Впрочем, с подобным выводом соглашаются далеко не все современные физики и астрофизики.
Вполне возможно, что объяснение гигантских космических энергий будет получено на совсем иных путях.
ТЕРМОЯД ИЛИ...?
Проблема космических энергий связана не только с активными явлениями в ядрах галактик и квазарами, но и с отрицательными результатами нейтринных наблюдений Солнца.
Американский физик Р. Девис создал весьма чувствительную установку для регистрации солнечных нейтрино, Наблюдения проводились в течение длительного времени и принесли весьма неожиданный результат. Оказалось, что поток солнечных нейтрино по крайней мере в шесть раз меньше, чем это следует из существующей теории, основанной на предположении о термоядерной природе источников солнечно" и звездной энергии.
О необходимости серьезной проверки этой теории говорят и некоторые другие результаты исследований Солнца, выполненных в последнее время.
Несколько лет назад на Крымской астрофизической обсерватории АН СССР был создан высокочувствительный прибор для измерения чрезвычайно слабых магнитных полей на Солнце - солнечный магнитограф. Наблюдения, проведенные с помощью этого прибора, позволили обнаружить весьма интересный факт. Оказалось, что солнечная поверхность ритмично пульсирует с периодом около 2 час. 40 мин., поднимаясь при каждой пульсации на высоту около 20 км.
Как считает академик В. А. Амбарцумян, открытие крымских астрономов имеет первостепенное значение.
Оно не только свидетельствует о качественно новом процессе на Солнце, но и должно дать важную информацию о внутреннем строении нашего дневного светила. Как показывают теоретические расчеты, значение периода пульсации Солнца непосредственно связано с его внутренним строением. Периоду, равному 2 час. 40 мин., соответствует более однородное распределение плотности и температуры, а также более низкие значения этих физических величин для центральной части дневного светила, чем это следует из современной теории строения Солнца. В частности, температура в центре Солнца в этом случае должна составлять не 15 миллионов градусов, а всего 6,5 миллионов.
Но при таких физических условиях термоядерная реакция не может обеспечить наблюдаемого выхода солнечной энергии.
Есть и еще одно независимое соображение, ставящее под сомнение справедливость термоядерной гипотезы. Дело в том, что в атмосфере Солнца (как и в атмосферах других подобных ему звезд) в значительных количествах присутствуют литий и бериллий. Но в случае термоядерных реакций эти элементы должны были бы давно "выгореть".
В последнее время вывод о пульсации Солнца, полученный крымскими астрофизиками под руководством академика А. Н, Северного, нашел подтверждение и в работах английских астрономов, проводивших наблюдения на известной французской обсерватории Цик дю Мюди.
Были предприняты и первые попытки объяснить это явление. Так, ученые Кембриджского университета (Англия) высказали предположение, что в центральной части Солнца содержится в два раза больше тяжелых элементов, чем предполагалось ранее. Однако подобная гипотеза неизбежно ведет к кардинальному пересмотру современных физических представлений о строении Солнца и звезд.
Дальнейшая проверка термоядерной гипотезы связана прежде всего с осуществлением новых нейтрипных наблюдений дневного светила. Не исключена возможность, что нейтрино от Солнца все-таки летят, но их энергия ниже того порогового значения, на которое была рассчитана установка Девиса.
В связи с этим советские физики работают над созданием более чувствительных детекторов для регистрации нейтрино - на галии и литии. Предполагается, что с помощью таких детекторов, которые будут установлены в подземной лаборатории, в недалеком будущем удастся осуществить новую, более точную проверку интенсивности потока солнечных нейтрино и тем самым установить, действительно ли термоядерная гипотеза нуждается в коренном пересмотре.
Интересна оценка, которую дает новым результатам исследования Солнца академик В.А.Амбарцумян.
Вопрос. Можно ли считать результаты, полученные академиком Северным, а также отрицательный результат нейтринных наблюдений Солнца неожиданными, поскольку они противоречат общепринятой гипотезе о термоядерном источнике внутрисолнечной и внутризвездной энергии?
Амбарцумян. Необходимо понять, что существующие теоретические модели являются настолько ориентировочными, что не выдерживают точных количественных сравнений, когда речь идет о новых явлениях.
Вопрос. Следовательно, когда речь идет о явлениях, изученных еще недостаточно, наблюдения важнее теоретических разработок?
Амбарцумян. Астрономия - наука прежде всего наблюдательная. Одно наблюдательное открытие такого рода, какое выполнено в Крыму, стоит больше тысячи неудачных теоретических работ, не имеющих под собой точной количественной основы. Будучи сам теоретиком, я решаюсь высказать это мнение откровенно.
ГРАВИТАЦИОННЫЙ КОЛЛАПС И "ЧЕРНЫЕ ДЫРЫ"
Вернемся к вопросу о геометрических свойствах Вселенной. Как мы уже знаем, они тесно связаны с характером распределения материи.
Представим себе, что Вселенная однородна и изотропна. Что это значит? Разобьем мысленно Вселенную на множество областей, каждая из которых содержит - достаточно большое количество галактик. Тогда однородность и изотропность означают, что свойства и поведение Вселенной в каждую эпоху одинаковы ,для всех таких областей в по всем направлениям. Важнейшим свойством однородной и изотропной Вселенной является ее постоянная кривизна во всех точках пространства.
Однако в реальной Вселенной, особенно если рассматривать сравнительно небольшие ее области, материя распределена неравномерно. Ее концентрация различна для различных районов, а следовательно, различна и соответствующая кривизна. Она может быть меньше средней для всего пространства, а может и значительно ее превосходить.
В свое время известный американский физик Р. Оппенгеймер (1904-1967) рассмотрел, исходя из общей теории относительности Эйнштейна, любопытную возможность.
Если очень большая масса вещества оказывается в сравнительно небольшом объеме, то наступает беспрецедентная катастрофа - гравитационный коллапс катастрофическое стягивание вещества в точку, где плотность в принципе может достигать бесконечной величины.
В процессе сжатия величина поля тяготения на поверхности коллапсирующего объекта растет, и наступает момент, когда ни одна частица, ни один луч света не может преодолеть огромного притяжения и вырваться изнутри подобного образования наружу. Для этого надо было бы развить скорость, превосходящую скорость света, а это совершенно невозможно, так как скорость света - это максимальная скорость распространения каких бы то ни было реальных физических процессов в природе.
Таким образом, пространство сколлапсированного объекта как бы захлопывается, и для внешнего наблюдателя он фактически перестает существовать. Образуется так называемая "черная дыра"...
Впрочем, это было лишь чисто теоретическое исследование, проведенное, так сказать, впрок, по принципу, нередко применяемому физиками-теоретиками: если "то", то "это". Иными словами, рассматривается некоторая в принципе возможная воображаемая ситуация и выясняется, к каким следствиям она может привести.
Но в том-то и состоит сила научной теории, что очень часто в процессе дальнейшего развития естествознания воображаемая ситуация оказывается вполне реальной, и тогда заблаговременно, проведенное теоретическое исследование сразу приобретает практический интерес.
Так произошло и с предсказанием относительно существования "черных дыр". За последние годы в глубинах Вселенной был открыт целый ряд явлений, свидетельствующих о возможности концентрации огромных масс вещества в сравнительно небольших областях пространства.
В связи с этим астрофизики вспомнили о теории гравитационного коллапса. Дальнейшее развитие этой теории привело ученых к выводу, что "черные дыры" могут возникать на заключительных этапах жизни массивных звезд, масса которых в 3-5 раз превосходит массу Солнца. После того как источники энергии в недрах подобной звезды исчерпаются, она под действием собственного тяготения начинает сжиматься и превращаться в "черную дыру". Возможно, что "черные дыры" могут возникать во Вселенной и при иных обстоятельствах. Разумеется, для того чтобы убедиться в реальном существовании подобных объектов, одних только теоретических выкладок еще недостаточно. Необходимо обнаружить во Вселенной хотя бы одну реальную "черную дыру".
Однако задача эта весьма сложная. Одиночную "черную дыру" зарегистрировать невозможно: она ничем себя не проявляет. Поэтому возникла идея поиска "черных дыр" в системах двойных звезд. Около половины всех звезд нашей Галактики - это тесные двойные системы, где две звезды обращаются вокруг общего центра масс, причем довольно часто на очень близком расстоянии одна от другой.
Есть двойные системы, в которых одна звезда светит, а другая темная. Если масса темной звезды в 3-5 раз превосходит солнечную, то межно предполагать, что это погасшая звезда, которая после исчерпания внутренней энергии сжалась до стадии "черной дыры". Согласно расчетам советского ученого Р. Сюняева, при этом должен наблюдаться любопытный физический процесс. Если центральным компонентом в двойной системе является достаточно массивная звезда, то, как все подобные звезды, она должна выбрасывать большое количество газа, который будет засасываться в "черную дыру". Но газовые частицы попадают туда не прямым путем, а, так как вся система вращается, движутся вокруг "черной дыры" по спиралевидным траекториям и лишь постепенно приближаясь на критическое расстояние. Вокруг "черной дыры" образуется газовый диск. Вследствие трения газ разогревается до очень высоких температур, при которых возникает и интенсивное рентгеновское излучение.
В 1974 г. был обнаружен объект, как будто бы отвечающий всем указанным требованиям. Он расположен в созвездии Лебедя и получил наименование "Лебедь Х-1".
Это - двойная звезда. Ее светящийся компонент имеет массу, равную двадцати восьми массам Солнца, темныйдесяти. Из этой области идет интенсивное рентгеновское излучение. Есть довольно веские основания предполагать, что указанный объект- "черная дыра".
Однако стопроцентной уверенности в этом пока еще нет. В астрофизике всегда приходится считаться с тем, что обнаруженные нами внешние физические проявления какого-то объекта теоретически могут соответствовать ожидаемым, но порождаться иной причиной. И чтобы окончательно убедиться в том, что "Лебедь Х-1" действительно "черная дыра", необходимы дополнительные разнообразные наблюдения.
Впрочем, во Вселенной имеется немало и других объектов, относительно которых существуют "подозрения", что они относятся к разряду "черных дыр". В какой, однако, мере эти подозрения обоснованы, покажет будущее.
Но если "черные дыры" действительно существуют, то свойства этих объектов весьма необычны. Они, бесспорно, являются достойными представителями "все более странного мира".
Прежде всего нелегко представить себе, каким образом гигантская масса может стянуться в геометрическую точку. Но мало этого...
Вообразим ситуацию, которую нередко рисуют авторы фантастических произведений. Путешественник на космическом корабле неосторожно приблизился к "черной дыре", и его затянуло в роковую бездну. Падая вместе с веществом, наш путешественник в какой-то момент пересечет ту критическую черту, из-за которой не может быть возврата, и устремится к центру "черной дыры". Что с ним произойдет дальше? Попробуем проследить его судьбу.
Приближаясь вместе с коллапсирующим веществом к центру "черной дыры", наш воображаемый наблюдатель обнаружит, что плотность и кривизна стремятся к бесконечности. Что это значит, мы даже представить себе не можем, поскольку наши современные физические теории к подобным состояниям заведомо неприменимы.
Однако есть одна любопытная гипотеза, согласно которой сжатие коллапсирующего вещества в какой-то момент затормозится, и до предела спрессованная материя вновь начнет расширяться.
Разумеется, реальный наблюдатель, попав в "черную дыру", был бы мгновенно скручен и разорван на атомы.
Но допустим, что воображаемый наблюдатель переживет чудовищное уплотнение и прочие "неприятности" и дождется начала обратного расширения. Продолжая двигаться с разлетающимся веществом, он еще раз, теперь уже в обратном направлении, пересечет критическую сферу и вновь окадается в "свободном" пространстве.
Но тут он столкнется с поразительной неожиданностью: это будет не то пространство, из которого он попал в "черную дыру", а пространство, расположенное по отношению к пространству нашей Вселенной в абсолютном будущем. В переводе на более понятный язык, это означает, что, сколько бы мы ни жили в нашем пространстве, в "то" пространство мы никогда не попадем, - только через "черную дыру", ибо смежное пространство, в которое она ведет, возникает, судя по всему, вместе с ее образованием. А обратного хода и вообще не существует.
Если все это действительно так, то "черные дыры" - не что иное, как входные отверстия сквозных тоннелей, соединяющих нашу Вселенную со смежными пространствами, своеобразные стоки, через которые вещество из нашего пространства перегоняется в соседние.
Напрашивается заманчивая возможность сопоставить с этим явлением те бурные выбросы вещества и энергии, которые мы наблюдаем в таких космических объектах, как квазары и ядра галактик. Не связаны ли квазары и ядра галактик с выходными отверстиями "черных дыр", расположенных в смежных вселенных?!
Вспоминается высказывание известного английского астрофизика Джемса Джинса, еще в 1928 г. предположившего, что центры галактик - это "особые точки", где материя втекает в наш мир из некоторого другого, совершенно постороннего пространства.
Не исключена также возможность, что по "тоннелям", связывающим различные миры, проникает не только материя, но и какие-то пока еще неизвестные нам воздействия, которые могут оказывать влияние на многие явления, происходящие в нашей Вселенной.
Однако эта заманчивая идея наталкивается на довольно простое возражение. В самом деле, если смежное пространство, связанное с "черной дырой", образуется лишь в момент ее возникновения, то во всей Вселенной может существовать лишь одно-единственное отверстие, соединяющее нас с той именно "черной дырой", которая-и породила наше пространство. Между тем квазары и активные ядра галактик мы наблюдаем в достаточно большом числе...
Но, может быть, все обстоит значительно сложнее, чем нам представляется? -До недавнего времени мы были убеждены в том, что наше пространство односвязно. Это значит, что во Вселенной нет оторванных друг от друга кусков, разделенных непреодолимыми "пропастями". Наличие "черных дыр" ставит односвязность мирового пространства под сомнение. А может быть, его геометрия еще запутаннее и возможны многочисленные причудливые переплетения смежных пространств, соединенных друг о другом через горловины, берущие свое начало в "черных дырах"?
ВЗГЛЯД В БУДУЩЕЕ
Главные трудности на горизонте современной астрофизики связаны с открытыми во Вселенной нестационарными явлениями.
Исследования последних десятилетий показали, что, вопреки существовавшим ранее представлениям, для многих фаз процесса развития космических объектов характерна, как мы уже знаем, резкая нестационарность.
В. И. Ленин неоднократно подчеркивал, что все явления в мире выступают как единство (тождество) противоположностей. Это означает "признание (открытие) -противоречивых, взаимоисключающих, противоположных тенденций во всех явлениях и процессах природы..." [Ленин В, И, Пола. собр. соч., т. 29, с. 317].
Каждая из противоречивых сторон единого целого способна превращаться в свою противоположность; противоположности переходят друг в друга; взаимодействие, борьба противоположностей и есть источник развития.
В этом - ключ и к пониманию природы нестациона рных объектов. Подобные объекты - это закономерные фазы эволюции космических объектов, поворотные пункты в развитии космических тел и их систем, связанные с переходами из одного физического состояния в другое.
Хотя удовлетворительно объяснить природу нестационарных явлений в рамках существующих представлений пока что не удается, нельзя отрицать, что законы и теории современной физики применимы к огромному диапазону условий и явлений. Но в то же время нельзя и абсолютизировать современную систему знаний о мире, представляющую собой лишь определенный этап в познании Вселенной. Эта система знаний лишь приблизительно и неполно отражает бесконечное многообразие мировых явлений и процессов, и она не только может, но и должна подвергаться уточнениям, обобщениям и дополнениям.
Уместно привести слова, сказанные по этому поводу известным советским ученым академиком АН Эстонской ССР Г. Н. Нааном: "На любом уровне развития цивилизации наши знания будут представлять лишь конечный островок в бесконечном океане непознанного, неизвестного, неизведанного. Всегда будут неразрешенные проблемы я неоткрытые законы, а каждая решенная проблема будет вызывать к жизни еще одну или несколько новых. Путь познания-дорога без финиша!"
Можно ли реально ожидать от современной астрофизики каких-либо сверхфундаментальных открытий?
В принципе это возможно. Но обнаружение новых законов природы может произойти лишь при изучении необычных физических условий и состояний материи. Возможно, одним из таких состояний является состояние сверхвысокой плотности в начале расширения Вселенной, в "черных дырах", а быть может, и внутри так называемых нейтронных звезд, обладающих чудовищной плотностью - миллионы и миллиарды тонн на кубический сантиметр. Во всяком случае законов, действующих в подобных условиях, мы пока не знаем. Так, есть предположение, что существует некая "элементарная длина", которая проявляет себя лишь в сверхплотных состояниях. И не исключено, что именно астрофизические исследования помогут ее обнаружить.
Ряд крупнейших современных ученых, таких как Ф. Хойл и Л. Бербидж, академик В. А. Амбарпумян, считают, что существующая физика явно недостаточна для объяснения явлений, происходящих в ядрах галактик и квазарах.
"Попытки описать их в рамках известных сейчас фундаментальных физических теорий, - пишет В. А. Амбарцумян, - встречаются с огромными, возможно, непреодолимыми трудностями. Я считаю, что именно от-астрономии следует уже в недалеком будущем ожидать выявления повых фактов, которые потребуют формулировки новых физических теорий, более общих, чем известные сейчас".
Однако, как отмечает известный советский физик-теоретик академик В. Л. Гинзбург, убедительный ответ ча вопросы, о которых идет речь, не может быть получен с помощью одних только рассуждений и дискуссий - он будет дан лишь самой жизнью, т, е. последующим развитием науки.
В настоящее время поток информации о физических явлениях в космосе растет с каждым днем, в особенности благодаря освоению астрофизиками рентгеновского и гамма-диапазона электромагнитных волн.
Обнаружен ряд весьма интересных источников рентгеновского излучения, зарегистрированы загадочные мощные вспышки гамма-излучения. Дальнейшее изучение этих и других физических явлений в космосе будет способствовать углублению и расширению наших знаний о Вселенной.
МИКРОМИР И МЕГАКОСМОС
То, что современная физика явно не завершена, что существующая физическая теория сталкивается с глубокими и серьезными трудностями и не дает ответа на ряд фундаментальных вопросов, признают и сами физики. Значит, вопрос сводится лишь к тому, откуда придут новые факты, необходимые, чтобы совершить очередной фундаментальный шаг вперед в познании закономерностей физических процессов. Будут эти факты получены в результате изучения Вселенной или добыты в области исследования микропроцессов?
На первый взгляд может показаться, что, несмотря на довольно тесное сотрудничество, астрономию и физику должны интересовать прямо противоположные задачи.
Для астрономов - это выяснение поведения объектов и процессов большого масштаба, раскрытие закономерностей мегакосмора, который характеризуется колоссальным расстоянием - до 1028 см и огромными промежутками времени до 1017 с. Наоборот, физики занимаются изучением элементарных частиц и явлений, закономерностей микромира, проникая в ультрамалые субатомные пространственно-временные области, вплоть до 10~15 см и до 10-27 с.
Однако было бы неверно думать, что задачи, о которых идет речь, исключают друг друга, что между ними нет ничего общего. Микромир и мегакосмос - две стороны одного и того же процесса, который мы называем Вселенной.
Какими бы гигантскими размерами ни обладала та или ипая космическая система, она в конечном итоге состоит из элементарных частиц. С другой стороны, многие микропроцессы являются отражением космических явлении, ох ватывающих колоссальные области пространства.
Необходимость совместного изучения микромира и мс гакосмоса, исследования глубоких связей между микро явлениями и мегапроцессами диктуется еще и тем обстоя тельством, что в том мире, в котором мы живем, в макро мире, свойства "большого" и "малого" скрещиваются, словно лучи прожектора,
Ведь и мы сами, и все окружающие нас объекты состоим из элементарных частиц, и в то же время мы являемся частью мегакосмоса.
Как мы уже отмечали, современная физика микромира проникла в области явлений, которые характеризуются масштабами порядка 10~15 см, а астрофизика изучает объекты, для которых характерны расстояния вплоть до 1028 см. Сорок три десятичных порядка! Таковы масштабы того пространственного материала, в пределах которого современная наука имеет возможность получать информацию о природных процессах.
При этом обнаруживается знаменательный факт - физические законы, действующие на разных участках этой шкалы, даже на противоположных ее концах нигде не вступают в противоречия друг с другом.
Это обстоятельство, с одной стороны, служит весьма убедительным свидетельством в пользу справедливости одного из важнейших положений материалистической диалектики о всеобщей взаимосвязи и взаимозависимости явлений природы, а с другой - говорит о том, что наши научные теории верно отражают свойства реального мира.
Более того, можно предполагать, что в недрах некоторых космических объектов, таких, например, как квазары или ядра галактик, существуют физические условия, при которых области микро- и мегапроцессов как бы сливаются. Здесь достигаются столь большие плотности материи, что силы тяготения становятся сравнимыми с электромагнитными и ядерными силами, действующими в микромире. По выражению известного советского физика-теоретика Я, А. Смородинового, природа предстает здесь перед нами в своем самом сложном варианте. А это значит, что, видимо, именно здесь запрятаны ключи к выяснению астрофаЗической истории Вселенной.
ОСНОВА - ВАКУУМ
Поскольку, с одной стороны, все вещественные космические объекты, будь то звезды или галактики, планеты или туманности, состоят из элементарных частиц, а с другой - Вселенная нестационарна и ее прошлое нетождественно ее настоящему, то естественно возникает вопрос о том, всегда ли элементарные частицы существовали в том же виде; в каком они существуют в нашу эпоху,
Согласно одной из обсуждаемых в современном естествознании гипотез, состоянием Вселенной, предшествовавшим образованию начального сгустка горячей плазмы, в результате расширения которого образовалась Метагалактика, был вакуум.
В свое время считалось, что вакуум - это просто ничто, пустота, пространство, полностью лишенное материи, своеобразная арена, на которой разыгрываются все происходящие в природе вещественные процессы.
Но этим, на первый взгляд таким естественным, само собой разумеющимся представлениям суждено было со временем претерпеть весьма серьезные изменения. Сначала выяснилось, что полной пустоты в природе не существует. Ее нет даже там, где совершенно отсутствует какое бы то ни было вещество. Уже в XIX столетии М. Фарадей (1791-1867) утверждал, что "материя присутствует везде и нет промежуточного пространства, не занятого ею".
Любая область пространства всегда заполнена если не веществом, то какими-то другими видами материи - различными излучениями и полями (например, магнитными полями, полями тяготения и т. п.).
Но даже с такой поправкой пространство все еще оставалось гигантским вместилищем, содержащим бесчисленное количество материальных объектов. Однако в дальнейшем выяснились более поразительные вещи. Представьте себе аа минуту, что нам каким-то образом удалось совершенно опустошить некоторую область пространства, изгнать из нее все частицы, излучения и поля. Так вот даже в этом случае осталось бы "нечто", определенный запас энергии, который у вакуума нельзя отобрать никакими способами.
Считается, что в вакууме, в любой точке пространства существуют "нерожденные" частицы и поля абсолютно всех возможных видов. Но их энергия недостаточно велика, чтобы они могли появиться в виде реальных частиц.
Наличие бесконечного множества подобных скрытых частиц получило название нулевых колебаний вакуума. В частности, в вакууме во всех направлениях движутся фотоны всех возможных энергий и частот (электромагнитный вакуум).
Таким образом, каждого из нас непрестанно пронизывает поток, состоящий из бесчисленного множества самых разнообразных частиц. Но так как эти частицы летят "и" всех направлениях, то их потоки взаимно уравновешивают друг друга, и мы ничего не ощущаем, как не ощущаем колоссального давления столба атмосферного воздуха, так как оно уравновешивается давлением воздуха изнутри организма человека.
Несмотря на всю свою кажущуюся неправдоподобность, представление о нулевых колебаниях вакуума отнюдь не эффектная физико-математическая конструкции.
В тех случаях, когда однородность потока скрытых частиц почему-либо нарушается и в каком-то направлении таких частиц движется больше, чем в противоположном, нулевые колебания вакуума начинают себя проявлять. При атом должны возникать специфические эффекты, и некоторые из них удалось экспериментально зарегистрировать...
Итак, вакуум спосо.бен при определенных условиях рождать частицы, и не исключено, что именно вакуум породил те частицы, из которых впоследствии сформировалась Метагалактика.
Согласно некоторым теоретическим предположениям, окружающее нас пространство на чрезвычайно малых расстояниях обладает необыкновенно сложной мелкозернистой структурой с фантастической плотностью энергии.
В каждом кубическом микрометре этой среды содержится такое количество энергии, которого вполне достаточно для образования многих триллионов галактик.
Таким образом, само пространство, окружающее пас, представляет собой практически бездонный источник энергии. Но эта энергия "запечатана" мощными силами тяготения. Однако для самой природы этот гравитационный барьер, по-видимому, не является непреодолимым препятствием. Как уже было упомянуто, вакуум способен порождать вещественные частицы. И вполне возможно, что вес те могучие энергетические всплески, которые мы наблюдаем во Вселенной, представляют собой результат таких взаимодействий вещества, излучения и вакуума, при которых из вакуума черпается энергия.
Но если так, то нет ничего невозможного в том, что секретом извлечения энергии из вакуума овладеет и наука и тем самым на вечные времена избавит человечество от заботы об энергетических ресурсах.
БОЛЬШОЕ И МАЛОЕ
Изучение "черных дыр" приводит нас к еще одному несколько неожиданному и экзотическому выводу о возможной связи микро- и мегаявлений.
Как и всякий объект, имеющий некоторую массу, "черная дыра" обладает определенным полем тяготения. Но поскольку из "черной дыры" не может "вырваться" наружу ни один физический сигнал, это поле носит статический характер.
Если "черная дыра" к тому же обладает электрическим зарядом, то ее электромагнитное поле тоже должно быть статическим. При этом теория показывает, что оба эти поля практически не зависят от того, каким образом заряд и масса распределены внутри "черной дыры". Если в момент образования "черной дыры" это распределение было неоднородно, то любые неоднородности в дальнейшем очень быстро сглаживаются.
Таким образом, для внешнего наблюдателя "черная дыра", в сущности, выглядит как точечный объект, обладающий определенными массой и зарядом. Если "черная дыра" к тому же вращается, то ей можно приписать еще одну характеристику - так называемый спин.
Тем самым возникает очевидная аналогия с элементарной частицей, для которой масса, заряд и спин также служат основными физическими характеристиками.
Разумеется, на данном уровне нащих знаний трудно сказать, что это только чисто внешнее сходство или отражение каких-то неизвестных нам глубинных зависимостей между микро- и мегакосмосом, но факт этот, бесспорно, заслуживает внимания. Тем более что несколько лет назад известным советским физиком-теоретиком академиком М. Марковым была предпринята интересная попытка. В ряде работ он показал, что даже в рамках современных физических теорий целая Вселенная при определенных условиях может со стороны казаться внешнему наблюдателю элементарной частицей, скажем протоном или нейтроном.
Но являются ли в таком случае вообще все наблюдаемые нами частицы гигантскими Вселенными? Вселенными, которые проявляют себя в нашем мире как элементарные частицы? Иными словами, и в мегамире, как и в микромире, в принципе меньшее может состоять из большего...
КАК ПОДОБРАТЬСЯ К ТОЧКЕ?
Если во Вселенной действительно много "черных дыр", то это означает, что в мировом пространстве имеется значительное количество точек, в которых плотность приобретает бесконечную величину. Такие точки называют сингулярными.
Интерес к сингулярности объясняется еще и тем обстоятельством, что, согласно теории расширяющейся Вселенной, она тоже "произошла" из сингулярности, грубо говоря, из точки. И каковы бы ни были различные варианты космологических моделей, устранить из них начальную сингулярность не удается. История Вселенной должна была либо начаться, либо периодически проходить через состояние точки с бесконечной плотностью, в которой любые объекты как бы прекращают свое существование.