и пентодов такого же порядка, как у триодов,т. е. составляет единицы или десятки миллиампер на вольт, хотя некоторое снижение крутизны получается за счет того, что анодный ток всегда меньше катодного тока.
      Вследствие того что действие анодного напряжения в тетроде или пентоде ослаблено во много раз, внутреннее сопротивление получается в десятки и сотни раз большим, чем у тетрода, и доходит до сотен килоом.
      Внутреннее сопротивление сильно зависит от процесса токораспределения, так как при изменении анодного напряжения анодный ток изменяется за счет этого процесса. Можно считать, что внутреннее сопротивление пентода состоит как бы из двух сопротивлений, соединенных параллельно. Одно из них определяется воздействием поля анода сквозь три сетки на потенциальный барьер у катода, за счет чего происходит очень небольшое изменение анодного тока. Чем гуще сетки, тем это сопротивление больше. Второе сопротивление определяется изменением анодного тока за счет процесса токораспределе-ния и обычно значительно меньше первого сопротивления.
      Коэффициент усиления может быть в десятки и сотни тысяч раз большим, чем у триодов, т. е. величина его доходит до сотен и тысяч.
      В тетродах и пентодах катодный ток всегда больше анодного, поскольку ток экранирующей сетки всегда существует вместе с анодным током.
      Вследствие значительной нелинейной характеристики тетрода и пентода параметры при изменении режима довольно сильно изменяются. При увеличении отрицательного напряжения управляющей сетки, т. е. при уменьшении анодного тока, крутизна уменьшается, а внутреннее сопротивление и коэффициент усиления увеличиваются. Особенностью тетродов и пентодов по сравнению с триодами является сильная зависимость коэффициента усиления от режима.
      Если в режиме возврата характеристики переплетаются, то крутизна и коэффициент усиления могут иметь значения, равные нулю и меньше нуля.
      С увеличением отрицательного напряжения управляющей сетки анодные характеристики в рабочей области идут более полого и ближе друг к другу, что соответствует увеличению внутреннего сопротивления и уменьшению крутизны.
      В некоторых схемах тетрод или пентод используется так, что его триодная часть, состоящая из катода, управляющей сетки и экранирующей сетки, работает в одном каскаде, а вся лампа входит в состав другого каскада.
      Крутизна и коэффициент усиления по экранирующей сетке обычно не представляют интереса, так как экранирующая сетка, как правило, не используется в качестве управляющей и напряжение на ней бывает постоянно.
      Помимо рассмотренных параметров, имеются и другие, аналогичные тем, какие были указаны для триода. При расчете режимов работы и практическом применении тетродов и пентодов необходимо учитывать предельные значения токов, напряжений и мощностей, в частности важна предельная мощность, выделяемая на экранирующей сетке.

36. УСТРОЙСТВО И РАБОТА ЛУЧЕВОГО ТЕТРОДА

      Позднее пентодов были разработаны и получили распространение лучевые тетроды.В них динатрон-ный эффект устранен путем создания для вторичных электронов, выбитых с анода, непреодолимого потенциального барьера, расположенного между экранирующей сеткой и анодом.
      Лучевой тетрод по сравнению с обычным тетродом имеет следующие особенности конструкции. Увеличено расстояние между экранирующей сеткой и анодом. Управляющая и экранирующая сетка имеют одинаковое число витков, причем витки их расположены точно друг против друга.
      В пространстве между сетками происходит фокусировка электронных потоков. Благодаря этому электроны летят от катода к аноду более плотными пучками – «лучами». Чтобы электроны не летели в направлении держателей сеток, имеются специальные экраны, или лучеобразующие пластины, соединенные с катодом. Кроме того, части поверхности катода, находящиеся против держателей сеток, не покрываются оксидным слоем и поэтому не дают эмиссии.
      В лучевом тетроде получаются более плотные электронные потоки, нежели в обычном тетроде. Увеличение плотности тока дает возрастание плотности объемного заряда. Это, в свою очередь, вызывает понижение потенциала в пространстве между анодом и экранирующей сеткой. Если напряжение анода ниже, чем экранирующей сетки, то в обычном тетроде наблюдается динатронный эффект, а в лучевом тетроде его не будет, так как в промежутке «экранирующая сетка – анод» образуется потенциальный барьер для вторичных электронов.
      Вторичные электроны, имеющие относительно не– большие начальные скорости, не могут преодолеть потенциальный барьер и попасть на экранирующую сетку, хотя на последней напряжение выше, чем на аноде. Первичные электроды, имея большие скорости, полученные за счет напряжения экранирующей сетки, преодолевают потенциальный барьер и попадают на анод.
      В обычных тетродах экранирующая сетка «разбивает» электронные потоки и перехватывает много электронов. Такое же действие оказывают и держатели сеток. Поэтому в обычных тетродах не получаются достаточно плотные электронные потоки и не создается необходимый потенциальный барьер для вторичных электронов.
      Образованию потенциального барьера способствует увеличенное расстояние между экранирующей сеткой и анодом. Чем больше это расстояние, тем больше здесь находится заторможенных электронов, имеющих малые скорости. Именно эти электроны увеличивают объемный отрицательный заряд и понижение потенциала становится более значительным.

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10