– Конечно, – рассуждали математики и физики, – если бы мы знали в какое-то мгновение координаты всех молекул и их скорости, то могли бы предсказать судьбу мира.
– Каким образом?
– В принципе очень просто. Надо составить для каждой молекулы дифференциальное уравнение движения и затем решить эту систему.
– Простите. А сколько будет таких уравнений?
– Миллиард миллиардов или что-нибудь в этом роде.
– Но сколько потребуется?..
– Да, да, конечно, это невозможно, очень много времени потребуется. Но важно знать, что в принципе такая задача выполнима.
В XX веке подобная позиция кажется крайне наивной. Почему надо бояться признания случайности индивидуальных событий, из которых складывается наблюдаемое явление? Скорее всего это боязнь предоставить, так сказать, природе волю: вдруг она перестанет слушаться законов. Но страхи эти совершенно пустые.
Наличие в природе случайных событий ни в коей мере не означает, что у неё есть какая-то возможность выйти из подчинения законам.
Прогресс молекулярной физики приносил всё время подтверждение этому принципу и в то же время ставил под сомнение строгий механический детерминизм. Действительно, что толку в возможности предсказать поведение мира в «принципе», если это практически неосуществимо. Представьте, что из миллиарда миллиардов молекул вы не знаете координаты лишь одной из них. Этого мизерного незнания достаточно, чтобы вся предопределённость в поведении системы полетела бы вверх тормашками.
Таким образом, вероятностный подход – это не подсвечник, которым забивают гвоздь в отсутствие молотка, а новый великолепный инструмент, позволяющий выполнять главную задачу науки – предсказывать факты и при этом не требующий невозможной детализации молекулярного явления. Такой подход – не паллиативная мера, а единственно правильный выход из положения.
Непонимание неизбежности вероятностного описания сложных событий лежит в основе множества заблуждений. Приняв необходимость такой перестройки во взглядах, любой неформально мыслящий человек мог бы найти выход из «парадокса свободы воли», мучившего философов многие века.
Разумеется, утверждение, что все предопределено внешними условиями, вашими знаниями и разумом, справедливо. Однако мозг человека и его нервная система – машины исключительной сложности. И практически невозможно перечислить все факторы, из которых должно выкристаллизоваться его решение о том или ином действии. Достаточно упустить пустяк, чтобы воля оказалась практически свободной, а человек – ответственным за свои поступки.
Есть классы явлений, где наука отказывается (считает бессмысленным) делать предсказание единичного события. Я не могу сказать, под каким углом отправится путешествовать электрон, прошедший через отверстие пушки кинескопа. Я не могу сказать, куда отклонится (вправо или влево) в данный момент под ударами молекул дрожащее лёгкое крылышко, подвешенное в сосуде с сильно разреженным газом. Я не могу сказать, в какую точку земной поверхности упадёт листок, сорванный ветром с дерева. Я не могу сказать, сработает ли сейчас условный рефлекс, выработанный у собаки. Я не могу сказать, как среагирует на оскорбление именно этот юноша. Я не могу сказать, понравится ли картина Пикассо вот этой девушке… Однако это совсем не значит, что речь идёт о незакономерных явлениях.
Про один электрон я ничего не могу сказать заранее. Но про миллиарды миллиардов могу. Я сумею предсказать, какая доля электронов под каким углом отклонится при выходе из отверстия. Я могу предложить формулу, которая предскажет среднюю амплитуду колебания крылышка в газе. На основании экспериментальных исследований воздушных потоков я вычислю, как уляжется лиственный покров. На основе наблюдений за собакой я сумею предсказать долю положительных её реакций на раздражитель. Этические и эстетические ценности у каждого человека свои и зависят от его характера и воспитания. Но если я опрошу тысячи юношей и девушек, исследую их вкусы и поведение как функцию воспитания, то достаточно смело предскажу процент юношей, которые не стерпят оскорбления, и долю девушек, которым будут нравиться картины Пикассо.
Цель нашей книги – мы не раз это подчёркивали – показать всеобъемлющее значение метода исследования, использующего теорию вероятностей. Но в мире молекул вероятностный подход приобретает исключительное значение из-за того, что в обычных условиях отклонения от средних величин (флуктуации) ничтожно малы.
«Но флуктуации все же есть! – вправе возразить читатель. – Пусть они малы, но почему нельзя допустить взрыв парового котла из-за флуктуации плотности? В какой-то момент двинулись все молекулы в одну сторону, и готово. Вот вам и чудесный случай, сводящий на нет все предсказания науки».
Но не взлетают котлы на воздух без вполне реальной причины. И случайности в поведении молекул не приводят к непредсказуемому поведению вещей. Колебания давления, плотности, температуры, энергии и любых других величин, которые происходят из-за хаотичности движения молекул или, как говорят, благодаря флуктуациям, слишком ничтожны, чтобы породить чудо.
Оценим вероятность совершенно пустяковой флуктуации плотности газообразного вещества. Мысленно разделим сосуд с газом на миллиард ячеек. Теперь посчитаем, какова вероятность такого события, как удаление всех молекул из одной из этих ячеек.
Вероятность отклонения от равномерного распределения плотности подсчитывается без труда. Вероятность того, что одна молекула находится там, где нам хочется, равна 0,999999999. А вероятность нахождения во всех ячейках, кроме одной, всех N молекул будет равна 0,999999999. На первый взгляд может показаться, что это число близкое к единице. Но не надо забывать, что речь идёт об огромном числе молекул. Пусть их в сосуде всего лишь 10. Простая арифметика показывает, что искомая вероятность будет равна 10 в степени (—4·10), то есть единице, поделённой на единицу с сорока миллиардами нулей (P =1/(4·10)).
Комментарии, как говорится, излишни.
Именно благодаря тому, что вещи, с которыми мы имеем дело в жизни, построены из невообразимо большого числа молекул, они не могут преподнести нам никаких вероятностных сюрпризов.
Новый подход привёл к созданию важнейшего раздела физики: родилась статистическая физика, переписавшая на языке молекул и вероятностей всю термодинамику (учение о тепле) и проложившая неожиданные мостики между явлениями, которые, как казалось ранее, не имели между собой ничего общего.
Поговорим подробнее об этих важнейших приложениях теории вероятностей.
Энергия сохраняется
Закон сохранения энергии вряд ли можно рассматривать как чисто опытное правило. В законе содержатся два утверждения: первое – энергию нельзя получить из ничего, и второе – энергия не может бесследно пропасть.
Первая половина этого утверждения известна как закон невозможности вечного двигателя (перпетуум-мобиле).
Уже давно человечество пришло к досадному заключению, что создание двигателя, который ничем не питается, вещь невозможная. Да и человеческой психологии представляется весьма естественным положение, что «без труда не выловишь и рыбку из пруда». Поэтому осуществление вечного двигателя представлялось научным деятелям средних веков задачей столь же божественной, как и изобретение философского камня или живой воды.
Однако многие наши научные предшественники не рассуждали согласно логике XX века. Признавая, что получение энергии из ничего противоречит всему, чему учит жизнь, они тем не менее отважно пускались на поиск вечного движения.
Об осуществлении перпетуум-мобиле мечтает Бертольд, герой «Сцен из рыцарских времён» Пушкина. «Что такое перпетуум-мобиле?» – спрашивает его собеседник. «Это вечное движение, – отвечает тот. – Если найду вечное движение, то я не вижу границ творчеству человека. Делать золото – задача заманчивая, открытие может быть любопытное, выгодное, но найти разрешение перпетуум-мобиле…»
Вечный двигатель – это машина, которая должна не только преодолевать неизбежно возникающие силы трения, но и вращать колеса или подымать грузы снизу вверх. Работа эта должна происходить вечно и непрерывно, а двигатель не должен требовать ни топлива, ни рук человеческих, ни энергии падающей воды – словом, ничего взятого извне.
Первый в истории, дошедший до наших дней, достоверный документ об «осуществлении» идеи вечного двигателя относится к XIII веку. Любопытно, что спустя шесть веков, в 1910 году, в одно из московских научных учреждений был представлен на «рассмотрение» «проект» буквально такого же двигателя. Мы помещаем его изображение на этой странице и думаем, что многие с ним знакомы. При вращении колеса грузы перекидываются вправо и поддерживают, по мысли изобретателя, тем самым движение, так как откинувшиеся грузы давят гораздо сильнее, действуя на более далёком от оси расстоянии (большее плечо). Построив эту отнюдь не сложную «машину», изобретатель убеждается, что, повернувшись по инерции на один или два оборота, колесо останавливается. Но это не приводит его в уныние. Он думает, что где-то допущена ошибка и достаточно удлинить рычаги или изменить форму выступов, как машина заработает. И бесплодная работа, которой многие доморощенные изобретатели посвящали всю свою жизнь, продолжается, но, разумеется, с тем же успехом.
Вариантов вечных двигателей предлагают в общем немного: разнообразные самодвижущиеся колеса, в принципе не отличающиеся от описанного; гидравлические двигатели, использующие сифоны, капиллярные трубки или потерю веса в воде; притяжение железных тел магнитами – вот, по сути дела, и все. Далеко не всегда, правда, можно было догадаться, за счёт чего же должно происходить вечное движение.
Ещё до установления закона сохранения энергии утверждение о невозможности перпетуум-мобиле мы находим в официальном заявлении Французской академии, сделанном в 1755 году. На своём заседании «бессмертные» решили не принимать больше для рассмотрения и испытания никакие проекты вечных двигателей.
Многие механики XVII—XVIII веков уже клали в основу своих рассуждений аксиому о невозможности перпетуум-мобиле, несмотря на то, что понятие энергии и закон сохранения энергии вошли в науку много позже.
Таким образом, можно сказать, что та часть закона сохранения энергии, которая относится к возникновению энергии, носит эмпирический характер.
Иначе обстоит дело со второй половиной закона, утверждающей, что энергия не пропадает… Откуда это видно? Совсем наоборот. Закрутили рукой колесо, руку отняли – остановится. Кием наподдали бильярдный шар – через две-три секунды его энергия исчезла. Вот вы сняли с плиты чайник. Весело подпрыгивающая крышка постепенно успокаивается, струя идущего из носика пара слабеет и прекращается вовсе, а ещё через час даже нельзя сказать, что чайник недавно кипел. Куда делась энергия?
На все эти вопросы отвечают – энергия рассеялась. Но чем эта фраза лучше утверждения – энергия исчезла?
Понять, куда девается энергия, можно лишь в том случае, если допустить, что весь мир построен из мельчайших движущихся частичек – молекул и атомов. Только на этом пути надо искать опытные подтверждения сохранения энергии.
Тщательные наблюдения показывают, что потеря механической энергии сопровождается большей частью нагреванием окружающих предметов.
Переверните велосипед колёсами кверху. Раскрутите педалями заднее колесо. Подшипники у велосипеда превосходные, и колесо будет вращаться долго. Но в конце концов оно остановится. Если я вам скажу, что в результате пропажи механической энергии колеса нагрелись воздух и подшипник, то вы можете мне не поверить (нагрев незначительный). Но попробуйте остановить колесо рукой. Осторожней, а то обожжёте ладонь. Теперь вы в полном смысле снова «ощутили» переход механической энергии в тепло. Как же этот простой факт спасает закон сохранения? Очень просто. Чем выше температура тела, тем быстрее движутся частички. Следовательно, повышение температуры (руки, воздуха, подшипников) говорит об увеличении энергии движения молекул. Значит, видимая пропажа механической энергии, то есть энергии движения больших тел, сопровождающаяся нагревом, есть не что иное, как превращение энергии движения больших тел в энергию движения частичек.
Как проверить эту гипотезу?
Прежде всего надо найти общую меру механической энергии и внутренней тепловой энергии или, что то же самое, общую меру работы и тепла.
Первый опыт для установления количественного соотношения между теплом и работой был проделан известным физиком Румфордом (1768—1814 гг.). Он работал на орудийном заводе, где изготовляли пушки. Когда сверлили канал ствола орудия, то выделялось тепло. Как оценить его? Что принять за меру тепла? Румфорду пришло в голову поставить работу, производимую при сверлении, в связь с нагреванием того или иного количества воды, идущей на охлаждение ствола, на то или иное число градусов.
Для этого, конечно, надо проводить сверление в воде. Сопоставляя величину произведённой (пропавшей) работы с количеством возникшего тепла (произведение массы воды на прирост температуры), можно прийти к заключению, что исчезновение механической энергии сопровождается появлением пропорционального количества теплоты. Подобными опытами и была найдена общая мера тепла и работы.
Первоначальное определение так называемого механического эквивалента теплоты дал французский физик Сади Карно. Этот выдающийся исследователь скончался в 36-летнем возрасте в 1832 году и оставил после себя рукопись, которая была опубликована лишь спустя 50 лет. Открытие Карно оставалось неизвестным и не повлияло на развитие науки. А он весьма строго установил, что подъем одного кубического метра воды (1 тонна) на высоту одного метра требует такой же энергии, какая нужна для нагревания одного килограмма воды на 2,7 градуса (точнее, 2,3 градуса).
В 1842 году публикует свою первую работу гейльброннский врач Юлиус Роберт Майер. Хотя Майер называет знакомые нам физические понятия совсем по-другому, все же внимательное чтение его работы приводит к выводу, что в ней изложены существенные черты закона сохранения энергии. Майер различает внутреннюю энергию (тепловую), потенциальную энергию тяготения и энергию движения тепла. Он пытается чисто умозрительно вывести обязательность сохранения энергии при различных превращениях. Чтобы проверить это утверждение на опыте, надо иметь общую меру для измерения этих энергий. Майер вычисляет, что нагревание килограмма воды на один градус равноценно поднятию одного килограмма на 365 метров.
Во второй своей работе, опубликованной три года спустя, Майер отмечает универсальность закона сохранения энергии – возможность применения его в химии, биологии и космических явлениях. К различным формам энергии Майер добавляет магнитную, электрическую и химическую.
Большая заслуга в открытии закона сохранения энергии принадлежит замечательному английскому физику (пивовару из Сальфорда в Англии) Джемсу Прескотту Джоулю, работавшему независимо от Майера.
Если Майер полагает, что законы природы могут быть выведены путём одних рассуждений (гегелевский подход к миру, типичный для немецкой идеалистической философии того времени), то основной чертой Джоуля является строгий экспериментальный подход к явлениям. Джоуль задаёт природе вопрос и получает на него ответ путём глубоко продуманных, целеустремлённых опытов. Нет сомнения, что при их проведении он одержим одной идеей – найти общую меру тепловых, химических, электрических и механических действий, показать, что во всех этих явлениях энергия сохраняется. Джоуль сформулировал свою мысль так: «В природе не происходит уничтожения силы, производящей работу, без соответствующего действия».
Первая работа Джоуля докладывалась им 24 января 1843 года, а 21 августа того же года Джоуль доложил свои результаты по установлению общей меры тепла и работы. Нагревание килограмма воды на один градус оказалось равноценным подъёму одного килограмма на 460 метров.
В последующие годы Джоуль затрачивает много труда на то, чтобы уточнить значение и доказать полную универсальность теплового эквивалента. К концу 40-х годов становится ясно, что количество возникающей теплоты будет пропорционально количеству затраченной работы всегда – вне зависимости от способа перехода работы в тепло.
В том же XIX веке было установлено, что нельзя «бесплатно» расплавить кусок льда. Впервые был осуществлён опыт, ставший впоследствии классическим школьным и который можно повторить в любое мгновение. Попробуем его описать. Возьмите несколько кусочков льда из холодильника и бросьте их в стакан, вставьте в ледяное крошево термометр и всю эту «экспериментальную установку» водрузите на плиту. Результат опыта неизменен: пока лёд не растает, градусник будет показывать всё время ноль градусов. Итак, энергия потрачена (газ сгорел), но она не нагрела, не возбудила движение. Куда же она девалась?
До сих пор, говоря об энергии молекул, мы подразумевали только энергию их движения. Но механическая энергия тел бывает двух сортов: энергия движения (кинетическая) и энергия, определяющаяся взаимодействием этого тела с Землёй или соседними телами, так называемая потенциальная энергия.
Камень на высокой горе обладает большей потенциальной энергией, чем тот же камень, лежащий на вершине холмика. Два шарика, сжатые мягкой пружиной, обладают меньшей энергией, чем два шарика, сжатые жёсткой пружиной (если эти шарики освободить от связи, они разлетятся с большей скоростью). Вполне естественно распространить ту же идею на молекулы и предположить: чем сильнее связаны молекулы, тем больше внутренняя потенциальная энергия тела. Чтобы всё стало понятно в опыте со льдом, надо лишь принять, что в твёрдом льде молекулы связаны друг с другом сильнее, чем в жидкой воде. Нагрев без повышения температуры означает, что энергия, затраченная на плавление, ушла на замену сильных связей более слабыми, Впрочем, если продолжать греть воду, нагревая, превратить её в пар, то, подсчитав суммарные расходы, можно сказать, сколько энергии потребовалось на полное разрушение связей между молекулами.
Обоснование закона сохранения энергии на этом позвольте закончить. Мы утверждали, что видимые пропажи энергии – это на самом деле переходы её во внутреннюю энергию тела. Если же рассматривать все молекулы в каком-нибудь замкнутом объёме (замкнутая система), то для него закон сохранения будет звучать так: суммарная механическая энергия молекул не меняется. Впервые закон сохранения в таком виде был сформулирован Германом Гельмгольцем на заседании Берлинского физического общества 23 июля 1847 года.
Переход механической энергии во внутреннюю энергию тела – типичный случайный процесс. Бессмысленно спрашивать, как изменились положение или скорость какой-то определённой молекулы в результате такого перехода. Грамотная постановка вопроса такова: чему равна вероятность того, что молекула сдвинется со своего места на такое-то расстояние, или изменит свою скорость на столько-то процентов, или разорвёт свою связь с соседками.
Глубокое понимание превращения энергии невозможно без использования теории вероятностей.
Далеко не всегда закон сохранения можно проверить. Попробуй, например, докажи на опыте, что энергия остаётся неизменной во время замедленного движения катящегося по бильярдному сукну шара. Однако число случаев, когда в самых сложнейших явлениях баланс затрат и доходов сходится «до копейки», столь велико, что вера в универсальную справедливость закона является категорической у всех естествоиспытателей. Без сомнения, эта вера не подвергалась бы сомнениям, если бы не молекулярно-кинетическое обоснование закона. В свою очередь, молекулярно-кинетическая гипотеза перестала быть гипотезой, а стала фактом лишь после исследования броуновского движения. А что касается броуновского движения, то его анализ был бы невозможен без привлечения вероятностных соображений.
Так что же, дорога от игры в «орёл» и «решку» ведёт к закону сохранения энергии?
Без сомнения. И это не так уж удивительно. Мало найдётся областей знания, к которым не тянутся нити, и не только нити, но и канаты, от идеи вероятности.
Самый трудный параграф
Человеку нужны машины, а чтобы они работали, надо уметь создавать движение – двигать поршни, вращать колеса, тянуть вагоны поезда. Движение машин требует работы. Как получить её?
Казалось бы, вопрос ясен: работа происходит за счёт энергии. Надо отнять у тела или системы тел энергию – тогда получится работа.
Рецепт вполне правилен. Но как совершить такое превращение? Всегда ли возможно отобрать энергию у тела? Какие для этого нужны условия?
Мы сейчас увидим, что почти вся энергия, имеющаяся вокруг нас, совершенно бесполезна: она не может быть превращена в работу, и её никак нельзя причислить к нашим энергетическим запасам. Разберёмся в этом.
Отклонённый от положения равновесия маятник рано или поздно остановится; раскрученное рукой колесо перевёрнутого велосипеда сделает много оборотов, но в конце концов тоже прекратит движение. Нет никакого исключения из важного закона: все окружающие нас тела, приведённые в движение каким-либо толчком, в конце концов останавливаются.
Если имеется два тела, нагретое и холодное, то тепло будет передаваться от первого ко второму до тех пор, пока температура не уравняется. Тогда теплопередача прекратится, и состояния тел перестанут изменяться: установится тепловое равновесие.
Нет такого явления, при котором тела самопроизвольно выходили бы из состояния равновесия. Не может быть такого случая, чтобы колесо, сидящее на оси, начало бы вертеться само по себе. Не бывает и так, чтобы нагрелась сама по себе кастрюля с водой, поставленная на холодную, незажженную плиту.
Стремление к равновесию означает, что у событий имеется естественный ход: тепло переходит от горячего тела к холодному, но не может самопроизвольно перейти от холодного к горячему.
Механическая энергия колеблющегося маятника благодаря сопротивлению воздуха и трению в подвесе перейдёт в тепло. Однако ни при каких условиях маятник не начнёт раскачиваться за счёт тепла, имеющегося в окружающей среде.
Тела приходят в состояние равновесия, но выйти из него не могут.
Этот важнейший закон природы (его называют вторым началом термодинамики) сразу же показывает, какая часть находящейся вокруг нас энергии совершенно бесполезна. Ею оказывается тепловое движение молекул тех тел, которые находятся в состоянии равновесия. Такие тела не способны превратить свою энергию в механическое движение.
«Мёртвая» часть энергии огромна. Если понизить температуру килограмма земной породы на один градус, то он, имеющий теплоёмкость 0,2 ккал/кг, потеряет 0,2 большой калории. Это относительно небольшая величина. Однако прикинем, какую энергию мы получили бы, если бы удалось охладить на тот же один градус весь земной шар, масса которого равна 6·10килограммов. Умножая, мы получим 1,2·10больших калорий. А это баснословная энергия: в настоящее время электроэнергия, вырабатываемая ежегодно электростанциями всего мира, равна 10– 10больших калорий, то есть в миллиард раз меньше.
Примирившись с тем, что нельзя предложить двигатель, создающий работу из ничего (так называемый вечный двигатель первого рода), и воодушевившись грандиозными числами, которые мы только что привели, горе-изобретатели взялись за конструирование двигателей, работающих за счёт одного лишь охлаждения среды (так называемый вечный двигатель второго рода). Однако если водитель транспорта проехал на красный свет даже при минимальной скорости, ему не оправдаться тем, что он ехал с допустимой скоростью в 30 километров в час. Подчиняться надо обоим правилам.
То же относится и к конструкторам двигателей, которые попытались бы защитить своё создание ссылкой на то, что их идеи не противоречат закону сохранения энергии.
Этого мало! Утверждение, что система тел, находящихся при одной температуре, энергетически бесплодна, есть также закон природы.
Итак, для получения работы (то есть отнятия энергии) необходимо прежде всего нарушить тепловой покой. Для этого надо, в свою очередь, затратить энергию. Только тогда удастся осуществить процесс перехода тепла от одного тела к другому или превращения тепла в механическую энергию.
Создание потока энергии – вот необходимое условие получения работы. На «пути» этого потока возможно превращение энергии тел в работу.
Поэтому к энергетическим запасам, полезным для людей, относится энергия лишь «неуспокоившихся» тел.
Второе начало термодинамики, сущность которого мы изложили, фиксирует факты. Но каков внутренний смысл этого закона? Почему вся вселенная – это дорога к равновесному состоянию? Почему предоставленные самим себе тела неотвратимо приближаются к состоянию, когда механическое движение прекращается, а температуры тел уравниваются?
Вопрос этот очень важен и интересен. Кроме того, он труден, но мы подготовлены к ответу на него. Дело заключается в том, что равновесное состояние является наиболее вероятным.
Нам придётся потратить одну-две странички на объяснение этой мысли. Прежде всего о самом слове «состояние». Оно употребляется в физике в двух смыслах. А чтобы между ними не путаться, введём два термина, которые несколько некрасивые и громоздкие, но, что поделаешь, зато научные и общепринятые. Итак, надо различать макросостояния тел и их микросостояния.
Термин «макросостояние» совпадает с житейским словом. Помните обычный утренний обмен фразами доктора и сестры в больнице?
– Каково состояние больного? – спрашивает врач.
– Без изменения, – отвечает сиделка, – температура та же, давление и пульс те же самые.
Макросостояние газа, жидкости или твёрдого тела характеризуются также в первую очередь температурой и давлением. Но, разумеется, теперь речь идёт не о давлении крови, а о давлении, которое на тело оказывает окружение. Давление и температура – основные показатели, говорят – параметры, состояния. Если давление и температура не меняются, то с телом ничего не происходит, все свойства его сохраняются.
Другой подход необходим, если речь идёт не о газе в баллоне, не о жидкости в сосуде и не о куске твёрдого тела, а о механической системе: машине, состоящей из множества рычагов и шестерёнок, теперь макросостояние будет описано, если указать взаимное расположение частей механизма, а также скорости, с которыми эти части движутся.
Приходится, как видим, и в макросостояниях различать два вида состояний – термодинамическое и механическое. И описываются они разными параметрами.
До того как молекулы вышли на сцену, эти два варианта описания казались совершенно не связанными. Относились они к разным случаям: одно к покоящейся жидкости или газу, другое – к механическим устройствам и ничего общего друг с другом не имели. Параметры, употребительные в термодинамике, – это давление и температура, механические параметры – это координаты и скорости. И одно к другому никогда не сводилось.
Перевод термодинамики на молекулярный язык сразу же выявил наличие мостика между этими двумя описаниями. С точки зрения молекулярной гипотезы всякое тело есть система взаимодействующих молекул, то есть не что иное, как механическая система, нечто вроде рычагов и шестерёнок. А состояние такой системы задаётся, как мы только что видели, взаимным расположением и скоростями её частей – в нашем случае молекул. Что же, оказывается, дело обстоит не так уж сложно? Термодинамическое макросостояние есть не что иное, как механическое состояние системы молекул?
Осторожнее, повременим с таким заключением. Если немного подумать, то станет ясно, что дело обстоит не так уж просто.
В термостате стоит стакан с жидкостью. Её температура и давление неизменны. Термодинамическое состояние её в каждое мгновение одно и то же. Кажется, она – само постоянство и покой. Но ведь молекулы этой жидкости совершают свой вечный тепловой танец! Значит, механические состояния молекул, которые образуют эту самую жидкость, меняются каждое мгновение! Значит, постоянство и покой обманчивы и жидкость живёт бурной жизнью?!
Раз уж механическое состояние системы молекул, составляющих жидкость, не отражает её «макроскопического спокойствия», то назовём его иначе: термин – «микросостояние» будет подходящим по смыслу дела. Теперь мы скажем: каждое состояние (макросостояние) осуществляется беспрерывной сменой огромного числа микросостояний.
Представьте себе, что система состоит из трех перенумерованных молекул. Микросостояние системы будем описывать донельзя грубо, а именно, поделим сосуд, в котором носятся эти три молекулы, на три отсека, а что касается скорости, то разобьём их на две группы – до 1 км/сёк (малая скорость) и больше 1 км/сёк. Каково будет число микросостояний в этом смехотворно простом случае? Считайте, 8 вариантов распределения скоростей и 27 вариантов положений, то есть 27·8! = 216 микросостояний для модели газа, упрощённой до смешного!
Нетрудно понять, что в реальных случаях, когда для характеристики системы требуется задать точно месторасположение и скорости миллиарда миллиардов молекул, числа микросостояний, относящиеся к одному макросостоянию, становятся непредставимо большими.
В маленьком газовом баллончике модной зажигалки носятся молекулы газа, который зовётся пропаном. Каждое мгновение расположение молекул и их скорости меняются, каждое мгновение – другое микросостояние.
Но хотя число микросостояний огромно, оно всё же не бесконечно велико. Физики могут сосчитать число микросостояний в баллончике зажигалки. Так как мне неизвестны технические параметры этой зажигалки, то я могу сообщить лишь порядок интересующей нас величины. Число микросостояний в баллончике записывается 10цифрами!!! Число печатных знаков в книжке, которую вы читаете, меньше миллиона (10). Значит, чтобы записать интересующее нас число микросостояний, потребовалась бы книга в сто миллиардов раз (10) более толстая, чем эта.
Надеюсь, что мне удалось поразить ваше воображение, но моя задача не в этом. Цель этого самого трудного параграфа – показать фундаментальную роль теории вероятностей в учении о равновесии тел. К этой цели мы приблизились вплотную, но, чтобы вы отдохнули, мне хочется разрешить себе немного пофилософствовать на тему о трудности популярного изложения научных истин.