Современная электронная библиотека ModernLib.Net

Шпаргалка по общей электронике и электротехнике

ModernLib.Net / Косарева Ольга / Шпаргалка по общей электронике и электротехнике - Чтение (стр. 10)
Автор: Косарева Ольга
Жанр:

 

 


82. ЭЛЕКТРИЧЕСКИЙ ПРИВОД

      Двигатель и передаточный механизм приводят в движение исполнительный механизм. Поэтому эти две части машины называются приводом.
      Если для приведения в движение рабочей машины используется электрический двигатель, то такой привод называется электрическим приводом или сокращенно электроприводом.
      Первым практическим применением электропривода следует считать использование его на катере академиком Б.С. Якобив 1838 г. На катере был установлен электрический двигатель, получивший питание от гальванической батареи.
      Электроприводы, применяемые в производстве, можно разбить на три основных типа: групповой, одиночный и многодвигательный.
      Групповой электропривод состоит из одного электрического двигателя, который через трансмиссию и контрпривод приводит в движение несколько исполнительных механизмов. Контрпривод представляет собой короткий вал, лежащий в подшипниках. На валу расположены ступенчатый шкив, рабочий (связанный с валом) и холостой (свободно сидящий на валу) шкивы. Контрпривод дает возможность изменять скорость вращения станка (при помощи ступенчатого шкива), останавливать и пускать станок (при помощи рабочего или холостого шкива). Остановка приводного двигателя приводит к прекращению работы всех исполнительных механизмов, получающих от него механическую энергию. При работе только части исполнительных механизмов групповой привод имеет низкий КПД.
      Одиночный электропривод состоит из электродвигателя, который приводит в движение отдельный исполнительный механизм. Одиночным приводом оборудованы одношпиндельные сверлильные станки, токарные станки малой мощности и др. Первоначально передача движения от двигателя к станку производилась через контрпривод. Впоследствии сам электродвигатель был подвергнут конструктивным изменениям и стал составлять одно целое с исполнительным механизмом. Такой одиночный привод называется индивидуальным.
      Многодвигательный привод состоит из нескольких электродвигателей, каждый из которых служит для приведения в движение отдельных элементов исполнительного механизма. Многодвигательные приводы применяются для сложных металлообрабатывающих станков большой мощности, прокатных станов, бумагоделательных машин, подъемных кранов и других машин и механизмов.
      По роду тока электропривод делится на электропривод постоянного тока и электропривод переменного тока. В зависимости от способа соединения обмоток якоря и возбуждения различают двигатели постоянного тока с параллельным, последовательным и смешанным возбуждением.
      При определении мощности машины различают три режима работы.
      1. Продолжительный режим работы характеризуется работой, при которой рабочий период настолько велик, что нагрев машины достигает своего установившегося состояния.
      2. Кратковременный режим работы характеризуется тем, что во время рабочего периода температура двигателя не успевает достигнуть установившегося состояния.
      3. Повторно-кратковременный режим работы характеризуется чередованием рабочих периодов и пауз. Продолжительность одного рабочего периода и одной паузы не должны превышать 10 мин. Режим повторно-кратковременной работы определяется относительной продолжительностью рабочего периода.

83. ИЗОЛЯЦИЯ, ФОРМЫ ИСПОЛНЕНИЯ И ОХЛАЖДЕНИЕ ЭЛЕКТРИЧЕСКИХ МАШИН

      Мощность двигателя определяется его нагревом. Допустимый нагрев машины ограничивается теплостойкостью из изоляционных материалов, а также системой охлаждения двигателя.
      Изолирующие материалы, применяемые в электрических машинах, делятся на пять классов. Класс изоляции А.В него входят хлопчатобумажные ткани, шелк, пряжа, бумага и другие органические материалы, пропитанные различными маслами, а также эмали и лаки. Класс изоляции В.Сюда входят изделия из слюды, асбеста и других неорганических материалов, содержащих органические связывающие вещества. Класс изоляции ВС.Состоит из слюды, стеклянной пряжи и асбеста на теплостойких лаках. Класс изоляции СВ.Состоит из неорганических материалов на теплостойких лаках без применения изолирующих материалов класса А. Класс изоляции С.Включает слюду, фарфор, стекло, кварц и другие неорганические материалы без связывающих веществ. Наибольшая допустимая температура нагрева для изоляции класса А-105о, для класса В-120о, для класса ВС-135о, для класса Свнесколько выше, в зависимости от теплостойкости применяемых лаков, для класса Стемпература не устанавливается.
      По способу защиты от воздействия внешней среды различают следующие формы исполнения электрических машин.
      1. Открытая электрическая машина. Вращающиеся и токоведущие части машины в этом исполнении не защищены от случайного прикосновения и попадания на них посторонних предметов.
      2. Защищенная электрическая машина. Вращающиеся и токоведущие части такой машины защищены от прикосновения и попадания на них посторонних предметов.
      3. Каплезащитная электрическая машина. Внутренние части такой машины предохранены от попадания капель воды, падающих отвесно.
      4. Брызгозащитная электрическая машина. Внутренние части машины защищены от попадания водяных брызг, падающих под углом 45ок вертикали с любой стороны.
      5. Закрытая электрическая машина. Внутренние части машины этого исполнения отделены от внешней среды, но не настолько плотно, чтобы ее можно было считать герметической. Эта машина применяется в пыльных помещениях и может устанавливаться на открытом воздухе.
      6. Водозащищенная электрическая машина. Внутреннее пространство машины защищено от проникновения в него воды при обливании машины из брандспойта. Применяется в судовых установках.
      7. Взрывобезопасная электрическая машина. Закрытая машина, выполненная таким образом, что может противостоять взрыву внутри нее тех газов, которые содержатся в наружной среде.
      8...Герметическая машина. Совершенно закрытая машина, у которой все отверстия закрыты настолько плотно, что при определенном наружном давлении исключается всякое сообщение между внутренним пространством машины и газовой средой и жидкостью, окружающей машину извне.
      По способу охлаждения машины делятся на следующие типы.
      1. Машины с естественным охлаждением, не имеющие специальных вентиляторов. Циркуляция охлаждающего воздуха осуществляется за счет вентилирующего действия вращающих частей машин и явления конвекции.
      2. Машины с искусственной вытяжной или нагнетательной вентиляцией, в которых циркуляция газа, охлаждающего нагретые части, усиливается специальным вентилятором, в том числе: машины с самовентиляцией, имеющие вентилятор на валу (защищенные или закрытые); машины с независимой вентиляцией, вентилятор которых приводится во вращение посторонним двигателем (закрытые машины).

84. ЗАЩИТА ЭЛЕКТРИЧЕСКИХ ДВИГАТЕЛЕЙ

      Во избежание порчи изоляции двигателя и нарушения целостности обмоток и электрических соединений двигатели должны иметь защитные устройства, обеспечивающие своевременное отключение их от сети. Наиболее частыми причинами ненормальных режимов работы двигателя являются перегрузки, короткие замыкания, понижение или исчезновение напряжения.
       Перегрузкойназывается увеличение тока двигателя сверхноминальной величины. Перегрузки могут быть небольшие и кратковременные. Перегрузки могут быть чрезмерные и длительные – они опасны для обмоток двигателя, так как большое количество тепла, выделяемое током, может обуглить изоляцию и сжечь обмотки.
      Также опасны для двигателя короткие замыкания, которые могут происходить в его обмотках. Защита двигателей от перегрузок и коротких замыканий называется максимальной токовой защитой.Максимальная защита осуществляется плавкими предохранителями, токовыми реле, тепловыми реле. Выбор тех или иных защитных устройств зависит от мощности, типа и назначения двигателя, пусковых условий и характера перегрузок.
      Плавкие предохранители представляют собой приспособления с легкоплавкой проволокой, изготовленной из меди, цинка или свинца и укрепленной на изолирующем основании. Назначение предохранителей заключается в отключении потребителя от сети при недопустимо большой перегрузке или коротком замыкании. Плавкие предохранители имеют относительно малую мощность, которую могут отключить предохранители или какой-либо отключающий аппарат без опасности быть поврежденным или разрушенным, называемую предельно-отключающей мощностью.
      Плавкие предохранители бывают пробочные, пластинчатые и трубчатые. Пробочные предохранители изготовляются на напряжение до 500 В и на токи от 2 до 60 А и применяются для защиты осветительных сетей и электродвигателей малой мощности. Пластинчатые предохранители, обладающие большими недостатками (разбрызгивание металла вставки при перегорании, трудности замены их), в настоящее время стараются не применять. Трубчатые предохранители низкого напряжения изготовляются на напряжение до 500 В и на токи от 6 до 1000 А. Конструктивно трубочные предохранители могут быть выполнены с открытой фарфоровой трубкой и с закрытой стеклянной, фибровой или фарфоровой трубкой. Трубки с пропущенными сквозь них плавкими вставками часто засыпают кварцевым песком. В момент перегорания предохранителя песок разбивает электрическую дугу на ряд мелких дуг, хорошо охлаждает дугу и она быстро гаснет.
      В электрических цепях постоянного и переменного тока напряжением до 500 В применяются автоматические воздушные выключатели или просто автоматы. Назначение автоматов заключается в размыкании электрических цепей при перегрузке или коротких замыканиях.
      Основной деталью теплового реле является биметаллическая пластина. Под действием тепла нагревательного элемента происходит деформация биметаллической пластины, которая, изгибаясь, освобождает защелку. Под действием пружины защелка поворачивается вокруг оси и при помощи тяги производит размыкание нормально замкнутых контактов вспомогательной цепи реле. Возвращение защелки в первоначальное положение производится при помощи кнопки возврата. Нагревательный элемент теплового реле выбирается по номинальному току двигателя.

85. КОНТАКТОРЫ И КОНТРОЛЛЕРЫ

      Для дистанционного и автоматического управления электродвигателями применяют контакторы.В зависимости от рода тока контакторы бываю постоянного и переменного тока.
      В контакторе постоянного тока силовая цепь, замыкаемая контактором, проходит через контакты, укрепленные на изолирующем основании, контакты самого контактора и гибкую токоведущую связь. Замыкание контактора осуществляется электромагнитом, обмотка которого питается от вспомогательной цепи управления. При замыкании цепи управления электромагнит притягивает якорь, который замыкает контакты контактора.
      Контактор удерживается во включенном положении до тех пор, пока замкнута цепь обмотки электромагнита. Контакторы постоянного тока КП строятся с одним, двумя и тремя главными контактами, работающими в цепях постоянного тока напряжением 220, 440 и 600 В. Номинальные токи, на которые рассчитаны главные контакты, бывают от 20 до 250 А. Катушка электромагнитов контакторов КП рассчитаны на напряжения 48, 110 и 220 В.
      Кроме главных контактов, служащих для замыкания и размыкания силовых цепей, контакторы снабжаются блок-контактами для цепей сигнализации и других целей. Контакторы КП допускают до 240-1200 включений в час.
      Включающие катушки контакторов переменного тока изготовляются на напряжения 127, 220, 380 и 500 В при частоте 50 Гц. Данные контакторы допускают до 120 включений в час.
      Для пуска двигателей, изменения направления вращения, регулирования скорости и остановки двигателей применяют аппараты, называемые контроллерами.По роду тока контроллеры бывают постоянного и переменного тока. Контроллеры, контакты которых включаются в силовые цепи электродвигателей, называются силовыми контроллерами.
      Имеются контроллеры, которые замыкают цепи управления электромагнитных аппаратов, а они, в свою очередь, замыкают и размыкают силовые цепи электродвигателей. Такие контроллеры называются командоконтроллерами.
      В зависимости от конструкции контактовой системы контроллеры могут быть барабанные и кулачковые. Вал барабанного контроллера поворачивается при помощи штурвала. На валу изолированно от него укреплены медные пластины, имеющие форму сегментов и являющиеся подвижными контактами. Сегменты могут быть разной длины и смещены один относительно другого на некоторый угол. Некоторые сегменты электрически соединяются между собой. При повороте вала контроллера его сегменты соединяются с неподвижными контактами, укрепленными на изолирующей планке. Неподвижные контакты пальцевого типа оканчиваются легко сменяемыми «сухарями». В результате соединения подвижных контактов с неподвижными производятся необходимые переключения в управляемой цепи.
      Кулачковый контроллер состоит из комплекта кон-такторных элементов, замыкающихся и размыкающихся при помощи кулачковых шайб, расположенных на валу контроллера. Для лучшего гашения дуги каждый контактный элемент контроллера снабжен индивидуальными приспособлением для гашения дуги. Контакты кулачковых контроллеров имеют большую разрывную мощность, чем контакты барабанных контроллеров, и допускают большее число включений (до 600 включений в час).

86. СПОСОБЫ ПУСКА ДВИГАТЕЛЕЙ

      Пуск асинхронных двигателей можно производить при полном напряжении (прямой пуск) и при пониженном напряжении. Прямой пуск осуществляется при помощи рубильников, переключателей, пакетных выключателей, магнитных пускателей, контакторов и контроллеров. При прямом пуске к двигателю подается полное напряжение сети. Недостатком этого способа пуска являются большие пусковые токи, которые в 27 раз больше номинальных токов двигателей.
      Наиболее простым является прямой пуск асинхронных двигателей с короткозамкнутым ротором. Пуск и остановка таких двигателей производится включением или отключением рубильника и т. п. Пуск асинхронных двигателей с фазным ротором производится при помощи пускового реостата, подключаемого к обмотке ротора через кольца и щетки. Перед пуском двигателя можно убедиться, что сопротивление пускового реостата полностью введено. В конце пуска реостат плавно выводится и закорачивается. Наличие активного сопротивления в цепи ротора при пуске приводит к уменьшению пускового тока и увеличению пускового момента. Для уменьшения пусковых токов асинхронных двигателей уменьшают напряжение, подводимое к обмотке статора двигателя.
      Уменьшить напряжение, подводимое к двигателю, а вместе с этим уменьшить пусковой ток двигателя можно также при помощи автотрансформатора. При пуске автотрансформаторы понижают напряжение на 50–80 %.
      Одним из главных недостатков синхронных двигателей является сложность их пуска в ход. Пуск синхронных двигателей может быть осуществлен при помощи вспомогательного пускового двигателя или путем асинхронного пуска.
      Если ротор синхронного двигателя с возбужденными полюсами развернуть другим, вспомогательным двигателем до скорости вращения поля статора, то магнитные полюсы статора, взаимодействуя с полюсами ротора, заставят ротор вращаться далее самостоятельно без посторонней помощи, в такт с полем статора, т. е. синхронно. Для осуществления пуска необходимо, чтобы число пар полюсов асинхронного двигателя было меньше числа пар полюсов синхронного двигателя, ибо при этих условиях вспомогательный асинхронный двигатель может развернуть ротор синхронного двигателя до синхронной скорости.
      Сложность пуска и необходимость вспомогательного двигателя являются существенными недостатками этого способа пуска синхронных двигателей. Поэтому в настоящее время он применяется редко.
      Для осуществления асинхронного пуска синхронного двигателя в полюсных наконечниках полюсов ротора укладывается дополнительная короткозамкну-тая обмотка. Так как во время пуска в обмотке возбуждения двигателя наводится большая ЭДС, то по соображениям безопасности она замыкается рубильником на сопротивление.
      При включении напряжения трехфазной сети в обмотку статора синхронного двигателя возникает вращающееся магнитное поле, которое, пересекая ко-роткозамкнутую обмотку, заложенную в полюсных наконечниках ротора, индуктирует в ней токи. Эти токи, взаимодействуя с вращающим полем статора, приведут ротор во вращение. При достижении ротором большего числа оборотов рубильник переключается так, чтобы обмотку ротора включить в сеть постоянного напряжения. Недостатком асинхронного пуска является большой пусковой ток (в 5–7 раз больше рабочего тока).

87. РЕГУЛИРОВАНИЕ СКОРОСТИ ВРАЩЕНИЯ ЭЛЕКТРИЧЕСКИХ ДВИГАТЕЛЕЙ

      Регулирование скорости вращения электрических двигателей постоянного тока можно производить путем изменения напряжения, подводимого к двигателю, или путем изменения величины магнитного потока двигателя.
      Изменение величины напряжения, подводимого к якорю двигателя, можно производить путем включения последовательно с якорем двигателя переменного регулировочного сопротивления или путем последовательного и параллельного включения обмоток якорей нескольких двигателей. Наиболее часто для регулирования скорости применяют способ изменения величины магнитного потока двигателя. Для этой цели в цепь обмотки возбуждения двигателя включают реостат, дающий возможность производить широкую и плавную регулировку скорости двигателя.
      Регулирование скорости вращения асинхронных двигателей производится одним из следующих способов.
      1. Изменение числа полюсов электродвигателя. Для возможности изменения числа пар полюсов двигателя статор его выполняют либо с двумя самостоятельными обмотками, либо с одной обмоткой, которую можно пересоединять на различные числа полюсов. Пересоединение обмоток статора производится при помощи специального аппарата – контроллера.При этом способе регулировка скорости вращения двигателя совершается скачками. Регулировку скорости вращения двигателя путем изменения числа полюсов можно производить только у асинхронных двигателей с короткозамкнутым ротором. Ротор с короткозамкну-той обмоткой может работать с любым числом полюсов статора. Наоборот, ротор двигателя с фазной обмоткой может нормально работать лишь при определенном числе полюсов статора. Иначе обмотку ротора также пришлось бы переключать, что внесло бы большие усложнения в схему двигателя.
      2. Изменение частоты переменного тока. При этом способе частоту переменного тока, подводимого к обмотке статора двигателя, изменяют при помощи специального генератора. Регулировку изменения частоты тока выгодно производить, когда имеется большая группа двигателей, требующих совместного плавного регулирования скорости вращения.
      3. Введение сопротивления в цепь ротора. Во время работы двигателя в цепь обмотки ротора вводят сопротивление регулировочного реостата. Такой способ применим только для двигателей с фазным ротором.
      4. Управление с помощью дросселей насыщения. Однофазный дроссель насыщения имеет две обмотки: одна включена в цепь переменного тока, другая, называемая управляющей или подмагничивающей обмоткой, подключается к источнику постоянного напряжения (выпрямителю). С увеличением тока в управляющей обмотке магнитная система дросселя насыщается и индуктивное сопротивление обмотки переменного тока уменьшается. Включая дроссели в каждую фазу асинхронного двигателя и меняя ток управляющей обмотки, можно менять сопротивление в цепи статора двигателя, а следовательно, и скорость вращения самого двигателя.
      Для пуска в ход двигателей постоянного тока большой мощности, а также для широкой регулировки скорости вращения двигателей применяют схему «генератор – двигатель», сокращенно Г – Д. Система Г – Д дает возможность осуществить плавный пуск и широкую регулировку скорости вращения двигателя.

88. АККУМУЛЯТОРНЫЕ БАТАРЕИ

       Аккумуляторные батареикомплектуются из свин-цово-кислотных или щелочных аккумуляторов, из которых первые получили наибольшее распространение.
      Батарея стационарных свинцово-кислотных аккумуляторов состоит из аккумуляторов типа С (стационарные для продолжительных разрядных режимов) или СК (стационарные для коротких разрядных режимов). Аккумуляторы СК отличаются от аккумуляторов типа С усиленными соединительными полюсами. Цифры после буквенного обозначения этих аккумуляторов характеризуют их емкость, разрядный и зарядный токи.
      Аккумуляторы типа С предназначены для разряда в продолжении от 3 до 10 часов; максимально допускаемый 3-часовой разрядный ток 9 А. Аккумуляторы СК могут быть разряжены в более короткий срок – до 1 часа; максимально допускаемый одночасовой разрядный ток 18,5 А.
      Кратковременный разрядный ток (в течение не более 5 с) не должен превышать 250 % тока трехчасового разряда для аккумуляторов типа С и 250 % тока одночасового разряда для аккумуляторов типа СК.
      Во время заряда допускается максимальный зарядный ток: 9 А для аккумуляторов типа С и 11 А для аккумуляторов типа СК.
      Величина емкости, указанная для каждого типа аккумуляторов, меняется в широких пределах в зависимости от величины разрядного тока и режима разряда.
      Для стационарных аккумуляторных батарей применяются свинцово-кислотные аккумуляторы панцирного типа СП и СПК (стационарные панцирные). Для переносных аккумуляторных батарей используются свинцово-кислотные аккумуляторы типа СТ (стартер-ные).
      Аккумуляторные батареи щелочных аккумуляторов комплектуются из железоникелевых аккумуляторов типа ЖН или ТЖН.
      Номер аккумулятора соответствует его номинальной емкости в ампер-часах.
      Заряд аккумуляторов производится током нормального зарядного режима в течение 6–7 ч. Допускается ускоренный заряд при следующем режиме: сначала в течение 2,5 ч током вдвое больше нормального, затем в течение 2 ч током нормальной величины.
      Для переносных аккумуляторных батарей применяются железоникелевые аккумуляторы 10 ЖН напряжением 12,5 В; 4 ЖН-5 В; 5 ЖН-6,5 В.
      При работе аккумуляторной батареи напряжение каждого элемента уменьшается. Если не принять особых мер, то напряжение на шинах аккумуляторной батареи будет также уменьшаться. В связи с этим по мере разряда батареи дополнительно к работающим аккумуляторам нужно подключать новые элементы. Таким образом, аккумуляторная батарея состоит из некоторого числа постоянно работающих элементов и нескольких элементов, включаемых и выключаемых по мере надобности. Аппарат, посредством которого производится изменение числа действующих элементов батареи, называется элементным коммутатором.
      На электрических станциях и подстанциях имеются следующие виды нагрузок постоянного тока:
      1) постоянная нагрузка – сигнальные и контрольные лампы на щитах управления, некоторые реле защиты и автоматики и др.;
      2) временная нагрузка – возникает в случае прекращения питания подстанции переменным трехфазным током; состоит из ламп аварийного освещения и двигателей постоянного тока;
      3) кратковременная нагрузка – механизмы включения электрических приводов выключателей, часть реле защиты и автоматики.

89. РЕЖИМ РАБОТЫ АККУМУЛЯТОРНЫХ БАТАРЕЙ

      Применяются два режима работы аккумуляторных батарей: заряд-разряди постоянный подзаряд.
      Режим заряд-разряд характеризуется тем, что после заряда аккумуляторной батареи зарядное устройство отключается и батарея питает постоянную нагрузку (лампы сигнализации, приборы управления), периодически кратковременную нагрузку (электромагнитные приводы выключателей) и аварийную нагрузку. Разряженная до определенного напряжения батарея вновь подключается к зарядному агрегату, который, заряжая батарею, одновременно питает нагрузку.
      Для батареи, работающей по методу заряд-разряд, один раз в три месяца производится уравнительный заряд (перезарядка).
      Режим постоянного подзаряда заключается в следующем. Батарея непрерывно подзаряжается от под-зарядного агрегата, и поэтому она находится в любой момент в состоянии полного заряда. Толчковые нагрузки, возникающие в сети постоянного тока, воспринимает аккумуляторная батарея. Один раз в месяц батарея, работающая в режиме постоянного подзаряда, должна быть заряжена от зарядного агрегата.
      Для осуществления режима заряд-разряд применяют схему аккумуляторной батареи с двойным элементным коммутатором. В качестве зарядного агрегата применен двигатель-генератор. Генератор присоединен к шинам через предохранители, автомат максимального тока с реле обратного тока, амперметр и переключатель на два положения.
      Максимальный автомат защищает генератор от перегрузки.
      Реле обратного тока отключает генератор, если его ЭДС станет меньше напряжения на шинах батареи. Это может произойти при уменьшении скорости вращения генератора, исчезновении напряжения переменного тока, питающего двигатель, и от других причин. Если в это время не отключить генератор, то он, перейдя в режим двигателя, станет нагрузкой для батареи.
      Общее число аккумуляторов, соединяемых в батарею, должно быть таким, что даже разряженные до минимального напряжения элементы должны обеспечить на шинах батареи номинальное напряжение.
      Если нагрузка сети незначительна, то агрегат может отдавать ток в сеть и одновременно заряжать аккумуляторную батарею. Однако к концу заряда генератор дает напряжение больше того, при котором обычно работает сеть. Если включить в сеть реостат, то за счет падения напряжения в нем можно уменьшить напряжение. Но это неэкономично. Простым решением задачи одновременной работы генератора на сеть и на заряд является применение в схеме двухэлементного коммутатора. Последний дает возможность использовать разность между напряжением генератора и напряжением сети для заряда группы аккумуляторов, присоединенных к коммутатору.
      Аккумуляторные батареи располагаются в специальном помещении подвального или первого этажа здания электростанции или подстанции. Помещение должно быть сухим, не подвергающимся резким изменениям температуры, тряске или колебаниям. Вход в помещение делается с тамбуром. Температура помещения на уровне расположения аккумуляторов не должна быть ниже 10о. Помещение аккумуляторной должно иметь приточно-вытяжную вентиляцию.

90. ТЕХНИКА БЕЗОПАСНОСТИ В ЭЛЕКТРИЧЕСКИХ УСТРОЙСТВАХ

      Работа на электрических установках совершенно безопасна, если обслуживающий персонал будет точно соблюдать правила технической эксплуатации и правила безопасности. Для этого к работе на электрических установках допускаются лица, изучившие правила безопасности и получившие удостоверения о проверке знаний с присвоением квалификационной группы.
       Основными защитными средстваминазываются приспособления, изоляция которых надежно выдерживает рабочее напряжение установки и которыми допускается касаться токоведущих частей, находящихся под напряжением.
      К основным изолирующим защитным средствам в установках любого напряжения относятся изолирующие штанги для оперативных переключений, для производства измерений, для наложения заземления и других целей и изолирующие клещи для предохранителей, а в установках низкого напряжения, кроме того, – диэлектрические перчатки и рукавицы и монтерский инструмент с изолирующими ручками.
      Дополнительными защитными средствами называются такие приспособления, которые сами по себе не могут обеспечить безопасность от поражения током и служат для усиления действия основных защитных средств, а также служат для защиты от напряжения прикосновения, шагового напряжения и от ожогов электрической дугой. К дополнительным защитным изолирующим средствам в установках высокого напряжения относятся: диэлектрические перчатки и рукавицы, диэлектрические боты, резиновые коврики и дорожки, изолирующие подставки. При всех операциях на высоком напряжении основные защитные средства следует применять совместно с дополнительными. Защитные средства, как находящиеся в употреблении, так и содержащиеся в запасе, должны быть занумерованы и в определенные сроки их состояние должно быть проверено.
      Ремонтные и монтажные работы должны производиться при отключенном оборудовании. Если же установку по тем или иным причинам отключить нельзя, то при работе под напряжением необходимо соблюдать правила техники безопасности, используя защитные приспособления (изолирующие подкладки, резиновые перчатки, защитные очки и др.).
      При работах под высоким напряжением должны быть соблюдены следующие меры предосторожности:
      1) работы должны производиться только группой рабочих (не менее двух), с тем чтобы один из них мог подать помощь другому при несчастном случае;
      2) рабочие должны быть хорошо изолированы от земли;
      3) во время производства работ рабочие не должны прикасаться к лицам, стоящим неизолированно, а также к металлическим частям;
      4) перед началом работ все защитные приспособления должны быть тщательно проверены самими рабочими.
      Перед началом работы в установках и оборудовании высокого напряжения необходимо при помощи соответствующих приборов убедиться в отсутствии напряжения в той части установки, в которой будет производиться работа. Затем нужно произвести разрядку собирательных шин, кабелей трансформаторов, проверить их на короткое замыкание, замкнуть их и надежно заземлить.

  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10