Современная электронная библиотека ModernLib.Net

Беседы 2003 года (№12) - Диалоги (декабрь 2003 г.)

ModernLib.Net / Научно-образовательная / Гордон Александр / Диалоги (декабрь 2003 г.) - Чтение (стр. 7)
Автор: Гордон Александр
Жанр: Научно-образовательная
Серия: Беседы 2003 года

 

 


Конечно, если вы, скажем, находите сохранившиеся в породе следы ряби или следы передвижения динозавров или ползания каких-нибудь моллюсков, или червей, то вы можете быть уверены, что они ползали по осадку, который весь насквозь пронизан этими полисахаридами, и, соответственно, там жили бактерии. Потому что, если бы там была бы стерильная среда, это просто был бы осадок из обломков, скажем, кварца, эти следы бы не сохранились, их спокойно бы размыло и всё. А они сохраняются только потому, что фиксируются полисахаридами.

На следующем снимке я хотел бы вам показать бактерии, которые окружены такой темной каймой. Эта тёмная кайма – глинистые минералы. Сейчас становится ясно, что глинистые минералы не обязательно образуются от разрушения горных пород и сносятся в виде обломочной тонкой фракции. Бактерии могут на наружном чехле или в чехле образовывать аутигенные глинистые минералы. И если 20 лет назад Лавенштам прописал в книжке где-то около 20 довольно тривиальных минералов, которые могут образовываться с помощью бактерий, то сегодня их уже 120, и среди них попадают такие: кварц, кристобалит, полевой шпат, глинистые минералы и так далее. Поэтому представления наши о том, из чего состоит осадочная порода, в ряде случаев должны меняться. Я не хочу сказать, что все глины образуются только аутигеным путем. Нет, конечно, пропорции здесь будут разные. Но когда мы имеем тоненькие прослоечки…

А.Г. Живой глины.

А.Р. …То, как правило, мы там сразу находим очень хорошо сохранившиеся бактерии. Это вне всякого сомнения. Поэтому здесь возникает такой вопрос. Если в прошлом мы имеем огромное количество мелководных бассейнов, которые по глубине находятся в пределах фотической зоны, т.е. в зоне проникновения света, то они должны были быть пронизаны насквозь бактериями. И следовательно, процесс отложения и диагенеза (преобразования) осадков, должен был идти обязательно при участии бактерий, и при очень активном их участии. И это заставляет сейчас думать, что многие модели седиментации в древних мелководных бассейнах (к сожалению, сегодня нет таких) должны быть пересмотрены, должны быть созданы заново.

Теперь о метеоритах. Вы знаете, очень бурные споры идут по поводу того, что в метеоритах правда, что не правда. Конечно, та фотография, которую опубликовал Д. Маккей со своей компанией в «Сайенс» и в «Сантифик Америкон», не самая удачная, если не сказать, что просто не удачная. Когда я был в Хьюстоне у него в лаборатории, я имел возможность посмотреть весь материал, и был изумлен тем, что они опубликовали совсем не то, что надо было напечатать. Одну из фотографий я здесь сейчас быстренько покажу. Но потом случилось так, что мы нашли в Ефремовке некоторые образования, похожие на те, что нашли американцы в Мурчесоне.

Видите, идет тоненькая ниточка поперек снимка, и диаметр, строение её, конструкция, ничем не отличается от нормальных бактерий, и вообще говоря, сомнений в том, что это бактерия, нет. То есть невозможно предложить альтернативное толкование этой морфологии. Можно предположить, что, скажем, это засорение. Но мы уже сейчас вместе с некоторыми коллегами из НАСА провели кучу всяких экспериментов, и мы знаем, как распознать засорения.

А.Г. Если бы в земной породе это обнаружили, то не было бы никаких сомнений, что это?

А.Р. Никто не стал бы спорить, что, конечно, это бактерия. А здесь спорят, потому что это метеориты. Это нормальное мышление, «в метеорите не может быть, поскольку, этого не может быть никогда». Но мы научились различать засорения, каждое засорение обязательно дает в анализе ванадий, калий, хлор, такие элементы, которые в метеорите или практически отсутствуют или отсутствуют совершенно. Но для меня самое убедительное было то, что сейчас покажут на картинке, это метеорит Оргей, а внизу современная бактерия. Обратите внимание, что внутри и того, и другого тела расположены такие черные точки. Это кристаллы магнетита. Для меня это был последний момент, когда я перестал сомневаться, что действительно мы в метеоритах имеем псевдоморфозы по бактериям. Конечно, это всё окаменевшее, конечно, это всё очень древнее, и, наверное, многие вещи старше, чем Земля. Но во всяком случае, для меня это было очень важно.

А.Г. А размеры схожи?

А.Р. Абсолютно нормальные земные бактериальные размеры. Если можно ещё несколько картинок – это пары земных и неземных объектов. Здесь на каждой паре, верх – это какой-то земной объект, либо ископаемый, либо современный, а внизу – объект из метеорита. Сегодня мы подобрали уже порядка ста с лишним таких пар, и будет опубликован атлас вместе с насовскими нашими коллегами, и мы скажем: ребята, теперь ломайте голову как хотите по этому поводу, мы своё дело сделали. Это так же, как когда я однажды выступал, и мне сказали: нанобактерий быть не может, потому что туда невозможно уложить весь геном. Я сказал: поскольку сегодня мы знаем, что нанобактерии существуют, и я видел это собственными глазами, то как укладывать туда геном, этим вы занимайтесь, мне уже не надо, я пошел дальше.

Покажите подряд все картинки, все четыре.

А.Г. Как в детской игре, найди два отличия.

А.Р. Это просто потрясающее сходство. Конечно, можно набрать много земных объектов, которые будут очень похожи на ископаемые бактерии и образования из метеоритов. Но я всегда привожу такой пример. Если, скажем, человек, который не занимается палеонтологией, будет смотреть на выложенные на столе две бедренные кости, одну – динозавра, а другую – мамонта, и если они сходных размеров, то ведь неспециалист никогда в жизни не скажет, где динозавр, а где мамонт. Когда люди говорят, что это похоже на что-то – это прежде всего недостаток опыта рассмотрения таких объектов. Да, они очень сложные, и они очень простые. Но есть, знаете, много всяких мелких деталей, которые указывают на то, что это не может быть неорганикой или, наоборот, органикой. Точно так же, как когда мы исследуем земные объекты.

Этот снимок задержите, пожалуйста, на экране. Когда мы исследуем земные объекты, естественно совершенно, мы тоже сталкиваемся с проблемой толкования – шарик, ниточка, биогенный, абиогенный. Но нам помогают продукты, которые они производят. Изучая бактерии, можно изучать практически все месторождения полезных ископаемых. И сейчас можно утверждать абсолютно смело, что осадочные месторождения полезных ископаемых возникают обязательно при участии бактерий, и без бактерий не могут быть. Это так же очевидно, как то, что здесь на полу или у нас на руках, на штанах, на лампах, везде обязательно есть бактерии, почти непрерывные тоненькие пленочки, они есть везде. И поэтому, сегодня мы должны себя немножко переломить в восприятии научного материала, когда мы очень спокойно рассуждали о том, что идет механическое осаждение или что-то химически формируется. Вы знаете, я думаю, что практически даже в солях, в доломитах, мы везде имеем следы деятельности бактерий, и это нужно обязательно иметь в виду как руководство к действию, к переработке наших концепций.

Может быть, я немножко увлекаюсь, и даже наверняка. Наверное, в каких-то случаях я выдаю желаемое за действительное. Я думаю, что какое-то, достаточно большое количество ошибок в рассуждениях моих коллег, которые этим занимаются, имеет место быть. Но не видеть, что это серьезный процесс, что, вообще говоря, бактерии играют огромную роль во всех геологических процессах, сегодня, по-моему, уже невозможно.

А.Г. Существование ископаемых бактерий в метеоритах всё равно ведь только косвенным образом может подтвердить теорию панспермии. Потому что пока не найдено ни одной живой бактерии, верно ведь?

А.Р. Это верно. Но я вам скажу, что, вообще говоря, сама теория панспермии и исследование метеоритов (даже если в отношении бактерий это материал достоверный), они не вполне, так сказать, соприкасаются. То есть соприкасается, но одно другое не вполне оправдывает и подтверждает. Потому что это немножко всё-таки разные вещи. Существовали, скажем, какие-то бактерии на планетах типа Фаэтон, – одна из версий, считающаяся более менее фантастической, хотя я не вижу здесь больших фантазий. Или какие-то планетные тела в других системах, не обязательно солнечной.

А.Г. Тот же Марс.

А.Р. Нет, не обязательно солнечной даже. Потом они были разрушены, принесены. Но это ещё не говорит о том, что панспермия имеет место быть. Это говорит только о том, что жизнь существовала раньше, она была в других местах, образовалась не только на Земле и так далее. Точно так же, когда появились первые наши публикации, мне говорили: «ну, теперь вы доказали, что бактерии были принесены на Землю». Я говорю: «простите, ничего общего». Принесены остатки бактерий, которые окаменели давным-давно, а могут ли они быть принесены в живом виде, это уже вопрос. Правда, я думаю, что могут. Сегодня антарктические работы по сохранности бактерий, по вечной мерзлоте, ясно показали, что несколько миллионов лет бактерий могут находиться в анабиозе. Решается проблема транспорта – в ледяных кометах, скорее всего, можно принести. Но я так далеко не иду, понимаете, я уже так находил много в разные стороны, что…

А.Г. Напомните мне, пожалуйста, самые ранние находки эвкариотических организмов.

А.Р. Сегодня в породах с возрастом 2,7 обнаружены стиролы, которые говорят о том, что, возможно, это эвкариоты. Но когда мы разговаривали с академиком Добрецовым, он говорит: «а ты уверен, что они инситные?», то есть в том, что они там и были? Может быть, эти органические соединения откуда-нибудь мигрировали? В принципе, это возможно, но по той геологической ситуации, представить это трудно. Какой-то элемент миграции мог быть, но не более того. Если 2,7 – стиролы, то, скорее всего, эвкариоты, это уже 2,7. Мне это не удивительно, я думаю, что будет доказано и более раннее их появление.

А.Г. Но это очень сильно меняет эволюционную теорию.

А.Р. Конечно.

А.Г. То, что направление эволюции неизменно, она необратима, это доказывается наукой, о которой мы сегодня говорим. А темпы эволюции можно рассчитать? Понять – они движутся линейно или есть какая-то зависимость от всей этой сферы?

А.Р. Люди, которые занимаются молекулярными часами, ведь и рассчитывают темпы эволюции фактически из постулата, что всё это должно происходить равномерно. Я не специалист в этой области, но я в это не верю. Я думаю, что вряд ли это было так. Но, знаете, я думаю, что для сегодняшнего дня необходимо воспользоваться и такой линейкой. И потом, сравнивая те данные, которые получает палеонтология, и молекулярные часы, можно решить, где здесь какие промахи, можно ли действительно опираться на эти данные всерьез или они как-то должны быть откорректированы.

Но. Здесь очень важно другое. Расчет появления определенной организации животных или растений, или вообще эвкариот, с помощью методов, которыми строятся молекулярные часы, конечно, возможен, и это очень важно.

А.Г. Спасибо огромное. Удачи вам.

Биосемиотика

11.12.03
(хр.00:40:23)

Участники:

Седов Александр Евгеньевич – доктор биологических наук

Чебанов Сергей Викторович – доктор биологических и филологических наук


Александр Гордон: Что за зверь такой – «биосемиотика»? Мы говорили с семиотиками, и достаточно хорошо за то время, что идет программа, изучили их чаяния и веяния, но с таким странным сочетанием двух составляющих, мне первый раз приходится сталкиваться. Поэтому я весь в нетерпении, горю, расскажите мне, что это такое?

Сергей Чебанов: Биосемиотика – дисциплина, возникшая на пересечении биологии и семиотики, поэтому отношения между ними чрезвычайно интересные. В одном отношении можно говорить, что семиотика является частью биосемиотики, потому что оказывается, что все живое семиотично, но не все семиотичное (точнее, социосемиотичное) – биологично. В другом – семиотика возникла как социосемиотика, а ее общие концепции оказались сформулированы безотносительно к тому, какова природа того, что обладает семиозисом. Когда на этом фоне возникла биосемиотика, она оказалась одним из направленией семиотики. Таким образом, биосемиотика – это область пересечения биологии и семиотики, хотя и существует два совершенно разных взгляда на нее – взгляд семиотиков, и взгляд биологов.

Так или иначе, речь идет о том, что у живых организмов существуют семиотические средства, знаки. Самый простой и известный пример этого – это уже не одно столетие насчитывающий разговор о том, существует ли язык животных. Точно поставить этот вопрос и попытаться дать такой же строгий ответ на него – в этом главные задачи биосемиотики. При ответе на эти вопросы оказалось, что те или иные языки, свойственные не только высшим животным, но и другие живые существа «разговаривают» друг с другом на том или ином языке. Так, разговаривают между собой клетки и органы, яйцеклетки и сперматозоиды, прежде чем встретиться, разговаривают тоже на некотором языке. Для того чтобы точно об этом говорить, и нужна биосемиотика.

Александр Седов: Думаю, многое о биосемиотике позволит понять контекст истории её формирования. Семиотика в целом – наука о знаках, об их интерпретациях в знаковых системах различной природы и о знаковых коммуникациях – возникала в соответствии с пословицей «Своя рубашка – ближе к телу»: из всех знаковых систем людям наиболее близки и понятны собственные языки, и потому исторической основой семиотики была лингвосемиотика. Позже стало понятно, что многие продукты культуры можно тоже рассматривать как языки, хотя и построенные не из слов: ведь многие принципы их формирования, организации и функционирования – те же, что и у языков словесных. Язык архитектуры, язык танцев, язык жестов, язык живописи и прочих форм искусства нередко упоминают в своей профессиональной речи культурологи, искусствоведы и другие специалисты по этим сферам творчества. Слово «язык» здесь изначально было метафорическим, но вскоре вошло в состав вполне конструктивных рабочих терминов. Так возник довольно большой пласт семиотики невербальных объектов культуры. Насколько я мог судить по многим работам, доложенным и опубликованным на 7-м Международном Конгрессе по Семиотике, происходившем в 1999 г. в Дрездене, где делали доклады и мы с Серёжей Чебановым, анализом невербальных объектов культуры более всего занимаются семиотики из стран, говорящих на романских языках.

Ещё одна основа семиотики – это точные науки, зародившиеся во второй половине минувшего века. Здесь с конца 1940-х гг. велико было влияние теории информации и кибернетики – начиная с основополагающих работ Н. Винера, К. Шеннона, У. Росс Эшби. В этих дисциплинах изначально разрабатывались количественные – концептуальные и инженерные – методы анализа и построения систем коммуникаций, которые увязывали в единую универсальную картину идей и методов сложные системы – организмы, механизмы и продукты культуры. Здесь предметными полями деятельности стали структурная и сравнительная лингвистика, только-только зарождавшиеся ‘computer sсiences’, а в сфере биологии – физиология (в основном нейрофизиология) и молекулярная генетика.

Однако всё это было ещё не семиотикой, а классической теорией информации и кибернетикой: предметами их анализа были ещё не знаки (signs) – которые, согласно концепциям семиотики, разными системами могут интерпретироваться по-разному, а сигналы (signals) – каждое конкретное сочетание которых рассматривалось как однозначное информационное сообщение. В общем, это было более детерминистское и более физикалистское понимание информационно-знаковых систем и процессов, чем мы видим в современной семиотике.

И лишь буквально за последние десятилетия биология тоже «дозрела» до понимания того, что фундаментальная особенность всех живых систем – это именно знаковые процессы, и этим они принципиально сходны с языками, произведениями культуры, техническими устройствами… Собственно, биосемиотика зародилась ещё в 1910–1940-е годы – в работах Якоба фон Икскюля, а затем Чарльза Ротшильда, в 1963 г. предложившего сам термин «биосемиотика» и сформулировавшего несколько основных положений этой науки.

Однако реально – как область интенсивной работы сообщества исследователей-специалистов – она развивается лишь с конца 1980-х гг. Развитие это стимулировалось несколькими фундаментальными достижениями биологии. Генетики научились читать молекулярные тексты в ДНК и РНК лишь в 1976–77 гг. В эти же годы начали открывать и исследовать тот молекулярный язык, на котором общаются клетки, в основном нервные (нейроны). Сейчас известно, что элементы этого языка, его знаки и «слова» – это около тысячи белков-нейропептидов и свыше 40 низкомолекулярных соединений. Это – действительно сложнейший язык, как сказал Сережа. И оказалось, что вообще всё то, что мы наблюдали в культуре «невооруженным глазом», есть в живых системах: в них есть языки, есть тексты. И сейчас в геномных программах нам открывается просто огромный своеобразный тезаурус: там есть рифмы, ритмы, смысловые повторы, хитрые и во многом еще непонятные сочетания нескольких синтаксических систем – в генах и в разных других функциональных участках ДНК. С работой генов тесно связаны тысячи реакций обмена веществ в любой клетке и любом организме, разнообразные межклеточные взаимодействия, развитие и жизнедеятельность любых организмов, многие аспекты процессов эволюции и, опосредованно, динамика экологических систем. Таким образом, основа всего живого – это построенные из молекул тексты в строгом смысле этого слова, т.е. не разветвленные линейные цепочки дискретных символов, взятых из того или иного небольшого фиксированного алфавита. Два молекулярных алфавита – нуклеотидный в ДНК и РНК и аминокислотный в белках – служат для построения, интерпретаций и размножения огромных текстов, с длинами от тысяч «букв» (усреднённые количества нуклеотидов в гене или аминокислот в белке) до миллиардов (около 3.2 млрд. нуклеотидов – длина генома человека). И есть ещё жизненно важные малые биологические молекулы, которые как бы еще не являются буквами, а выполняют функции, сходные с иероглифами. Это – не белковые гормоны, феромоны, телергоны, антибиотики, фитонциды, яды. Будучи более просто построенными знаками, чем генетические и белковые системы, они составляют нечто вроде более простых языков, управляя цепочками событий, с помощью которых общаются клетки внутри того или иного организма или организмы (одного или же очень разных видов), и взаимодействуя с генами и белками. В живом есть множество пространственных форм, изменяющихся во времени, и эти изменения тоже связаны с интерпретациями молекулярных текстов живыми системами. Формы эти – разные структуры в ДНК и РНК, функциональные структуры тысяч белков, сложнейшие их ансамбли в мембранах клеток, сотни видов дифференцированных клеток разных тканей, многоообразие обликов органов, организмов, экосистем… В общем, в живом есть тексты и есть формы, которые этими текстами кодируются – вероятно, в чём-то подобно тому, как в компьютерных программах записаны визуальные образы. А есть ещё средства биокоммуникации более нам очевидные, более близкие нашим человеческим, – знаки, посредством которых общаются животные: звуковые, зрительные, обонятельные, осязательные и, возможно, ещё какие-либо, пока не открытые. В общем, как минимум все то многообразие форм представлений данных, которое мы имеем в культуре, в том числе и в компьютерных виртуальных мирах, оказывается, есть в живом – но там оно существует не 100 тысяч лет, как наш вид, и не 8 тысяч лет, как письменная культура, а около 4,5 миллиардов лет. (Так сейчас оценивают возраст живого на Земле.) И это – удивительная параллель. Возникает вопрос: как такое могло возникнуть?

Литеральные – подобные текстам, состоящим из букв – объекты есть только в макромолекулах, причем только в кодирующих биополимерах живых систем, а также в культуре, в языках в виде письменных текстов. Больше нигде в нашем мире, насколько я понимаю, такого нет. Что это? Линейные тексты – это вообще единственно допустимый принцип записывать, тиражировать и совершенствовать программы развития и работы наиболее сложных систем, и только так можно строить их индивидуальную и эволюционную память? Или же все тексты, созданные людьми, от древних форм письменности до современных компьютерных программ, являются производными исходных текстов – биологических информационных макромолекул – производимыми от них ещё абсолютно не понятными нам путями? Вопрос открытый. Но, так или иначе, мы имеем дело с развитыми знаковыми системами, интерпретации и порождение которых – «привилегии» самых сложных феноменов нашего мира: жизни и разума.

А.Г. Простите, что перебиваю, я думаю, что из астрофизиков никто бы с вами не согласился, еще и памятуя знаменитое – «и звезда с звездою говорит». И наверняка можно будет говорить со временем и о развитии астросемиотики. Потому что наверняка есть какая-то система, которая может быть осознана как кодовая система, символическая система, семиотическая система в строении Вселенной и Галактики.

А.С. Не исключено. Но тут я не компетентен. Можно ли считать звезды и галактики квази-разумными объектами? – Ничего не могу сказать…

С.Ч. С точки зрения семиотики здесь оказывается важен другой, чрезвычайно хитрый вопрос, который является вообще камнем преткновения для всей семиотики, а не только биосемиотики.

В семиотике существует две концепции знака. Одна концепция называется унилатерализмом – односторонностью знака. В ней для существования знака признается необходимым наличие только синтаксиса и прагматики. Кроме того, получается, что в унилатералистических концепциях нет четкого противопоставления знака и не-знака. А вот для двусторонних, билатералистических концепций знака, скажем, таких, как концепция Соссюра, важно то, что существует план выражения и план содержания, и они находятся во взаимотрансцендентных отношениях, т.е. один план непереводим в другой – план выражения в план содержания и наоборот.

Так вот, если исходить из того, что астрофизика, это физика, тогда существует только один план, т.е. нет двух планов, необходимых для наличия семиозиса. И в этом смысле в астрофизике не может быть семиотики, по крайней мере, билатералистической семиотики. Конечно, в смысле пирсовской унилатералистической семиотики, возможность говорить потенциально и о астросемиотике.

С другой стороны, если мы вспомним какие-нибудь представления, типа представлений Н.А. Козырева о том, что Солнце – живое существо, тогда, конечно, может появиться (но уже при совершенно другой интерпретации звезд) и астросемиотика биолатералистического типа.

В этом контексте, надо отметить, что некоторое своеобразие того разговора, который у нас идет, связано как раз с тем, что большая часть биосемиотиков, это представители унилатералистической биосемиотики, связанной с Пирсом. А я как раз представляю очень маленькую ветвь биосемиотики, билатералистическую биосемиотику.

А.Г. Я попал как раз в аргументацию. Понятно.

С.Ч. Как раз сейчас на экране пошли эмблемы семинаров и того, как пытаются эмблематически представить биосемиотики сферу своих занятий. Во всех этих эмблемах видна эта идея соединения несоединимого и самого разнородного. Эта идея по-разному представлена, скажем в образе Уробороса (змеи, кусающей себя за хвост) и Пегасо-Кентавра.

А.Г. Вот Пегас.

С.Ч. Пегасо-Кентавр, тоже соединение разных начал.

А.С. Вот совсем смешная картинка.

С.Ч. Это эмблема петербургского семинара. И тартуская эмблема. Это тоже соединение мужского и женского, птицы и змеи.

А.С. К тому же – и лося, и змеи…

С.Ч. Эта проблема многосторонности и соединенности в одном здесь и представлена, в эмблематике она очень четко осознается как суть и в некотором смысле квинтэссенция биосемиотики.

А.С. Один мой коллега, вроде бы тоже выступавший у Вас – Раутиан Саша – как-то в беседе сказал мне (и я, подумав, согласился), что клетка устроена сложнее, чем солнечная система, и сложнее, чем Галактика. Парадоксально, но малые объекты – живые – по сути дела сложнее, чем макрообъекты. Ведь поведение планет в небесной механике И. Кеплера – гораздо проще, чем даже система регуляции какого-либо одного гена. И в этом смысле мы, биосемиотики и биологи вообще (а мы оба по образованию – биологи, а Сережа ещё и филолог), – мы оказываемся в очень своеобразной ситуации. Дело в том, что, на мой взгляд, биология принципиально отличается от всех других естественных наук – тем, что мы имеем дело с объектами, которые по сложности стоят гораздо ближе к нам самим, чем к тем приборам, с помощью которых мы их наблюдаем. Например, мы наблюдаем клетку. Клетка – это минимальная живая система; любые экстракты из неё, бесклеточные системы транскрипции и трансляции, – это лишь суррогатные, искусственно поддерживаемые её фрагменты. Реально живёт клетка. А минимальный геном, необходимый для жизни клетки (как показали наши американские коллеги, сравнив полностью прочитанные геномы очень разных бактерий), теоретически – 250 разных конкретных генов, ареально – 470 (таков минимальный известный геном – у паразита Mycoplasma genitalium). Это – почти полмиллиона нуклеотидов, сложнейшая программа.

Итак, сами мы являемся очень-очень сложными системами и, когда речь идет о феноменах жизни, наблюдаем мы очень сложные системы – начиная с самых простых прокариот. А наблюдаем мы их как бы через некую приборно-методическую «щелочку», вроде замочной скважины. Здесь мы, извиняюсь, – как бы вуайеристы. Ситуация – как в индийской притче про трёх слепых и слона. Один видит и описывает хобот, другой – хвост, третий – ногу.

Все описания – разные, каждый говорит, что познаёт слона, и он-таки прав, но – познаёт лишь фрагментарно… Значит, нам надо так подбирать ракурсы и рассматривать биологические ситуации, чтобы все-таки реконструировать живой объект.

Так вот: реконструировать его как раз и позволяют концепции семиотики. В них та или иная биосистема реконструируется в целом, с её холистическими феноменами; рассматривается, как система в целом интерпретирует отдельные свои элементы, отдельные сигналы, знаки – как внешние, так и внутренние. В «классических» кибернетике и теории информации, на тот или иной конкретный сигнал (signal) следует определённый конкретный ответ. А вот согласно представлениям семиотики, один и тот же знак (sign) может быть интерпретирован по-разному – в зависимости от конфигурации системы, от её общих и локальных особенностей. Это, как выражаются философы, – холистический взгляд. В этом смысле и для биологии, и для изучения всех феноменов культуры (так называемых артефактов – продуктов цивилизации), в принципе очень продуктивны межсистемные аналогии. Теперь их уже можно изучать и в компьютерах – в виде обобщающих имитационных моделей.

С.Ч. Здесь дело, как мне кажется, ещё более интересно обстоит с точки зрения методологии. Важнейшая оппозиция, под знаком которой прошел весь 20 век, это оппозиция холистического и редукционистского подхода. В некотором смысле биосемиотика, как и натуралистическая биология в целом, – это одна из самых радикально холистических концепций, концепция радикально не-редукционистская. В биосемиотике так или иначе в центре внимания оказывается категория смысла.

В методологическом отношении чрезвычайно интересно то, что, как мне кажется, контакт идет даже не столько с какой-нибудь семиотикой художественной литературы, а с семиотикой того, что называется, ограниченными подъязыками.

Ограниченные подъязыки – это варианты общенациональных или интернациональных языков, которые обслуживают какие-то специализированные области деятельности – право, технику, науку и т.д. Хотя такие подъязыки в чем-то (чаще всего в специальной лексике) сложнее общеупотребительного языка, в целом они заметно проще и беднее общелитературного и разговорного языка. Поэтому они оказываются эталонными – именно эталонными, а не модельными – объектами, которые возможно исследовать со степенью дробности и детальности, сопоставимой с их организацией. Изучение таких объектов дает опыт очень интересной работы совершенно нередукционистского типа, представляющей знания не как свёртку данных, а как некоторую их упаковку, но не редуцирующего типа. Тем не менее, изучение ограниченных подъязыков – принципиально интерпретирующая дисциплина. В связи с этим нужно обратить внимание на то, что к семиотическим объектам – к языку, эмблемам, символам, к биосемиотическим образованиям – существуют разные подходы.

Во-первых, существует очень старая традиция интерпретации, насчитывающая в Европе, по крайней мере, 2,5 тысяч лет, – герменевтика. Я, как раз, кроме всего прочего, представляю то, что называется биогерменевтикой, которая является одной из ветвей биосемиотических занятий. Главным для герменевтики является проблема интерпретации, ее традиционные техники, которые сложились в связи с задачами интерпретации Священного Писания примерно в 4–6 веках от рождества Христова. Оказывается, что как раз эти техники интерпретации могут быть эффективно использованы для объяснения того или иного типа поливариантности, о которых говорил Саша в связи с биосинтезами. Другие, например, собственно семиотические, техники интерпретации для этого менее пригодны. Таким образом, для того чтобы разбираться с семиозисом в живых организмах, приходится уходить сразу в середину первого тысячелетия после Рождества Христова.

А.Г. Всё-таки за те годы, что существует это направление, вам удалось не доказать, но хотя бы интуитивно понять, что всё живое говорит на одном языке? Что даже те попытки семиотического осмысления того, чем мы владеем, – языка, которые были сделаны, как вы сказали, на своей «рубашке» (которая ближе к телу), на естественном языке, вполне соотносимы с синтезом белка, скажем, или с обменом информации между двумя клетками? То есть – код общий?


  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16