Современная электронная библиотека ModernLib.Net

Беседы 2003 года (№6) - Диалоги (июнь 2003 г.)

ModernLib.Net / Научно-образовательная / Гордон Александр / Диалоги (июнь 2003 г.) - Чтение (стр. 12)
Автор: Гордон Александр
Жанр: Научно-образовательная
Серия: Беседы 2003 года

 

 


И сейчас дальнейшая задача – расшифровать всё это дело. Я могу упомянуть многие другие, казалось бы, далёкие от фотосинтеза, молекулярные машины. Например, бактерию радопсина, это фермент зрительный. Атефаза. Это всё вещи, казалось бы, разные. Каналы, которые в мембранах пропускают йоны. Это всё одни и те же идеи. Идеи, которые связаны с тем, что идёт изменение электронного состояния. Толчок, меняется равновесие конформационное. Оно дальше начинает изменяться спонтанно, в поисках своего минимума. Это физический принцип. А это всё имеет осмысленный характер, но на молекулярном уровне. Я бы даже не стал кавычки перед словом «осмысленный» здесь ставить.

А.Г. Скорее, это целесообразность.

А.Р. Целесообразность. Но, понимаете, мы не привыкли говорить об осмысленности, о целесообразности на уровне одной молекулы. Но вот на уровне макромолекулы, видимо, можно так говорить.

А.Г. Но физики – особенно в квантовой механике – говорят ведь о «свободе воли электрона».

А.Р. Я думаю, там немножко другое имеется в виду. Я не физик-теоретик, поэтому осторожно буду говорить. С одной стороны, осторожно, с другой стороны – об области, о которой слышал, но мало знаешь, можно свободно говорить. Так часто бывает. Но я тут осторожно бы о свободе воли говорил. Во всяком случае, это похоже на экскурс в область того, как взглядом люди отклоняют электрон. Ну, есть много в жизни чудес, но друг Гораций… И что там на самом деле – Бог его знает. Но в данном случае, принцип такой вполне конкретно иллюстрируется.

Сейчас речь идёт о том, чтобы с помощью методов ядерного, магнитного резонанса, других методов расшифровать эти механизмы. В случае гемоглобина это всё очень хорошо биохимики уже сделали. Но в других молекулярных машинах расшифровать конкретные движения, понять механизм движения ещё не удалось. В фотосинтезе движение различается, как я уже говорил, в пределах одной макромолекулы. От десять минус в двенадцатой, до десять во второй секунд. Это колоссальный, принципиальный вызов молекулярной физике. Она, конечно, решит этот вопрос, вместе с биологами это будет сделано.

Но в оставшееся время я хотел бы вам, если можно, рассказать о том, как это можно применить в практике. Что это даёт, вообще говоря, просто конкретно. Я несколько слов скажу. Это сложная, в общем, система – фотосинитическая. Достаточно сложная. Она не такая уж сложная, как все клетки, но достаточно сложная для процессов моделирования. И возникает вопрос, а можно ли понять, как эти начальные процессы вообще регулируются – как-то со стороны всей клетки или нет? И по каким показателям можно об этом судить. Здесь сразу речь идёт о сложных системах.

Сейчас мы, пользуясь мощью современных компьютеров, стоим на пути того, что можно смоделировать поведение всей клетки. Но в данном случае, я буду говорить о поведении фотосинитической системы. И здесь встаёт целый ряд принципиальных вопросов регуляции сложной системы. Мы знаем принцип узкого места. Правильный принцип, но я бы сказал, упрощённый. В сложной системе много узких мест.

В фотосинтезе есть какой-то показатель, по которому можно судить о системе в целом. Показатель такой. Вот рисунок.

Флуоресценция – это та часть энергии, которая не используется в фотосинтезе. И мы можем, изучая характер флуоресценции (как она меняется при начале работы фотосинтеза) судить о том, сколько энергии запасается в фотосинтезе. Чем больше мы получаем флуоресценции, тем меньше идёт на фотосинтез. Выход флуоресценции, будем так говорить, порядка одного процента. То есть, по одному проценту нам предлагается судить о том, что делалось с остальными 99-ю. Это примерно то же самое, как если бы из любопытства мы хотели бы узнать, скажем, какой бюджет у соседей, а они вас не пускают домой, чтобы вы увидели, что они там едят. Но вы можете лазить в их мусорное ведро и смотреть, сколько бутылок они выкинули или ещё чего-нибудь. А потом пересчитать все те основные продукты, которые они при этом потребляют.

Вот в таком положении мы в отношении природы. Она со своего стола кидает нам флуоресценцию и говорит: «Догадайтесь, чего я там делаю в основном за столом». Так вот, начиная с фотосинтеза, вначале не удаётся всё переработать. Электроны восстанавливают промежуточные переносчики, здесь флуоресценция большая. Потом постепенно начинает раскачиваться система. И флуоресценция уменьшается. По разности между максимальной флуоресценцией, когда все центры закрыты, и обычной, при небольшом освещении, мы можем судить о потенциальной эффективности работы фотосинтеза. И оказывается, что это можно использовать в двух отношениях.

Во-первых, существуют различные фотосинитические системы. Есть листья, фитоплантон, который в океане, и очень важно определить эффективность фотосинтеза. Для фитоплантона, для рыболовного хозяйства это вообще очень важно. Рыба пойдёт туда, где есть чем питаться, где фитоплантон. Это очень важно. А с другой стороны, хлорофилл, который сидит в мембране, как я уже говорил, он очень чувствителен к всевозможным антропогенным загрязнениям – гербициды, ещё что-нибудь, что проникает в клетку. И когда в клетку они проникают, они меняют состояние мембран, а, как следствие, меняется флуоресценция хлорофилла. Как правило, она портится – в том числе и состояние хлорофилла, а флуоресценция увеличивается.

А.Г. Запасается меньше.

А.Р. Да, совершенно верно. И это можно использовать. С одной стороны, разность между максимальной и нулевой флуоресценцией есть показатель эффективности работы фотосинтетического аппарата. И можно в автоматическом режиме измерять эту интенсивность флуоресценции в морях и океанах. Я покажу некоторые примеры, и что это даёт. А с другой стороны, можно посмотреть, как это регулируется всей клеткой. И потом этот показатель можно использовать, для того чтобы посмотреть – всё ли в порядке в фотосинитической системе? И как следствие, а всё ли в порядке в окружающей среде, поскольку растения, фитоплантон, они чувствуют, что происходит вокруг и могут быть просто индикатором состояния. Вот у нас на кафедре мы ведём уже давно большие работы. Вообще всё, что я рассказываю – это результат работы, в основном, моей кафедры, конечно, но и большого количества сотрудников. Я просто не могу перечислить все фамилии моих друзей и коллег сейчас. Но поскольку я не научный доклад делаю, я думаю это позволительно.

А.Г. Они вас делегировали.

А.Р. В общем, я думаю, они проверят, правильно ли я здесь всё говорю.

Так вот, на следующем рисунке я вам покажу один пример. Вот корабль и маленький аппаратик здесь показан, который мы опускаем в воду и можем в автоматическом режиме измерять интенсивность процесса фотосинтеза начальных этапов и смотреть, что там происходит. Я вот такой вопрос, допустим, задам. Что будет, если мы будем освещать клетку фитоплантонную, но заставим её голодать при этом? Не дадим ей фосфора, азота. Ответ правильный, казалось бы, такой. Будут происходить первичные процессы, будет происходить разделение зарядов, при этом будут накапливаться АТФ, но роста не будет – потому что не из чего строить тело. Но подождёт клетка хороших времён, когда у нас появится фосфор, азот, но не всё же время она будет голодать. И тогда эта АТФ будет использована, клетка будет расти. Это логически правильный ответ, но не верный.

Потому что в клетке существует огромная опасность. А именно. Если у нас есть избыток электронов и избыток энергии электронного возбуждения, не использованные в данный момент времени, то кислород, который везде находится, в том числе, кстати, выделяется при фотосинтезе, как побочный продукт фотосинтеза, будет активироваться, и восстановленный кислород или возбуждённый кислород будет вызывать разрушение мембран.

Кстати, все эти разговоры на счёт озонной дыры – это, видимо, была, так сказать, хорошо проведённая дезинформация, для того чтобы хладагенты заменить. Но само по себе это физически обосновано. Озон, который экранирует от проникания ультрафиолета, мешает активации кислорода. Если вы будете слишком много загорать, у вас появится рак кожи, у вас будет выцветание фотодинамических красителей. Это то, что угрожает самой клетке. Я бы здесь провёл сравнение с недоброй памяти Чернобыльской АЭС. Потому что там тоже скорость выделения энергии в процессе реакции оказалась большей, чем скорость замедления, и произошёл взрыв.

Здесь то же самое. Надо не дать возможности активировать кислород. Как это клетка делает? Это колоссальный пример. Следующий рисунок, пожалуйста. Если кислород активируется, то происходит разрушение клетки. Понятно, чем это всем нам грозит. Так вот, оказывается, клетка делает следующее, когда слишком много света, а она голодная. Она электрон на самых ранних этапах направляет назад за очень короткое время. Время меньшее, чем время, нужное для активирования кислорода. И это происходит не только в лабораторных условиях, а прямо в природе. Вот посмотрите. Эти наблюдения проводились в Средиземноморье, но у нас в Подмосковье то же самое происходит. В восемь утра солнца мало и пищи вполне достаточно. В этом смысле они голодают. Пища соизмерима с количеством квантов. Я очень грубо говорю, но понятно.

А.Г. Пропорция верная.

А.Р. Не слишком много квантов, не захлёбывается она. И интенсивность фотосинтеза большая. А вот поднимается солнце, 12 часов дня, интенсивность фотосинтеза падает и становится минимальной. Что значит падает? Электрон обращается назад. Это сопровождается увеличенным свечением – не дать кислороду схватить эту энергию, не разрушить клетку. А потом, когда солнце заходит, опять все возвращается назад. Вот и у нас то же самое. Можно на следующем рисунке это увидеть. Вот посмотрите, Можайское водохранилище. Ну, не Адриатическое море, но свои прелести здесь тоже есть. На глубине одного метра в десять часов утра интенсивность фотосинтеза максимальная. Не так уж много солнца у нас в Подмосковье в десять часов утра. Но когда в два часа дня интенсивность солнца уже достаточно большая и на глубине одного метра его слишком много – вот тут интенсивность фотосинтеза упала. А на глубине двух метров она как раз стала максимальной. То есть, они активно это регулируют.

Я тут не позволю себе вдаваться в механизмы, но чтобы остаться, так сказать, в рамках жанра, скажу, что здесь идёт восстановление пластахинона, о котором я говорил. Только эти научные слова произнесу, глубже не буду вдаваться. За счёт того, что появляется большой отрицательный заряд на пластахиноне, за счёт ликростатического отталкивания электроны не успевают, им не дают возможности уйти в цепь, кислород не успевает активироваться за это время. Это что касается активность фотосинтеза. Теперь как использовать эти показатели для того, чтобы определить степень антропогенного загрязнения.

Можно просто измерять эту интенсивность фотосинтеза начальных этапов по переменной флуоресценции, измерять в режиме реального времени, в реальных условиях. Я вам покажу несколько примеров, которые интересны. Это мы делаем на нашей кафедре. Мы заключили договор с мэрией Москвы и провели обследование различных деревьев. Результаты я вам потом покажу. С нашим шариком мы проехали на трамвайчике по Москва-реке. Что мы получили. Вот посмотрите. 40 километров мы проехали по Москва-реке. Растёт количество водорослей в Москва-реке по мере продвижения в городскую черту. Почему? Вообще, они живут, так сказать, и процветают там. А вот интенсивность фотосинтеза остаётся приблизительно постоянной. Их много, но все они себя чувствуют неплохо. Но вот в некоторых местах, а именно, в устье Яузы, и в устьи ещё одной реки… Не помню, не могу разобрать…

А.Г. Завод имени Лихачёва и Южный порт. Самые экологические неприятные места.

А.Р. Да, да, да. Вот посмотрите, что мы видим. Резкое уменьшение интенсивности фотосинтеза. Мы мэрии предлагали сделать всё бесплатно, дайте нам трамвайчик, мы проедем по Москва-реке и покажем, где неучтённые вами сбросы вод. В режиме реального времени. Но – это к вопросу о востребованности науки – дальше платонических разговоров дело не пошло.

А.Г. Но данные же вы получили всё-таки.

А.Р. Ну, одно дело эти данные. Другое дело, что с ними делать. Мы большое беспокойство вызываем. Спокойнее гораздо знать то, что есть и не знать ничего больше. Я думаю, тут понятно, что я хочу сказать. Не хочу кидать ни в чей огород камешки, но мы можем это сделать. Пока не получилось.

Другая проблема есть. Скажем, проблема цветения водорослей, забивка труб сточных, ещё чего-то такое. Это очень важный момент. Вот на озере Байкал важно предсказать время цветения. На озере Байкал активное цветение начинается, примерно, где-то в конце февраля и идёт в марте. Ну, это известно. А вот, посмотрите, как идёт интенсивность фотосинтеза на начальных этапах. Она начинает подниматься за два-три месяца до цветения. Они начинают готовиться. Представьте себе, насколько это важно знать в данном конкретном водоёме или в какой-нибудь системе, где идёт, возможно, загрязнение – знать и заранее всё это предсказать. Насколько это важно.

Вот переменные флуоресценции уже на городских лесонасаждениях. Ну, мы знаем, что в Москве гибнут десятки тысяч деревьев. Причём, как они гибнут? Оно стоит, стоит, потом оно, так сказать, довольно резко гибнет. И потом начинается постфактум – выяснение. А почему у нас здесь было вредное место, ещё чего-то такое. Вот мы прошли улицу Марии Ульяновой и измерили эту переменную флуоресценцию. У нас есть небольшое ноу-хау, как можно мерить переменную флуоресценцию не только на листьях, но и на коре. Это зимой даже можно сделать, когда никаких листьев нет. Это так вот, маленький секрет. И вот красным обозначены опасные места, они совпадают либо с автобусной остановкой, либо с каким-то местом, где было какое-то строительство, либо где автобусы дизели свои не выключали, вот что-то в таком духе. И можно же провести сканирование. Более того, при планировании, скажем, фасадов каких-то можно с точностью до одного-двух метров показать безопасное расстояние для лесонасаждений.

А.Г. Кроме того, выбрать, наверное, и породы деревьев, которые будут устойчивы.

А.Р. Абсолютно точно. Представляете, какая проблема. Вы дорогие какие-то саженцы привезли, да ещё они откуда-нибудь с юга. И вы не знаете, какие приживутся тут, в наших условиях. А мы по этой величине в зависимости от температурного воздействия их можем отобрать. Причём, с большой точностью, в слепых опытах мы это делали.

С мичуринцами у нас договор был. Мы дали им соответствующий прибор, маленькую такую прищепочку, как мы её называем, спектроскопическую, с помощью которой они могут определить зимостойкость яблоневых саженцев. И они это используют активно, это очень хорошая вещь. Ещё один пример я вам покажу. Вот, допустим, антропогенное загрязнение – соли тяжёлых металлов. Вообще проблема питьевой воды – известная вещь. Бывает же ситуация такая, когда по химическим анализам всё хорошо, а в целом сочетание вредное. Ну и обратная картина.

А.Г. Кроме того, динамические характеристики важны. Сейчас всё хорошо, а через две минуты всё плохо.

А.Р. Конечно, конечно. По частям всё вроде хорошо, а общее впечатление отвратительное. Как в известном анекдоте о впечатлении делегации по поводу завода. «И то хорошо, и это хорошо, а общее впечатление – отвратительное».

Итак, здесь водоём с разной концентрацией йонов меди. Они небольшие в том смысле, что количество клеток – зелёная линия – не меняется. То есть, никто ещё не гибнет, всё хорошо. А по переменной флуоресценции уже идёт падение. Это идёт отравление. За много дней до того, как произошло падение клетки. Это есть экспресс-диагностика, которую можно использовать. Поэтому я сейчас пользуюсь тем, что мы с вами говорим, и мы это продолжение повторяем. Мы готовы это сделать, мы готовы обучить персонал. Это не простые измерения, это не на весах взвесить. Это более сложная вещь. Мы готовы, мы работаем в университете, это наши обязанности. Нам это интересно. И это можно сделать. Растения стоят на перекрёстке дорог и никуда не бегут. Это естественные часовые. Фитапланктон в Москве-реке живёт, и он показывает, что там происходит. И это нужно использовать. И это не наша только выдумка, весь мир перешёл на спектральный метод автоматического мониторинга в режиме реального времени. Ну, и, хоть здесь, может, мы не отстанем. Я уж не знаю.

И последний пример я хотел бы привести такой. Вы знаете о проблеме экологически чистых источников энергии – водород. Уже автомобили на водородном топливе показывают. Откуда брать его? Я думаю, что перспективны будут, конечно, химические дешёвые системы. Биологические тоже не сбрасываются со счёта. Водоросли выделяют водород. Кстати говоря, некоторые водоросли его выделяют, когда начинают голодать, когда им некуда девать электроны. И для того чтобы они не достались кислороду, специальный фермент гидрогинеза передаёт ион водороду. Выделяется молекулярный водород. И, как побочный кислород, молекулярный водород. В культиваторах важно определить время, когда это начинается.

И здесь показано, что начало выделения водорода совпадает (мы недавно это открыли в совместных работах с американцами) с резким падением фотосинтеза. За десять – пятнадцать минут, а времена здесь – часы. Десять, двадцать, сорок часов. За пятнадцать минут резкое падение фотосинтеза, как предварительная такая подготовка. Они показывают – сейчас будем выделять водород. Резко уменьшаем фотосинтез, и будем электроны на водород отдавать.

Заключая, я бы сказал так. Если вернуться опять к проблеме сложных систем, то мы ведём, уже начали работу по моделированию этой системы в целом. Мы знаем, как она устроена. Мы знаем, какие там константы, из экспериментов знаем. В этих условиях методика математического моделирования сложных больших моделей очень перспективна. Потому что то, что мы определим путём подбора констант, с большой вероятностью можно считать, что это соответствует реальным системам. Это эвристическая ценность моделирования, когда вы можете теоретически узнать то, что или трудно экспериментально узнать, или в голову даже не приходит. Это достаточно ценная вещь.

Но в принципе, оказывается, что одна из основных трудностей состоит в том, что мы привыкли считать, что константы неизменны. А вот то, что мы здесь видели, показывает, что возвращение части электронного потока, как ответ на реакцию, означает, что меняется узкое место. Изменяются константы. И я хотел бы это проиллюстрировать немножко несколько фривольным что ли рисунком.

Все бегут на лекцию в Московский университет с пересадкой в метро. А в метро узкое место – это эскалатор. Что это значит? Сколько бы вы поездов не добавляли сюда, если вы не увеличите скорость движения по эскалатору, у вас скорость вообще не увеличится. Вот так регулируется эта система. Хотите увеличить скорость прибытия на лекцию, увеличьте число эскалаторов. Это обычный принцип узкого места. И ещё здесь есть сигнал обратной связи. То, что здесь узкое место, передаётся на вход и говорят: не теряйте время, займитесь чем-то ещё. Идёт изменение топографии системы. Вот в чём трудность моделирования больших систем. Они вроде как стационарные, но константы там могут меняться и, в принципе, на любом этапе. Ну, не на любом, конечно. Но вот здесь показано, куда они бегут. Побежали в библиотеку чего-то читать. В кино тоже – неплохо. Могут бизнесом заняться – тогда конец науке. Потому что в бизнес из науки есть путь, а из бизнеса в науку я чего-то примеров конструктивного возвращения не знаю. Но будем надеяться, что сила и образования нашего, и традиций научных такова, что нам ещё не скоро удастся похоронить науку, несмотря на все недобрые усилия.

А.Г. А сколько времени пройдёт от создания компьютерной модели той сложно действующей системы до попыток синтезирования такой системы? И вообще возможно ли это или это фантастика?

А.Р. Вы знаете, эта проблема сейчас встала. Я могу вам сказать, что у нас на кафедре есть опыт моделирования. Вообще у нас в стране, надо сказать, сильная школа математического моделирования. У нас на кафедре есть небольшая группа, ещё сильная группа в Пущино есть, в физическом институте. Так что с мозгами у нас всё в порядке всегда было. И сейчас там с компьютерами тоже неплохо. Но я вам скажу так. Я думаю, что в целом смоделировать клетку, – до этого ещё, конечно, далековато. И здесь даже не в том дело, что компьютерной мощи может не хватить, а в том, что мы ещё не всё знаем. Слишком большой произвол будет. Если вы посмотрите на карту клеточного метаболизма, голова кругом идёт, конечно. Это нереально. Нереально потому, что мы ещё далеко не все константы знаем и не всё знаем. Но отдельные блоки, функционально осмысленные и биологически имеющие значение – конечно, пришла пора это делать. Вот мы сейчас займёмся фотосинетическим моделированием, есть и другие проекты. И я думаю, года через два-три мы получим реальные результаты.

Математика и ботаника

24.06.03
(хр.00:50:11)

Участники:

Алексей Асафьевич Оскольский – кандидат биологических наук

Соколов Дмитрий Дмитриевич – доктор физико-математических наук


Дмитрий Соколов: Эта история началась года три назад, когда я впервые познакомился с Алексеем Асафьевичем и как-то впервые понял, что действительно между математикой и систематикой растений есть нечто общее. Исходным пунктом является очень большая сложность разнообразия растений. Как ни странно, книжка, по которой определяют одуванчики – это такой увесистый том, который человек с трудом поднимает. А у Алексея Асафьевича есть такой сослуживец – Саша Сенников, мы с ним гуляли на ботанической экскурсии в Нескучном саду, и он на моих глазах нашёл новый вид ястребинок для Москвы и Московской области. А потом мы перешли по мосту через Москва-реку, а на другой стороне такая старая усадьба, по-моему, князей Оболенских, он там нашёл новый для Москвы и Московской области вид одуванчика. Это показывает, насколько это ещё не исследованная область. И это биоразнообразие очень многомерно. Оно и в геологическую историю простирается, мы же не только мгновенный его срез должны изучать, но и распространение по Земле. Мало знать, какие вообще есть виды растений. Нужно знать, какие есть растения здесь и сейчас, и как они сюда заносятся. На насекомых это нам даже лучше известно. Вот к нам проник колорадский жук, и каждый, кто выпалывает картошку на своём участке, знает, что это такое. Он проник и распространился по нашим местам. А также распространяются и растения. Это, пожалуй, самый такой простой момент общности интересов между математикой и ботаникой. Эта область ботаники называется «флористика», она изучает, что где растёт. У меня есть такая хорошая научная знакомая Люда Хорун из Тулы, она собрала за двести лет базу данных по заносным растениям в Тульской области. Она действительно, как говорят математики, представительная. По ней можно количественно изучать, как в Тульскую область заносились виды растений.

Замечательно, что как только её начинаешь количественно обрабатывать, там немедленно видно – вот произошла революция в 17-м году, в 80-х годах народное хозяйство Советского Союза работало в перенапряжённом ритме, потом произошёл экономический кризис. Это там прекрасно видно. Насколько я знаю, это первая такая полная база данных. Её действительно можно количественно обрабатывать. Это сравнительно простые приёмы обработки. Мы дальше будем говорить про более такие…

Александр Гордон: Скорее качественные, чем количественные.

Д.С. …экзотические вопросы. Но в принципе, математика вполне в состоянии описывать количественно динамику заносных видов, то, как они распространяются. Довольно хорошо развит математический аппарат, который мог бы это описывать и дело за реальными данными и за желанием. Меня, надо сказать, совсем не научная сторона вопроса очень поражает. Вызывает затруднение финансирование этих работ, там требуются совершенно смехотворные деньги, порядка трех тысяч долларов в год, чтобы деятельность этой группы поддерживать. Мне трудно представить, что с этим могут быть затруднения, а они есть на самом деле. Не так там много в Тульском университете групп, которые работают на таком интересном уровне.

А.Г. Это вечная боль… Тут три тысячи рублей иной раз трудно бывает получить.

Алексей Оскольский: Тут может создаться впечатление, что Дмитрий Дмитриевич – ботаник, а я математик, хотя на самом деле это не так. Собственно, если обращаться к предыстории этой передачи, то она началась, наверное, со школы по теоретической морфологии растений, состоявшейся в Петербурге в 2001 году. В её организации я принимал участие. Мы тогда пригласили Дмитрия Дмитриевича сделать доклад о фракталах. Концепция фракталов очень популярна, фракталами интересуются и морфологи растений, поэтому нам хотелось услышать что-то более квалифицированное об этом предмете. Доклад Дмитрия Дмитриевича спровоцировал тогда тот самый спор, в котором может родиться истина или, по крайней мере, понимание чего-то нового. Нам был предложен некий математический язык, который позволил лучше описывать, а значит и лучше решать некоторые из насущных проблем ботаники. Про них мы и хотим сейчас поговорить.

А.Г. Пожалуйста.

А.О. Ну, а сейчас я хотел бы немножко иллюстрировать те проблемы, которые волнуют ботаников. В народе есть ощущение, что ботаника – это наука века 19-го, что практически всё уже открыто, и сейчас что-то где-то там уточняется на уровне третьего знака после запятой. Но это не так. Некоторые сенсационные, без преувеличения, открытия в ботанике сделаны в течение последних десяти лет. Вот покажите, пожалуйста, первую картинку.

Здесь на экране изображена веточка растения, дерева под названием Ti-codendron. Это родственник берёзы, ольхи или лещины (лесного ореха), относится к семейству берёзовых. Растёт Ticodendron в Центральной Америке. Обратите внимание на то, какие у него плоды. У нашей берёзки-то это орешек с крылышком, здесь же это сочная костянка, как у абрикоса. Тем не менее, это родственник берёзы. Так вот, в Центральной Америке, в трех странах Ticodendron – это лесообразующая порода, однако ботаниками он открыт только в начале 90-х. Покажите, пожалуйста, следующую картинку.

Это ещё более сенсационное открытие, сделанное в 1989-ом году. Это La-candonia schismatica, растение-паразит. Растение не зелёное, не имеющее хлорофилла и питающееся на корнях других растений. Тоже из Центральной и Южной Америки. Но самое удивительное – это цветок Lacadonia, в котором тычинки находятся внутри, пестики расположены снаружи. То есть это растение опровергает все основные каноны морфологии цветка.

Вот, пожалуйста, ещё следующая картинка. Это дерево хвойное дерево, новый род хвойных под названием Wollemia. Вы, наверное, знаете о араукариях. Их иногда выращивают у нас в комнатах. Это хвойные деревья, но с довольно широкими листьями. Так вот, Wollemia – это новый род хвойных, который найден в 1994-м году в национальном парке Волеми, в 200-х километрах от города Сиднея, в Австралии. Город Сидней не маленький, окрестности его достаточно хорошо исследованы. Вообще, австралийцы очень любят и знают природу, свою флору. Я был в Австралии, так по ходу могу сказать, что там знать растения так же престижно, как у нас, скажем, знать русскую классическую литературу. Это предмет национальной гордости. Тем не менее, в двухстах километрах от Сиднея до последнего времени росло дерево, о существовании которого ботаники не знали. Причём его ископаемые остатки были известны аж с мелового периода.

А.Г. То есть это кистепёрая рыба ботаники.

А.О. Ну, кистепёрая рыба всё-таки подревнее немножко. Но, тем не менее, хвойных не так много, и открытие нового рода хвойных – это достаточно интересное событие.

И покажите, пожалуйста, следующую картину. Вот Archaefructus, справа отпечаток, слева – реконструкция. Это самое древнее из известных растений, которые надёжно можно отнести к цветковым. Считается, что цветковые появились в меловом периоде. Это растение найдено в самых верхних слоях юрского периода в Восточном Китае. И найдено совсем недавно, я не помню точно год, но это 90-е годы. К сожалению, до наших дней Archaefructus не дожил, но это открытие действительно можно сравнить по значимости с открытием кистепёрой рыбы.

Д.С. На самом-то деле с такими проблемами ботаники без помощи математиков справляются. А вопрос-то стоит в том, что нужно разобраться с теми структурными единицами – таксонами, как говорят специалисты – где разобраться трудно. Этих одуванчиков, как говорится, чёртова уйма. Отличаются они, с одной стороны, значимо, а, с другой стороны, это очень сложная система. И тут, прежде всего, по-видимому, нужно поговорить о том, что такое вид, что мы, собственно, хотим узнать. А вещь это крайне непонятная.

А.О. Положение таково, что мы часто говорим об охране того или иного вида, об исчезающих видах. Но при этом большинство людей не знает, что само понятие вид в ботанике, вообще в биологии, чрезвычайно проблематично. Что, собственно, такое вид? Есть разные концепции вида, весьма противоречивые. В систематике растений есть такое негласное определение, что вид – это то, что считает видом систематик, компетентный в данной группе растений. Так вот, наши дискуссии с Дмитрием Дмитриевичем позволили предложить язык для описания и немножко лучшего понимания, что такое вид. Как ни странно, тут-то помогла геометрия фракталов.

Д.С. Вообще завет, которому нужно следовать, когда пытаешься применить математику где-нибудь вне её поля деятельности, такой: сначала нужно очень долго и внимательно слушать, что говорят специалисты. Очень плохо, когда математик идёт и начинает предлагать от того места, что он знает. А лучше всегда сначала очень-очень долго слушать, что говорят. Я в этом смысле нахожусь в тепличных условиях, у меня сын специалист по систематике растений. Я, собственно, через него познакомился с Алексеем Асафьевичем, и у нас дома такой постоянно действующий семинар по интересным вопросам науки.


  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18