Невероятно – не факт
ModernLib.Net / Математика / Китайгородский Александр Исаакович / Невероятно – не факт - Чтение
(стр. 1)
Автор:
|
Китайгородский Александр Исаакович |
Жанр:
|
Математика |
-
Читать книгу полностью
(432 Кб)
- Скачать в формате fb2
(824 Кб)
- Скачать в формате doc
(172 Кб)
- Скачать в формате txt
(166 Кб)
- Скачать в формате html
(2,00 Мб)
- Страницы:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
|
|
Александр Китайгородский
Невероятно – не факт
Вместо предисловия
– Ну я пошёл. – Мой друг Александр Саввич решительно взялся за пальто.
– Посиди ещё, – попросил я. – Ведь нет ещё двенадцати. А я расскажу тебе о плане своей новой книги.
– Ну ладно, – согласился гость без энтузиазма. Его сейчас занимала проблема, где провести отпуск – на Кавказе или в Крыму.
– Это будет книга о случайных событиях, о вероятном и невозможном, о том, как случайности приводят к закономерностям, о применении правил вероятности в самых различных областях житейской практики и науки.
– Таких книг вышли уже сотни, – кисло сказал Александр.
– Возможно. Но ты же не отвергаешь нового романа на том основании, что его сюжетом является безответная любовь Коли к Маше, которая любит Петю.
– Гм… Справедливо.
– Ты понимаешь, – продолжал я, не обращая внимания на интонацию этого «гм», – ведь речь идёт о чрезвычайно широкой теме. Великий Лаплас ещё полтораста лет назад сказал, что в конечном счёте все наиболее важные жизненные проблемы – это проблемы вероятностные. И право же, это не преувеличение.
– А как же говорят: наука – враг случайностей? – зевая, сказал друг.
– Противоречия тут нет. Но ты попал в точку. Случайные события действительно приводят к неукоснительно выполняющимся законам природы. Вероятностные законы – это железные правила. Надо только ясно понимать, к чему они относятся. «Средние значения»; «средние отклонения от среднего»; «частота более или менее резких отклонений от среднего» – вот главная тема теории вероятностей.
– Очень интересная тема, – в голосе Александра явственно слышалась ирония. – Очень интересная, если учесть, что каждого человека очень занимает судьба его самого. Ты изложишь читателю проблемы средней продолжительности жизни, а его интересует продолжительность своей жизни. Ты ему сообщишь, что в возрасте семидесяти лет его шансы отправиться в лучший мир в течение ближайших пяти лет достаточно велики, а он скажет, что его мало интересуют твои выводы о «среднем старике», поскольку он совсем не такой, как другие, так как обладает железным здоровьем, принимает по утрам холодный душ и не курит с детства.
– Не так агрессивно, – я стал уже горячиться. – Во-первых, книга вовсе не посвящается демографической статистике, хотя об этом немного будет сказано. Я собираюсь обсудить проблемы физики, химии и биологии, имею намерение уделить несколько страниц проникновению статистических методов в психологию и в эстетику. Но даже если бы всего этого не было и разговор шёл только о законах случая в житейской практике, то ты все равно не прав.
– Не чувствую.
– Видишь ли, по своему характеру люди отличаются достаточно резко, и отношения к случаю, к риску, к счастливому выигрышу у них очень различны. Нет, конечно, такого человека, который не рассчитывал бы на счастливый случай, где-то в глубине своей души не надеялся бы, что везение наложится на естественный ход событий и поможет ему в достижении его целей. Но, с одной стороны, было бы глупо полагаться только на везение, и не менее неразумно было бы совсем на него не рассчитывать. Обе крайности нецелесообразны. У меня есть робкая надежда, что моя книжка поможет читателю найти правильную среднюю линию поведения.
– Это за счёт чего же?
– За счёт того, что она даст ему представление о том, что вероятно, а что невозможно. По-моему, любому из нас следует приблизительно представлять себе, какое поведение равносильно броску монеты, а какое оправдано не более чем ожидание выигрыша автомобиля по лотерее.
– Цифровая твоя рационалистическая душа, – искренне возмутился Александр. – Твой герой раньше, чем совершить поступок, должен на логарифмической линейке рассчитать вероятность удачи. Тебе неизвестны, значит, случаи, когда поступить можно только единственным образом, вне зависимости от шансов не только на удачу, но и на жизнь.
– Известно. Но всё же согласись, что в большинстве случаев, прежде чем делать, стоит подумать. И вот тогда понимание, что такое случайность, и правильное представление о вероятности события будут очень полезными.
– Любой здравомыслящий человек превосходно оценивает вероятность события, не зная теории.
– Ты думаешь? Тогда скажи мне, пожалуйста, вот что. Представь себе, что ты попал в игорный дом. Не возмущайся, это лишь риторический приём. У тебя есть десять франков и очень большое желание выиграть. Ты следишь за колесом рулетки и видишь, что чёрное вышло семь раз подряд. На какое поле ты бросишь теперь монету?
– Ответ очевиден. Тут есть какой-нибудь подвох?
– Никакого подвоха. Значит, ты бросишь монету на красное?
– Конечно!
– Так вот, мой дорогой. Шансы на то, что после семи чёрных выпадет чёрное или красное, одинаковы и равны половине. У рулетки нет памяти о прошлых событиях. И что происходило до того броска, который решает участь твоих денег, роли не играет.
– Ах да! – недовольно сказал друг. – Я помню это рассуждение, но что-то тут не так.
– Тут все так. Но, чтобы заставить читателя отказаться от ряда заблуждений и мистических представлений о шансе, придётся повести неторопливый разговор, и, согласись, разговор этот не лишний.
– Как ты назовёшь книгу? – чтобы переменить тему, спросил Александр Саввич.
– Книга будет называться «Невероятно – не факт». Часто говорят «невероятно, но факт». Эта фраза имеет лишь эмоциональное содержание. Сказать «невероятно, но факт» – это то же самое, что сказать «невозможно, но будет возможно». На самом же деле признание невероятности события равносильно признанию его полной невозможности. Более строго это утверждение может быть сформулировано так: события с достаточно малой вероятностью никогда не происходят, они невозможны.
– Но…
– Разумеется, – перебил я. – Одной из важных задач книги и является разъяснение того, что же считать «достаточно малой вероятностью».
– С чего же ты начнёшь?
– С азартных игр. Надеюсь, читатели меня извинят. Теория вероятностей началась с азартных игр, которые занимали ум, время и, главное, страсти многих поколений. Сюжет достаточно интересен, а основные понятия, с которыми нам придётся иметь дело в этой книге, наиболее просто вводятся с помощью игральных карт.
– Желаю удачи!
Часть первая
Игра
Орёл или решка
Азартные игры появились на заре человечества. Их история начинается с игральных костей. Изобретение этого развлечения, источника радостей и несчастий, приписывается и индийцам, и египтянам, и грекам в лице Паламеда. При раскопках в Египте находили игральные кости разной формы – четырехгранные, двенадцатигранные и даже двадцатигранные. Но, разумеется, больше всего находили шестигранные, то есть кубы. Главная причина преимущественного их распространения – простота изготовления. Удобно и то, что цифры от единицы до шести не слишком малы и не слишком велики. Действительно, оперирование, скажем, с двадцатигранниками потребовало бы уже умственных напряжений для производства арифметических действий. Поэтому кости иной формы, чем кубы, применялись в основном для предсказания судьбы.
Впрочем, двадцатигранники нашли в последние годы себе применение в науке. Японские фирмы выпустили кость, на которой противоположные грани обозначены одним числом. Таким образом при бросании выпадают цифры от 0 до 9. Бросая кость, мы можем создавать ряды случайных цифр, которые нужны (об этом мы расскажем позже) для проведения весьма серьёзных расчётов так называемым методом Монте-Карло.
Популярность игры в кости в Древней Греции, в Древнем Риме и в Европе в средние века была исключительно велика, в основном, конечно, среди высших слоёв населения и духовенства. Увлечение игрой в кости слугами церкви было столь значительно, что епископ кембрезийский Витольд, не сумевший её запретить, заменил игрой в «добродетели». Что это за игра? Да вместо цифр на гранях костей были изображены символы добродетелей. Правила игры, правда, были сложными, нелёгким был и итог: выигравший должен был направить на путь истинный (в отношении проигранной добродетели) того монаха, который потерпел поражение.
Вряд ли эта подмена радовала служителей культа, так как, несмотря на то, что государственные и церковные деятели неоднократно запрещали монахам играть в азартные игры, те продолжали «тешить беса».
Ещё труднее было бороться с этой страстью у придворных, рыцарей, дворян и прочей знати. Указами и сообщениями о наказаниях за нарушение этих указов, жалобами членов семьи на своего кормильца и другими подобными историями полна средневековая пресса.
Насколько увлечение было сильно, можно судить по тому, что существовали не только ремесленники, изготовлявшие кости, но и школы по изучению премудростей игры.
Играли двумя костями, а больше – тремя. Их встряхивали в кубке или в руке и бросали на доску. Игр существовало множество. Но, вероятно, наибольшее распространение имело прямолинейное бросание – кто выбросит большую сумму очков.
У нас в России игральные кости не пользовались большой популярностью. Возможно, это объясняется тем, что «просвещение» захватило наши придворные круги уже тогда, когда в Европе мода на кости прошла и появились карты. Зато игра в орлянку процветала повсеместно. Мы оставим без внимания эту простую игру и вернёмся к более сложной – к игре с костями кубом с шестью цифрами.
Итак, игрок дрожащей рукой встряхивает кубок и выбрасывает из него кости. Вверх смотрят какие-то цифры. Какие? Любые. Предсказать их невозможно, так как здесь господствует «его величество случай». Результат события случаен, потому что зависит от большого числа неконтролируемых мелочей: и как кости легли в кубке, и какова была сила и направление броска, и как каждая из костей встретилась с доской, на которую бросали кости. Достаточно крошечного, микронного смещения в начале опыта, чтобы полностью изменился конечный результат.
Таким образом, огромное число факторов делает совершенно непредсказуемым результат выброса костей, изготовленных без жульничества. А рассуждения о том, что вот если бы была возможность разместить кости в кубке в положении, фиксируемом с микронной точностью, да если бы ещё направление выбрасывания костей можно было бы установить с точностью тысячных долей углового градуса, да, кроме того, силу броска измерить с точностью до миллионных долей грамма… вот тогда можно было бы предсказать результат и случай был бы с позором изгнан из этого опыта, – есть абсолютно пустой разговор. Ведь постоянство условий, при которых протекает явление или ставится опыт, есть практическое понятие. То есть я говорю, что условия проведения двух испытаний одинаковы лишь в том случае, если не могу установить различий между ними.
Если тысячи и миллионы опытов, поставленных в одних и тех же условиях, всегда приводят к определённому событию (выпущенное из руки яблоко падает на землю), то событие называется достоверным. А коль скоро миллионы опытов показывают, что некоторый их исход никогда не наблюдается (невозможно одним караваем хлеба накормить тысячу голодных людей), то такие события называются невозможными.
Случайные события лежат между этими двумя крайностями. Они иногда происходят, а иногда нет, хотя практически условия, при которых мы их наблюдаем, не меняются.
Выпадение кости – классический пример случайного события. И всё же интересно, можно ли наперёд предусмотреть, предугадать, наконец, рассчитать и предсказать результат такого события, и как это делается?
Когда мы сталкиваемся с одинаковыми ситуациями, которые приводят к случайным исходам, на сцене появляется слово «вероятность». Вероятность – это число. А раз так, то оно относится к точным понятиям; и чтобы не попасть впросак, надо пользоваться этим словом с той определённостью и недвусмысленностью, которые приняты в естествознании.
Рассуждение начинается так. Есть некая исходная ситуация, которая может привести к разным результатам: кость-кубик может упасть вверх любой гранью, из колоды берётся карта – она может быть любой масти, родился человек – это может быть мальчик или девочка, завтра наступит 10 сентября – день может быть дождливым или солнечным… Число исходов событий может быть самым разным, и мы должны все их держать в уме и знать, что один из них произойдёт обязательно, то есть достоверно.
Перечислив все возможные исходы, возникающие из некой ситуации, математик скажет: дана группа исходов события, которая является предметом изучения теории вероятностей.
Различные результаты события, то есть различные представители группы, могут быть равновозможными. Этот самый простой вариант случайности осуществляется в азартных играх. (Потому мы и начали книгу рассказом об азартных играх.) Введём число вероятности на примере игральной кости.
Группой исходов события является выпадение единицы, двойки, тройки, четвёрки, пятёрки и шестёрки. «Исход события» звучит немного громоздко, и мы надеемся, что читатель не будет путаться, если мы иногда не станем писать первое слово. Итак, событий в группе шесть – это полное число событий.
Следующий вопрос, который надо себе задать, таков: сколько из этих событий дают интересующий нас результат? Допустим, мы хотим узнать вероятность выпадения тройки, то есть нас волнует осуществление одного события из группы в шесть. Тогда число благоприятных вариантов (одно – тройка) делят на полное число событий и получают вероятность появления интересующего нас события. В нашем примере вероятность выпадения тройки будет равна 1/6. А чему равна вероятность появления чётной цифры? Очевидно, 3/6 (три благоприятных события делят на общее число событий, равное шести). Вероятность же выхода на кости числа, кратного трём, равна 2/6.
Ещё примеры.
В ящике, куда заглянуть нельзя, находится сто шаров, четыре из которых чёрные. Чему равна вероятность вытащить чёрный шар? Рассматривается группа из ста событий; благоприятных событий четыре, значит, вероятность вытянуть чёрный шар равна 0,04. Вероятность вытянуть туза пик из полной колоды равна 1/52. Вероятность вытянуть любую пику – 1/4, какой-либо туз – 1/13, а любую пиковую фигуру – 3/13 и так далее.
Мы рассмотрели примеры, когда сразу ясно, о какой группе событий идёт речь, когда вполне очевидно, что все события из-за равенства условий имеют одинаковые шансы осуществиться, когда заранее ясно, чему равняется вероятность интересующего нас события. Но есть случаи и посложнее. Подробнее о них будет рассказано в других главах, а сейчас скажем, что осложнения могут быть двух типов.
Первое – вероятность исхода события не очевидна заранее. И тогда значение вероятности может быть установлено лишь на опыте. К этому, так называемому статистическому, методу определения вероятности мы будем возвращаться неоднократно и тогда подробнее о нём поговорим.
Другая трудность, скорее логического порядка, появляется тогда, когда нет однозначности в выделении группы явлений, к которой относится интересующее нас событие.
Скажем, некто Пьер отправился на мотоцикле на работу на улицу Гренель и по дороге наскочил на грузовик. Можно ли ответить, какова вероятность этого грустного происшествия? Без сомнения, можно, но необходимо оговорить исходную ситуацию. А выбор её, конечно, неоднозначен. Ведь можно привлечь к статистике лишь выезды на работу молодых парижан; а можно исследовать группу выездов всех парижан в любое время; можно расширить статистику на другие города, а не ограничиться Парижем. Во всех этих вариантах вероятности будут разными.
Итак, вывод один: когда начинаешь оперировать числами, необходима точность в постановке задачи; исследователь всегда должен формализовать явление – с этим уж ничего не поделаешь.
Вернёмся теперь к игре в кости. Одной костью никто не играет: слишком просто и загодя известно, что вероятность выпадения любой грани – 1/6, и никаких математических задач в такой игре не возникает.
При бросании трех или даже двух костей сразу появляются проблемы, и можно уже задать, скажем, такой вопрос: какова вероятность появления двух шестёрок? Каждая из них появляется независимо с вероятностью, равной 1/6. При выпадении шестёрки на одной кости вторая может лечь шестью способами. Значит, вероятность выпадения двух шестёрок одновременно будет равна произведению двух вероятностей (1/6·1/6). Это пример так называемой теории умножения вероятностей. Но на этом новые проблемы не кончаются.
В начале XVII века к великому Галилею явился приятель, который захотел получить разъяснение по следующему поводу. Играя в три кости, он заметил, что число 10, как сумма очков на трех костях, появляется чаще, чем число 9. «Как же так, – спрашивал игрок, – ведь как в случае девятки, так и в случае десятки эти числа набираются одинаковым числом способов, а именно шестью?» Приятель был совершенно прав. Посмотрите на рисунок, на котором показано, как можно представить девятку и десятку в виде сумм.
Разбираясь в этом противоречии, Галилей решил одну из первых задач так называемой комбинаторики – основного инструмента расчётов вероятностей.
Итак, в чём же дело? А вот в чём.
Важно не то, как сумма разлагается на слагаемые, а сколько вариантов выпадения костей приводят к суммам в «девять» и «десять» очков. Галилей нашёл, что «десять» осуществляется 27 способами, а «девять» – 25. Эмпирическое наблюдение получило теоретическое истолкование. Что же это за разница между числом представлений суммы через слагаемые и числом вариантов выпада костей?
Вот на какую тонкость необходимо обратить внимание. Рассмотрим сначала случай, когда на трех костях три разные цифры, скажем 1, 2, и 6. Этот результат может осуществляться шестью вариантами: единица на первой кости, двойка на второй и шестёрка на третьей; единица на первой, шестёрка на второй, двойка на третьей; также возможны два случая, когда двойка окажется на первой кости и ещё два – когда на первой кости выпадет шестёрка (этот вариант приведён в таблице).
Иначе обстоит дело, когда сумма представлена таким образом, что два слагаемых одинаковые, например, 1 + 4 + 4. Только один вариант такого разложения появится, если на первой кости покажется единица, а на двух других четвёрки, ибо перестановка цифры на второй и третьей костях не даёт нового варианта. Второй вариант возникает, когда единичка покажется на второй кости, а третий, если она появится на третьей кости. Итого три возможности.
Наконец, ясно, что если сумма разложена на 3 + 3 + 3, то на костях такое событие осуществляется единственным способом.
В нашей таблице это число вариантов указано в скобках рядом с представлением суммы. Складывая числа в скобках, мы получим 25 и 27, которые нашёл Галилей. Вероятности появления на двух костях сумм 9 и 10 относятся как 25 к 27.
Это с виду простое объяснение не лежало на поверхности. Достаточно сказать, что Лейбниц полагал одинаковыми вероятности появления на двух костях как 11 очков, так и 12. После работы Галилея ошибочность такого заключения стала очевидной: 12 осуществляется единственным способом: двумя шестёрками, а 11 появляется в двух случаях, когда шестёрка на первой кости, а пятёрка – на второй, и наоборот.
При бросании двух костей чаще всего появляется сумма, равная 7. Имеется шесть возможностей набора этой суммы. Суммы 8 и 6 осуществляются уже пятью комбинациями каждая. Проверьте, если хотите, сами наше заключение.
Что наша жизнь – игра
«Чекалинский стал метать, руки его тряслись. Направо легла дама, налево туз.
– Туз выиграл! – сказал Герман и открыл свою карту.
– Дама ваша убита, – сказал ласково Чекалинский.
Герман вздрогнул: в самом деле, вместо туза у него стояла пиковая дама. Он не верил своим глазам, не понимал, как мог он обдёрнуться».
Я не берусь в деталях объяснять читателю, в чём заключалась игра в штосс, столь распространённая в высшем петербургском обществе особенно в первой половине XIX века. Но основная её идея проста. Банкомёт и понтирующий игрок берут по колоде, распечатывают их, игрок выбирает из колоды карту, на которой записывает куш или кладёт на карту деньги. Банкомёт начинает метать, то есть кладёт в открытую карты – направо, налево, направо, налево…
Та карта, что ложится налево, дана, а направо – бита. Легла выбранная вами карта направо – банкомёт забирает деньги, налево – платит вам столько, сколько было поставлено на карту.
В игре есть варианты. Скажем, игроки загибают пароли, или играют мирандолем, или ставят на руте. Не знаете, что это такое? Я тоже. Но главное состоит в том, что штосс – игра с равными шансами для банкомёта и партнёра. Поэтому сильные в художественном отношении сцены, встречающиеся почти у всех русских романистов, где описывается умелая игра одного и беспомощная другого, лишены, так сказать, научного обоснования.
В «Войне и мире» Долохов обыгрывает Ростова вполне планомерно. Долохов решил продолжать игру до тех пор, пока запись за Ростовым не возрастёт до 43 тысяч. Число это было им выбрано потому, что 43 составляло сумму сложенных его годов с годами Сони.
Читатель верит, что смелый, резкий и решительный Долохов, которому удаётся все, хорошо играет в карты. А мягкий, добрый, неопытный Ростов, кажется, не умеет играть и не может выиграть. Великолепная сцена заставляет нас верить, что результат карточной борьбы предопределён.
Разумеется, это неверно. Сказать про человека, что он хорошо играет в игру, в которой проиграть и выиграть шансы одинаковы, это значит обвинить его в шулерстве.
Не знаю, как другие, но я не могу избавиться от впечатления, что Арбенин в лермонтовском «Маскараде» – вспомните сцену, когда он садится играть за князя, а зрители комментируют: «Зажглось ретивое», – знает недозволенные приёмы, не допускает, чтобы они были использованы против него и не брезгует применять их сам. Только в этом смысле можно говорить, что игрок хорошо играет в штосс и другие подобные игры.
Герой мог проиграть, а мог с таким же успехом и выиграть. В «честной» игре выигрыши и проигрыши будут чередоваться по закону случая. При долгой игре число удач и неудач будет, конечно, примерно одинаковым точно так же, как и число выпадов монеты орлом или решкой кверху.
Чтобы оценить реалистичность драматических событий, разыгравшихся в тот вечер, предположим, что Ростов всё время ставил на карту одну и ту же сумму, скажем тысячу рублей. Чтобы проиграть сорок тысяч, нужно, чтобы число проигрышей превосходило число выигрышей на сорок.
«Через полтора часа времени большинство игроков уже шутя смотрело на свою собственную игру», – читаем мы в романе.
Таким образом, проигрыш Ростова свершился часа за два-три. Одна талия, то есть одна раскладка карт, длится, конечно, не более чем одну-две минуты. Значит, число игр было никак не меньше двухсот, скажем для определённости, 120 проигрышей и 80 выигрышей. Вероятность того, что из двухсот игр, по крайней мере, 120 будут проиграны, вычисляется по формулам теории: она близка к 0,1. Вы видите, что проигрыш Ростова – явление, не требующее объяснений, выводящих нас за рамки науки. Он мог бы и выиграть, но по замыслу Льва Николаевича ему надо было проиграть.
Есть лишь одно обстоятельство, которое нарушает равенство игроков, сражающихся в такие игры, как игральные кости или штосс, то есть в игры, где игрокам ничего не надо решать, ибо игрой не предусмотрен выбор (за исключением выбора: играть или отказаться): этим обстоятельством является богатство. Нетрудно видеть, что шансы на стороне того игрока, у которого больше денег. Ведь проигрыши и выигрыши чередуются случайно, и в конце концов обязательно встретится то, что называют «полосой везения» или «полосой невезения». Эти полосы могут быть настолько затяжными, что у партнёра победнее будут выкачаны все деньги. Вычислить вероятность проигрыша не представляет труда: надо лишь возводить одну вторую в соответствующую степень. Вероятность проиграть два раза подряд – это одна четверть (1/2), три раза подряд – одна восьмая (1/2)… восемь раз подряд – одна шестьдесят четвёртая (1/2). Если игра повторяется тысячу раз – а это, наверное, вполне возможно, ибо, как пишут в романах, игроки просиживают за картами ночи напролёт, проигрыш 8 раз подряд будет делом обычным. Разумный игрок (да простится мне подобное сочетание слов) должен быть готов к таким «полосам», и они не должны «выбивать» его из игры вследствие опустошения карманов.
В начале XIX века к «чистым» азартным играм, не требующим от игрока даже ничтожных умственных усилий, прибавилась рулетка. На первых порах она не получила распространения, но уже к 1863 году в столице карликового государства Монако – Монте-Карло создаётся грандиозное рулеточное предприятие. Игорный дом в Монте-Карло быстро стал знаменит. Во многих романах и повестях Монте-Карло выбиралось местом действия, а героем – безумец, собирающийся обогатиться за счёт его величества случая или, того хуже, за счёт изобретения беспроигрышной системы.
Произведения эти вполне реалистичны. Если их дополнить ещё полицейскими протоколами о неудачниках, покончивших с собой из-за крушения надежд стать Крезом за счёт княжества Монакского, то получится увесистый отчёт о пагубном очаровании, которое таит в себе игорный дом.
Наверное, можно было бы не описывать рулеточное колесо и разграфлённое поле, на клетки которого бросают денежные жетоны. И всё же несколько слов для читателей, незнакомых с художественной литературой о Монте-Карло, сказать стоит. Рулетка – это большая тарелка, дно которой может вращаться относительно неподвижных бортов. Дно-колесо разбито на 37 ячеек, пронумерованных от 0 до 36 и покрашенных в два цвета: чёрный и красный. Колесо закручивается, и на него бросается шарик. Он танцует, беспорядочно перепрыгивая из ячейки в ячейку. Темп колеса замедляется, шарик делает последние нерешительные прыжки и останавливается. Выиграло, скажем, число 14 – красный цвет.
Игроки могут ставить на красное или чёрное; на чёт или нечет; первую, вторую или третью дюжину и, наконец, на номер.
За угадывание цвета или чётности вы получаете денег вдвое больше, чем внесли на игру, за выигрыш дюжины – втрое, за выигрыш номера – в тридцать шесть раз. Эти числа строго соответствовали бы вероятностям появления, если бы не одно маленькое «но» – это ноль (зеро). Зеро – выигрыш банкомёта. При нём проигрывают и поставившие на чёрное, и те, кто надеялся на красный цвет.
Ставя на красное, искатель счастья действует с шансом на выигрыш, равным 18/37: чуть-чуть меньше половины. Но за счёт этого «чуть-чуть» существует государство Монако и получают хорошие дивиденды пайщики Монте-Карло. Из-за зеро игра в рулетку уже не равноценна для игрока и банкомёта. Поставив 37 раз по франку, я в среднем выиграю 18 раз, а проиграю 19.
Если я 37 раз ставлю по франку на 14-й (или какой-либо другой) номер, то в среднем я выиграю один раз из тридцати семи, и за этот выигрыш мне уплатят лишь 36 франков. Так что, как ни крути, при длительной игре проигрыш обеспечен.
Значит, нельзя выиграть в рулетку? Да нет. Конечно, можно. И мы легко подсчитаем вероятность выигрыша. Для простоты положим, что игрок пробует своё счастье каждый день. Ровно в 18.00 он появляется в казино и ставит пять раз по франку на красное.
За год игры герой встретится со всеми возможными вариантами красного и чёрного (точнее, не красного, так как и зеро мы отнесём к чёрному). Вот эти варианты:
Как видно, их всего 32 варианта. Один из них содержит пять к, пять – состоят из четырех к, десять – из трех к. Разумеется, те же числа будут и при подсчёте чёрных случаев (ч).
Из составленной таблички мы сейчас увидим все «секреты» рулетной игры. Будем считать, что в году 320 дней рабочих и полтора месяца выходных: работа ведь нелёгкая – сплошная трёпка нервов. Количество дней с разными выигрышами и проигрышами получается от умножения на 10 числа различных комбинаций, приведённых в таблице. Таким образом, счастливых дней в «среднем» году будет десять. Но зато столько же будет «чёрных» дней сплошного проигрыша. На число «хороших» дней, когда фортуна откажет лишь один раз, придётся столько же дней неудачных, когда лишь один раз появится красный цвет, – их будет пятьдесят. Чаще всего – по сто дней – мы встретимся со случаями, когда выигрышей выпадет три, а проигрышей – два, или наоборот, когда проигрышей три, а выигрышей – два.
Пока результат нашего сражения с рулеткой нулевой. Так что занятие можно было бы считать безобидным, если бы не упомянутое зеро. Мы говорили, что вероятность красного цвета не 1/2, а 18/37. Поэтому проигрыши и выигрыши в среднем не уравновесятся, и год закончится с убытком для клиентов, поскольку число грустных дней для них будет несколько превышать число радостных. Например, вероятность полностью «красного» дня равна 18/37 в пятой степени, а сплошь «чёрного» – 19/37 в пятой степени. Если вы не поленитесь заняться арифметикой, то найдёте, что эти вероятности равны соответственно 0,027 и 0,036. Это значит, что один «красный» день в среднем приходится уже не на 32 дня, а на 36, а один «чёрный» будет встречаться через 28 дней.
Я отдаю себе полностью отчёт, что все эти доказательства о проигрыше «в среднем» не подействуют на азартного игрока. Из наших чисел он прежде всего обратит внимание на то, что всё-таки десяток «красных» дней на год приходится. Кто его знает, подумает он, может быть, именно сегодняшний день и будет таким! Хорошо бы было, если бы этот день оказался для него «черным». Он отбил бы у него охоту к играм, и на этом он наверняка выиграл бы, дело это добром никогда не кончается.
А теперь оставим моральные поучения, к которым азартные игроки скорее всего глухи, и рассмотрим ещё несколько рулеточных проблем.
Стоит, пожалуй, обсудить вопрос о «счастливом месяце».
«В этот летний месяц, – прочитал я в воспоминаниях какого-то любителя острых ощущений, – мне здорово везло. За весь месяц я проиграл лишь два раза, не пропустив ни одного дня».
Для простоты будем считать, что вероятность выигрыша равна одной второй (1/2). Тогда так же, как при составлении таблички к и ч, можно подсчитать вероятности появления «чёрных» дней за месяц. Что же окажется?
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
|
|