Современная электронная библиотека ModernLib.Net

Невероятно – не факт

ModernLib.Net / Математика / Китайгородский Александр Исаакович / Невероятно – не факт - Чтение (стр. 8)
Автор: Китайгородский Александр Исаакович
Жанр: Математика

 

 


Для ряда других качеств человеческой души можно было бы предложить простые меры. Скажем, давно уже предлагалось измерять милосердие количеством подаваемой милостыни. Нетрудно предложить способ измерения конформизма – так называется свойство людей поддаваться чужому мнению безотносительно очевидности. В одном психологическом исследовании двадцати человекам предлагалось ответить, какой из трех звуковых сигналов наиболее громкий. Девятнадцать из них были подговорены – они давали неверные ответы. Выяснялось, до какой степени способен двадцатый настоящий испытуемый противостоять ошибочности в своей оценке громкости. Различие в силе сигналов, которого не желал замечать испытуемый, служило мерой конформизма.

Примеры эти показывают реалистичность введения количественных индексов и коэффициентов при обсуждении ума и характера отдельного человека.

Введение в обиход науки подобных индексов позволяет проводить исследование человеческой «души» методами естествознания, которые в существенной части сводятся к установлению функциональных зависимостей. Изучение природы немыслимо без построения графиков, на которых некий игрек меняется в зависимости (в функции) от разных иксов. Располагая индексами счастья и интеллигентности, смелости и конформизма, можно пытаться решать разные задачи – строить графики, связывающие между собой проявления качеств души с внешними обстоятельствами или изучать связь между разными душевными свойствами, например умом и добротою.

Поскольку результаты таких работ будут иметь количественный характер, они могут быть представлены на языке цифр и использованы в ЭВМ в разных целях.

Но теперь перед нами встаёт новый вопрос. Способ измерения душевного качества, то есть метод получения соответствующего индекса, предлагается исследователям. Если для одной цели предложено много методов измерения, то как выбрать из них наилучший? Ответ таков: надо сопоставить числовые оценки с общественным мнением. Если разработанная процедура измерения I.Q. приводит нас к тому, что Иван умнее Петра в 2 раза, а Пётр умнее Виктора в 1+1/2 раза, то статистика мнений, проведённая среди их знакомых, должна привести к такому же результату.

Статистика мнений

Итак, одно из естественных требований, которое мы предъявим к моральному индексу, характеризующему этические нормы, – это соответствие общественному мнению. Мы скажем, что индекс выбран правильно, если подавляющее большинство членов общества согласится с тем, что семья Ивановых в два раза счастливее семьи Петровых, как этого требуют индексы счастья 106 и 53, найденные по той или иной процедуре.

По этой причине нам представляется важным, чтобы разработка моральных индексов шла параллельно со статистическими исследованиями общественного мнения. Надо иметь представление о том, как понимают такие-то слои такого-то общества в такое-то время и в такой-то стране слова: хороший и дурной, правильный и ложный, нравственный и безнравственный, смелый и трусливый…

Для этого нужна статистика общественного мнения. Существуют лаборатории и даже институты, посвятившие свою деятельность анализу общественного мнения.

Не так давно в одном из наших журналов был опубликован результат обработки анкет школьников, которым предлагалось расположить множество моральных качеств в ряд по ценности. Шкала добродетелей и пороков оказалась переменчивой и разнообразной. На порядок расположения свойств души влияли возраст опрошенных, их пол, место жительства и многое другое.

В одном многотомном английском труде приводился анализ ответов десяти тысяч девушек на вопросы о любви, семье и браке. Опрашиваемые были разбиты по возрастным группам и по вероисповеданию. Выявился ряд интересных закономерностей, лишний раз показавший, как сильно шкалы моральных ценностей зависят от воспитания.

Богатый статистический материал лежит в архивах издательств. Редакции многих наших молодёжных газет рассказывают на своих страницах трогательные истории о девушках, которые не раскрыли юношам свою любовь, или о жёнах, ушедших от мужей, не простив им случайной измены, или о юношах, оставивших без помощи в лесу заболевших товарищей, поскольку иначе не смогли бы выполнить важного задания… Рассказы сопровождаются обращением редакции к читателям: а как бы вы поступили на их месте?

Из ответов читателей, подборку которых редакции обычно публикуют, ясно следует, что часть из них полагает поступок героя хорошим, а другая часть столь же запальчиво утверждает, что герой поступил плохо. Разумеется, всегда есть группа читателей, которые на вопрос, поставленный ребром, отвечают уклончиво и с оговорками. Как бы то ни было, статистик всегда сумеет разбить оценки поступков героя газетного рассказа либо на две категории – хорошо и плохо, либо на три: хорошо, плохо и «смотря по тому…», а может быть, если груда писем достаточно велика, сумеет разбить оценки более детально (полное одобрение, одобрение, слабое одобрение, безразличное отношение, слабое неодобрение, неодобрение, полное неодобрение), ввести балльную шкалу и построить гауссову кривую.

В результате подобной статистической обработки поступок героя получает количественную оценку, которая может формулироваться, например, так – поступок с баллом 3 на «шкале хорошего».

С помощью анкетного опроса можно, конечно, оценивать не только поступки героев рассказа, но также и отношение общества к тем или иным шкалам моральных индексов.

Таким образом, представляется достаточно очевидным, что развитие науки, изучающей мораль общества как функцию многих переменных, связано с переносом на эту важную область знания методов естествознания. С одной стороны, эти методы включают в себя разработку способов измерения моральных качеств и жизненных ситуаций, с другой – предполагают проведение статистики общественного мнения. Эти два подхода находятся примерно в соотношении теории и эксперимента: предложенные шкалы измерений проверяются статистическим опросом.

Хотелось бы, однако, подчеркнуть, что короткий разговор о важных проблемах не носит профессионального характера. Задача этой книги состоит в том, чтобы дать обзор некоторых областей, где подход с точки зрения теории вероятностей полезен и целесообразен. На последних страницах мы увидели, что к этим областям относятся и некоторые разделы этики. Иначе и быть не могло, поскольку суждения о моральных истинах являются типичными случайными величинами, а «среднее» суждение оказывается сложной функцией от признаков, характеризующих группу людей.

Казалось бы, все сказанное можно скорее обвинить в тривиальности, нежели в оригинальности, и что статистика мнений и поведения, без сомнения, нужна. И всё же, судя по дискуссиям на страницах газет, есть люди, которые встречают крайне недружелюбно любые попытки «массового» рассмотрения этических проблем.

Противники социальной, этической и эстетической математики относятся, видимо, к тем лицам, у которых особенно ярко представлена жажда «единственности». Разумеется, жажда эта плохо мирится с представлением о том, что твоё мнение, твоё поведение, твоё моральное кредо являются всего лишь одной точкой на колоколообразной статистической кривой. И в этом смысле она, то есть такая жажда, есть социальное зло, поскольку ведёт либо к нетерпимости, либо к презрительному отгораживанию своего «я» от «серой» массы. А и то и другое одинаково неприятно.

Ещё несколько слов об исследованиях эстетического вкуса.

Анкетные опросы, которые ставят своей целью выяснить отношение читателей или зрителей к произведениям искусства, проводятся в последнее время достаточно часто.

Не так давно вышла в свет книга Л. Когана «Искусство и мы», в которой подводятся итоги анкетного опроса рабочей молодёжи нескольких промышленных предприятий Среднего Урала. Много интересного содержат приводимые в этой книге таблицы. Вот, например, как выглядит распределение ответов на вопрос: «Если у Вас есть своя фонотека, то какая в ней преимущественно музыка?»

Симфоническая – 4,2 процента;

песни – 38,7 процента;

джаз – 28,0 процента;

разная – 43,8 процента.

Сведения такого типа могут служить руководством всем, кто связан с выпуском пластинок или организацией концертов. Если ответственные лица стремятся к финансовой выгоде, то они смело расширят песенный и джазовый репертуар. Если они видят свою задачу в развитии вкуса слушателей к классической музыке, то проведённая анкета подскажет им необходимость развернуть соответствующую пропаганду.

Интерес к статистике мнений о произведениях искусства очень велик. Я могу судить об этом не только по газетным публикациям, но и по письмам, которые получаю от читателей.

Так, например, превосходное исследование провёл товарищ Н. из города Приозёрска. Он организовал широкий опрос мнения слушателей о 300 песнях. В анкетах предлагалось дать оценку по пятибалльной шкале: высшая оценка – плюс 2, хорошая – плюс 1, равнодушие – 0, плохое отношение – минус 1 и резко отрицательное – минус 2. К интересным результатам этого опроса относятся два вывода. Во-первых, оказалось, что средние мнения обладают очень высокой степенью объективности. По мере роста числа опрашиваемых относительные отклонения от среднего мнения становятся все меньше и меньше. И второй занятный результат: среднее впечатление от всех 300 песен оказалось равным плюс 1,1. Так что наши композиторы и авторы текста работают неплохо. Товарищ Н. не сообщил мне, какие песни получили среднюю отрицательную оценку. Надеюсь, что эти сведения ему удастся обнародовать. Они наверняка окажутся полезными и авторам, и издателям.

Практической пользой не ограничивается роль социологии искусства. К её информации внимательно приглядываются исследователи, желающие получить ответ на вопросы «почему красиво», «почему интересно», «почему нравится». Учёный, интересующийся природой вещей, не удовлетворится тем, что анкетный опрос доказывает объективность эстетической оценки и что суждениями хорошо образованных людей можно почти единодушно отличить талантливые произведения от бесталанных. Исследователю красоты хочется найти те линии и цвета, сочетания слов или звуков, которые способны привести в состояние восторга ту или иную группу поклонников искусства. Но ведь ясно, что без хорошо продуманных социологических исследований эстетического вкуса этой задачи не решить.

Две огромные и сложнейшие проблемы – политика художественного воспитания и природа эстетического восприятия – ещё далеки от решения. Обсуждать их на страницах этой книги нет возможности. Наша задача была намного скромней – показать, что методы теории вероятностей и здесь оказываются нужными и полезными.

Часть четвёртая

Частицы, из которых построен мир

О природе вещей

Задавать всяческие вопросы, умные и глупые, глубокие и поверхностные, неожиданные и тривиальные, – неотъемлемое качество ума человеческого.

Никаких недоразумений не бывает, если ответы требуют не столько слов, сколько действия. Легко удовлетворить любопытство человека, желающего знать, «из чего построено» или «как устроено». Если речь идёт о приборе, машине, кукле или о бабочке, лежащей на предметном стёклышке, то можно не рассказывать о структуре словами, а просто разобрать на глазах у спрашивающего таинственный предмет на части.

Нет сомнения, что подобные «анатомические» вопросы человек начал задавать на самой заре цивилизации. Но любознательность, конечно, не угасала и в тех случаях, когда получить ответ экспериментальным путём было невозможно. «Эксперимент» кончался на десятых долях миллиметра. Дальше наши предки могли пускать в ход лишь свою фантазию.

Первые ответы на вопрос, «из чего построен мир», дошедшие до нас, родились в Древней Греции более 25 веков назад. Нам эти ответы кажутся донельзя странными. Логику Фалеса, утверждавшего, что все состоит из воды, понять, скажем прямо, трудно. Нелегко поверить Анаксимену, утверждавшему, что все состоит из воздуха, или Гераклиту, который полагал, что мир состоит из огня.

Более поздние любители мудрости (так переводится слово «философ») не поддержали эти слишком элементарные теории и увеличили число первооснов или элементов. Эмпедокл утверждал, что элементов четыре: земля, вода, воздух и огонь. В это учение внёс окончательные (на очень долгие времена) поправки Аристотель.

Согласно Аристотелю, все тела состоят из одного и того же вещества, но это вещество может принимать различные свойства. Невещественных «элементов-свойств» четыре: холод, тепло, влажность и сухость. Соединяясь по два и будучи приданными веществу, «элементы-свойства» Аристотеля образуют элементы Эмпедокла. Так, сухое и холодное вещество даёт землю, сухое и горячее – огонь, влажное и холодное – воду и, наконец, влажное и горячее – воздух.

Ввиду трудности ответа на ряд вопросов философы древности добавили к четырём «элементам-свойствам» ещё «божественную квинтэссенцию: что-то вроде бога-повара, готовящего суп из разнородных „элементов-свойств“. После этого дела пошли лучше, ибо ссылкой на бога нетрудно было разъяснить любое недоумение.

На книжных полках многих библиотек стоит превосходный перевод поэмы Лукреция Кара «О природе вещей». Впрочем, скорее всего на месте этой книги нет, она на руках, так как интерес к поэме Лукреция не увядает. Что же это за поэма? Это эпическое произведение, но воспеваются в нём не подвиги героев-воинов, а гипотезы древнего грека Демокрита о строении мира из атомов.

Тела только кажутся сплошными, говорится в поэме. Не только газы и жидкости, но и твёрдые тела состоят из мельчайших неделимых частиц – атомов. Каждое тело имеет своего мельчайшего представителя – атом. У разных тел атомы различны, поэтому разные тела и обладают различными свойствами.

Я не так уж твёрдо уверен, что Демокрит и его ранние последователи представляли себе отчётливо коренные различия между своими рассуждениями, таившими в себе элементы научной теории, и рассуждениями, скажем, Фалеса, которые были не чем иным, как лишь игрой слов, ни на йоту не продвигавшую к познанию мира и в лучшем случае обладавшую поэтическим содержанием. Теперь это отличие нам ясно и потому наука с уверенностью прослеживает свои корни до Демокрита.

В чём же это отличие? Основным признаком научной теории является то, что слова и фразы, излагающие её содержание, проверяются опытом, проверяются практикой.

Действительно, отнеситесь серьёзно к тому, что элементы влажности и холода создают воду. Ну и что? Как это проверить? Как опровергнуть, если это неверно, и как подтвердить, если справедливо? Не видно никакой логической линии, которая вела бы нас от не имеющего смысла набора слов: «влажное и холодное дают воду» к каким-либо фактам, которые следовали бы или не следовали из этого детского лепета.

Иначе обстоит дело с атомной гипотезой. Если тело состоит из частичек, то вещества должны легко перемешиваться. Становится понятным, почему запах цветка мы слышим на расстоянии: это «атомы розы» (или лилии) отрываются от цветка и разносятся во все стороны ветром. Вода превращается в пар – это событие также легко объясняется наличием атомов: при нагревании невидимые частички отрываются от поверхности.

Мы предсказали ряд явлений. Протянули логическую ниточку от гипотезы к следствиям. Но… остроумная гипотеза, качественно объясняющая факты, ещё не теория.

Много веков должно было пройти, чтобы блестящая мысль превратилась в научную теорию. В этой части книги мы расскажем о рождении атомной теории и её важнейших следствиях. Разговор об этом совершенно необходим: дело в том, что современная теория атомно-молекулярного строения вещества есть гибрид экспериментальной физики и теории вероятностей.

Рождение теории

При изложении истории науки, да и вообще истории человеческой мысли, приходится всегда делать прыжок этак в столетий пятнадцать. Нас всегда поражает это странное обстоятельство. Длительный пятнадцативековой застой кажется удивительно нелогичным (несмотря на все объяснения о засилье церкви). Так что, прослеживая путь развития идей о строении вещества, мы сразу от Демокрита переходим к французскому мыслителю Пьеру Гассенди. В 1647 году он издал книгу, в которой отрицалось учение Аристотеля и утверждалось, что все вещества в мире состоят из неделимых частиц – атомов. Атомы отличаются друг от друга формой, величиной и весом. Гассенди объяснил, как возникает все богатое разнообразие тел и веществ в природе. Для этого, утверждал он, не нужно думать, что в мире имеется бесчисленное множество сортов атомов. Ведь атомы для веществ – все равно что строительный материал в домах. Как из трех различных видов стройматериалов – кирпичей, досок и брёвен – можно построить самые разнообразные здания, из нескольких десятков различных атомов природа создаёт тысячи разнообразнейших тел. При этом атомы соединяются в небольшие группы, типичные для каждого вида вещества, которые Гассенди назвал «молекулами», то есть «массочками» (от латинского слова «молес» – масса).

Молекулы одних тел отличаются от молекул других видом (сортом) входящих в них атомов и числом их. А если так, то из нескольких десятков сортов атомов можно создать огромное количество различных комбинаций – молекул, определяющих такое великое разнообразие окружающих нас тел. Однако ещё многое во взглядах Гассенди было ошибочно. Так, он считал, что имеются особые атомы для тепла и холода, для вкуса и запаха. Как и другие учёные того времени, он в большой степени находился под влиянием Аристотеля и признавал его невещественные элементы.

Позже появился М. В. Ломоносов. В сочинениях этого великого просветителя и основателя науки в России содержатся великолепные мысли, получившие потом подтверждение на опыте. Михайло Ломоносов пишет, что молекула может быть однородной и разнородной. В первом случае в ней группируются однородные атомы. Во втором – она состоит из атомов, отличных один от другого. Если какое-либо тело составлено из однородных молекул, то его надо считать простым. Наоборот, если тело состоит из молекул, построенных из различных атомов, оно называется смешанным.

Теперь мы хорошо знаем, что различные тела имеют именно такое строение. В самом деле, возьмём, например, газ кислород; в каждой его молекуле содержится по два одинаковых атома кислорода, и вещество это называется простым. Если же атомы, составляющие молекулы, различны, скажем, в молекулу входит один атом кислорода и два атома водорода, то вещество зовётся «смешанным», или сложным, химическим соединением (вода). Молекулы его состоят из атомов тех химических элементов, которые входят в состав этого соединения.

Можно сказать и иначе – каждое простое вещество построено из атомов одного химического элемента: сложное включает в себя атомы двух и более элементов.

Разумеется, и эти фундаментальные идеи, в общем-то справедливые, не могли быть в то время проверены. И любой мыслитель имел право верить или не верить красивым словам Гассенди и Ломоносова.

В 1738 году петербургский академик Даниил Бернулли вывел уравнение, которое показывало, от каких причин зависит давление газа. Газ при этом рассматривался как система беспорядочно движущихся молекул – шариков.

Если не обращать внимания на форму изложения работы Бернулли, на её стиль, то она окажется вполне современной, современной по манере мышления. Посудите сами. Вот принята некая модель, то есть допускается, что газ – это множество шариков, которые беспорядочно мечутся с какой-то скоростью в сосуде. Молекулы-шарики сталкиваются со стенками, ударяются о них и создают тем самым давление газа. Несложные алгебраические расчёты приводят к уравнению, из которого следует, что давление неизменного количества газа обратно пропорционально объёму. (Я уверен, что вы, дорогие читатели, вспомнили эту фразу. Ну конечно же, это закон Бойля—Мариотта – одно из простейших правил, с которым вы познакомились ещё в школе при изучении физики.) Как видите, чтобы сделать этот вывод, Бернулли обошёлся без теории вероятностей. Но он ясно понимал, что в основе молекулярной физики лежат случайные события. (Может быть, в явной или неявной форме эту идею подсказал ему старший Бернулли.) И, по существу, доказал закон Бойля—Мариотта, пользуясь представлением о беспорядочном движении молекул, подчиняющемся законам случая.

Однако до конца XIX века подобным соображениям не придавали серьёзного значения.

Движение, обнаруженное Броуном

Решающее значение для становления молекулярной теории имели количественные исследования так называемого броуновского движения, проведённые французским исследователем Жаном Перреном. Эти замечательные работы, положившие конец спору «атомников» и их противников, показали, что для понимания молекулярных явлений надо впустить в физику теорию вероятностей. В явлении, исследованном Перреном, как ни в каком другом, наиболее отчётливо проявляются законы случая в мире молекул. Здесь особенно ярко видна аналогия между движением молекулы и броском игральной кости. Познакомимся с открытием шотландского ботаника Броуна, сделанным им в 1827 году.

Джон Броун исследовал поведение в воде пыльцы некоего растения. Так как к этому времени микроскопы были достаточно хороши, то он без труда увидел, как маленькая частичка совершает танцующие движения. Она движется то в одну сторону, то в другую, то останавливается. Одни её движения резкие, а отрезки пути длинные, другие кажутся плавными, так как обрисовывают зигзагообразную последовательность малых отрезков. (Путём пьяницы называют иногда в английской литературе совершенно беспорядочную траекторию броуновского движения частицы.) Броун сначала решил было, что такое поведение свойственно лишь мужским клеткам растения, которые, возможно, соблазняют женские своим танцем. Но он был внимательным исследователем и, прежде чем сделать такое заключение, решил проверить, как ведут себя в воде неживые органические вещества – кусочки дерева, смолы и пр. Убедившись что и они способны к танцу, он изучил поведение крошек стекла и гранита. В результате терпеливых наблюдений Броуну стал ясен общий характер открытого им явления.

В течение тридцати лет естествоиспытатели не интересовались открытием Броуна. Предполагали, что ничего нового и занятного в работе ботаника нет. Думали что он наблюдал обычный танец частиц, колеблющихся под влиянием слабых течений. В затенённой комнате вы, наверное, не раз видели такой танец пылинок в узком солнечном луче, пробивающемся в комнату сквозь щель или дыру в ставне или портьере.

Кстати, о тридцати годах. Это средний временной интервал между появлением новой идеи и признанием её. Такую закономерность не так давно подметил американский физик Дайсон, анализируя очень большое число открытий прошлых и нынешнего веков.

Итак, прошло тридцать лет. За этот период было доказано, что объяснение броуновского движения концентрационными или тепловыми потоками не годится, так как приводит к бездне противоречий. Прежде всего если бы дело было в потоках, то соседние частички двигались бы в одном направлении. А наблюдения показывают, что две соседние частички ведут себя совершенно независимо – каждая исполняет сольный танец под свою музыку. И далее, о каких потоках может идти речь, если явление не зависит от освещённости и атмосферных условий и – это, пожалуй, самое важное – никогда не прекращается!

Французские исследователи показали, что броуновское движение продолжается ночью и днём, происходит в подвалах и на высоких этажах дома, совершается в деревенском домике так же энергично, как и в городском доме, расположенном на улице с интенсивным движением, наконец, частички могут быть любыми, состоять из самых различных веществ.

Все эти особенности броуновского движения, коренным образом противоречащие «теории потоков», указывали на молекулярную природу наблюдаемых явлений и должны рассматриваться как важное доказательство молекулярной гипотезы.

Существовавшие в то время представления о движении молекул (так называемая молекулярно-кинетическая теория) привели Джоуля, Клаузиуса и других замечательных физиков к мысли, что температура вещества прямо пропорциональна средней энергии движения молекул.

Следовательно, чем выше температура тела, тем быстрее движутся молекулы. Броуновское движение тоже убыстряется с температурой. И нам хочется, чтобы между теорией вероятностей и этим фактом была связь. Но связь эта не так уж элементарна. Во всяком случае, не может быть и речи, о том, что броуновская частичка сдвигается будто от того, что получила щелчок от одной из молекул.

Вероятность – дирижёр движения

Теория броуновского движения была создана Альбертом Эйнштейном в том же году, в котором была опубликована его первая статья по теории относительности.

В качестве образа модели явления, которую обсчитал (прошу прощения – это научный жаргон) Эйнштейн, можно предложить футбольный мяч, залетевший в часы «пик» на центральный рынок страны Лилипутии. «Огромный» мяч мешает базарной сутолоке. Спешащие лилипутяне беспорядочно толкают его во все стороны.

Наглядно представив себе эту фантастическую картину, вы, конечно, согласитесь с тем, что уравновешивание молекулярных щелчков, которые получает броуновская частичка, будет несовершенным. Для того чтобы частичка пришла в движение, надо, чтобы перевес ударов, нанесённых с какой-нибудь стороны, превосходил удары, пришедшиеся на противоположную её сторону. Если частичка очень большая (доли миллиметра – это много в мире молекул), то колебания (физики предпочитают термин «флуктуации») давления на неё «слева» и «справа» будут незначительными и броуновское движение не обнаружит себя. Если же размер частички «подходящий», то случайности в распределении толчков слева и справа, сверху и снизу приведут к легко наблюдаемому её движению.

Если верить в существование молекул, то приведённое истолкование броуновского движения достаточно легко приходит в голову. Качественное объяснение, которое мы привели, в той или иной форме высказывалось рядом исследователей до Эйнштейна.

Но самые умные разговоры о явлении ещё не составляют теории. От теории требуются количественные предсказания.

Что же может и должно быть подсчитано?

За отдельными скачками броуновской частицы следить трудно. Поэтому Эйнштейн поставил перед собой вопрос: какова вероятность найти частичку через одну секунду (или десять секунд или сто секунд) на том или ином расстоянии от исходной точки.

Представьте себе, что имеется лишь одна броуновская частица и она светится. За частичкой наблюдает фотоаппарат, затвор которого открывается на мгновение через каждую секунду. Съёмка ведётся всё время на одну и ту же пластинку. Через какое-то время пластинка проявляется. На что будет похожа картина, которую мы увидим? Согласно теории Эйнштейна фотография должна совпадать с результатом стрельбы по мишени. Посмотрите на приведённый рисунок. Это не итог стрелковых испытаний, а отчёт об опытном исследовании броуновского движения. Точки показывают места, где находилась частица в моменты наблюдения.

Трудно придумать более яркое доказательство общности математического основания, на котором покоятся случайности столь разного происхождения. Математик скажет – разве это не доказывает, что молекулярная физика есть глава теории вероятностей. Физик согласится с тем, что пригодились рассуждения об игральных костях.

Можно обработать результаты наблюдений и таким образом, что появится наша хорошая знакомая гауссова кривая.

Наложим на снимок сетку параллельных линий. Одна из линий должна проходить через начальную точку. Теперь сосчитаем число точек, попавших между нулевой и плюс первой линией (плюс – значит вправо), плюс первой и плюс второй и т.д. Такой же подсчёт проведём для левой части снимка. Получили таким способом числа, пропорциональные вероятности отклонения броуновской частицы на разные расстояния вправо и влево от начальной точки.

Можно убедиться в том, что результат подсчёта не зависит от того, как ориентирована сетка, наложенная на снимок, поскольку в танце броуновской частицы (так же, как в ошибках стрелка) все направления отклонения равновероятны.

Остаётся построить график: по горизонтальной оси отложим величины отклонения, а по вертикали – число точек.

Полученная кривая ничем не отличается от гауссовой кривой, на которую ложатся отклонения от среднего роста призывников, отклонения от средней оценки качества фильма «Великолепная семёрка».

Ещё раз повторим: когда речь идёт о поведении случайной величины, математика не нуждается в том, чтобы мы ей сказали, чем интересуемся: физикой, биологией, эстетикой или игрой в карты.

Итак, Эйнштейн получил гауссову кривую для вероятности найти частичку на том или ином расстоянии от начального положения. Центр кривой лежит в исходной точке, то есть вероятнее всего найти частичку там, где она была. Если построить гауссовы кривые для разных промежутков времени, прошедших с начала наблюдения, то мы увидим, что с возрастанием промежутка времени между последовательными снимками положения броуновской частицы кривые будут все более расплывчатыми: через тысячу секунд частичку можно найти почти где угодно. Однако для времени порядка одной секунды кривая будет достаточно узкой.

Главным количественным результатом теории является полученная Эйнштейном формула полуширины кривой. Для данного промежутка времени она однозначно связана с температурой, коэффициентом вязкости и числом Авогадро. (Число Авогадро – это обратная величина массы атома водорода, которая равняется 1,6·10грамма. Число Авогадро, равное 6·10, имеет, очевидно, смысл числа атомов водорода в одном грамме.) Вид кривой (а значит, и её полуширину) нам даёт опыт; коэффициент вязкости всегда легко измерить; температура опыта известна. Таким образом возникает возможность определить число Авогадро. Если проделать опыты для разных жидкостей, разных температур, разных частиц и показать, что всегда получается одно и то же число, то, конечно, не останется ни одного скептика, который бы упрямо твердил: «Не верю в молекулы».

Нокаутировал скептиков Жан Перрен. Произошло это в 1909 году. Семнадцать лет спустя (большой перерыв, наверное, связан с войной) Перрен получил за эти замечательные исследования высшую награду учёного – Нобелевскую премию.


  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15