Большая Советская Энциклопедия (ЗВ)
ModernLib.Net / Энциклопедии / БСЭ / Большая Советская Энциклопедия (ЗВ) - Чтение
(стр. 4)
Автор:
|
БСЭ |
Жанр:
|
Энциклопедии |
-
Читать книгу полностью
(332 Кб)
- Скачать в формате fb2
(2,00 Мб)
- Скачать в формате doc
(1 Кб)
- Скачать в формате txt
(1 Кб)
- Скачать в формате html
(2,00 Мб)
- Страницы:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
|
|
В зависимости от методики измерений различают З. в. визуальные (определяются непосредственно глазом с помощью визуального фотометра), фотографические (по фотоснимкам), фотоэлектрические (с помощью фотоэлектрического фотометра) и радиометрические (с помощью болометров). З. в., полученные фотографированием светил на фотопластинке с ортохроматической или панхроматической эмульсией через жёлтый светофильтр, называются фотовизуальными (такие З. в. близки к визуальным). Применение различных приёмников радиации и светофильтров даёт возможность измерять блеск светил в разных участках их спектра и тем самым определять З. в., относящиеся к разным фотометрическим системам. В интернациональных фотографических и фотовизуальной системах (в синей и жёлтой частях спектра) стандартом являются 96 звёзд в районе Северного полюса мира, т. н. Северный полярный ряд; по всему небу располагаются площадки, в которых установлены вторичные стандарты. Более употребительна система UBV, в которой звёздные величины даются в ультрафиолетовой U (3500
), синей В (4350
) и жёлтой V (5550
) частях спектра. Величины В близки к фотографическим, а величины V совпадают с фотовизуальными величинами интернациональной системы. В дополнение к системе UBV употребляют З. в. в красной и инфракрасной областях спектра: R (0,7
мкм), I (0,90
мкм), J (1,25
мкм), К (2,2
мкм) и L (3,7
мкм) и т.д. При установлении любых новых систем З. в. принято, что для нескольких выбранных звёзд главной последовательности
Герцшпрунга - Ресселла диаграммы
спектрального класса АО все виды З. в. совпадают. Стандартами З. в. в системе UBVRIJKL... служат несколько десятков звёзд, расположенных на всём небе. Разности З. в., полученных в различных фотометрических системах, характеризуют распределение энергии в спектрах звёзд. Они называются показателями цвета, например B - V, U - В и др.
Фотоэлектрически измерены З. в. и показатели цвета свыше 20 тыс. звёзд. Точность измерений составляет около 0,01-0,02 З. в. Точность фотографических и визуальных измерений около 0,05-0,1 З. в. Самая яркая звезда неба Сириус имеет З. в. V = -1,46, наиболее слабые из измеренных звёзд относятся к 23-й З. в. Звёздная величина Солнца V = -26,78, полной Луны V = -12,71. З. в. источника света, создающего освещённость в 1 люкс, V = -13,78.
Абсолютной З. в. называется З. в., которую имело бы небесное светило, находясь на стандартном расстоянии 10
парсек.Абсолютные З. в. (в отличие от видимых) характеризуют физические свойства самих светил, их светимости. Абсолютная З. в.
Мсвязана с видимыми З. в.
mзависимостью:
М=
m+ 5 - 51gr,
где
r -расстояние до светила, выраженное в
парсеках.
Лит.:Паренаго П. П., Шкалы и каталоги звёздных величин, «Успехи астрономических наук», 1948, т. 4; Шаров А. С., Современное состояние проблемы фотометрических систем и стандартов звёздных величин и показателей цвета, «Бюл. Абастуманской астрофизической обсерватории», 1962, т. 27.
А. С. Шаров.
Звёздная динамика
Звёздная дина'мика,динамика звёздных систем, раздел
звёздной астрономии,в котором изучаются закономерности движений звёзд в гравитационном поле звёздной системы и, как следствие этого, эволюция звёздных систем. В З. д. сочетаются методы аналитической механики и статистической физики. Средств только первой недостаточно, т.к. число звёзд в звёздных системах (за исключением кратных звёзд) велико. Хотя галактики содержат, кроме звёзд, ещё пыль и газ, движение которых определяется не только гравитационными силами, но и силами светового давления, а также силами магнитного поля звёздной системы, основной задачей З. д. является исследование движений звёзд, т.к. именно в звёздах сосредоточена подавляющая часть всего вещества галактик. Основным типом звёздных систем, изучаемых в З. д., являются галактики и в особенности наша Галактика. Изучаются также шаровые и рассеянные звёздные скопления, кратные звёзды, скопления галактик.
Важной проблемой З. д. середины 20 в. является проблема релаксации, связанная с исследованием возможных путей эволюции звёздных систем от некоторых первоначальных состояний к состоянию, характеризуемому наблюдаемым в современную эпоху распределением скоростей звёзд. Значительное место в исследованиях по З. д. занимает проблема спиральной и кольцевой структуры галактик и др.
Лит.см. при ст.
Звёздная астрономия
.
Звёздная кинематика
Звёздная кинема'тика,раздел
звёздной астрономии,изучающий статистическими методами закономерности движения различных объектов в Галактике. З. к. изучает движения звёзд, освобожденные от эффектов, связанных с вращением Земли, её обращением вокруг Солнца, нутацией, прецессией и т.п. Основными кинематическими характеристиками галактических объектов являются их собственные движения m’’
a, m’’
d(см.
Собственное движение звезды
) и
лучевые скоростиv
r,
которые связаны с пространственной скоростью звезды
vотносительно Солнца соотношением:
v
2=(4,74m’’
ar)
2+ (4,74m’’
dr)
2+
v
r
2,
где
r- расстояние от звезды до Солнца (здесь
V
rи
vвыражены в
км/сек, r -в
nc)
.Движение любой группы звёзд в пространстве можно характеризовать её средним движением (движением центроида группы) относительно Солнца и параметрами распределения остаточных скоростей, т. е. разностей скоростей звёзд центроида.
До начала 20 в. предполагалось, что распределение остаточных скоростей звёзд хаотично. Однако уже первые статистические исследования обнаружили неравномерность различных направлений движения звёзд в Галактике. Математическую теорию распределения пекулярных скоростей разработал нем. астроном К. Шварцшильд, предположивший, что функция распределения пекулярных скоростей имеет вид:
Величины
h, k, lхарактеризуют дисперсии компонентов скоростей в направлении гл. осей
u, v, w, N -число исследуемых звёзд. Поверхностями равной плотности концов векторов скоростей являются в общем случае трёхосные эллипсоиды, направления больших полуосей которых близки к направлению на центр Галактики.
Отношения полуосей, пропорциональных дисперсиям остаточных скоростей, примерно постоянны для различных групп звёзд и составляют 1: 0,6: 0,5. Однако их абсолютные значения зависят от того, к какой составляющей Галактики принадлежат исследуемые объекты. Так, для звёзд спектральных классов О и В - типичных представителей плоской составляющей средняя квадратичная скорость равна приблизительно 10
км/сек,а для объектов сферической составляющей - порядка 100
км/сек.Эти различия являются следствием неодинаковых условий формирования и возраста звёзд разных составляющих.
Скорость Солнца
v
0может быть определена путём анализа движений различных групп звёзд. По отношению к видимым невооружённым глазом звёздам Солнце движется со скоростью
v
0= 19,5
км/секв направлении: прямое восхождение 18
ч,склонение около + 30° (т. н. стандартный апекс). Относительно некоторых др. групп звёзд
v
0
достигает »140
км/сек.Разность скоростей Солнца относительно двух центроидов характеризует взаимное движение центроидов, подчинённое определённым закономерностям. Проекции концов векторов скорости Солнца для различных групп звёзд на галактическую плоскость располагаются примерно на одной прямой, проходящей в направлении галактических долгот 90°-270°. Объяснение этой закономерности дал шведский астроном Б. Линдблад, предположив, что Галактика состоит из взаимопроникающих подсистем, вращающихся с разными скоростями вокруг одной и той же оси, проходящей через центр Галактики перпендикулярно к её плоскости. Звёзды, относительно которых Солнце имеет скорость 19,5
км/сек,вращаются наиболее быстро. Исследование вращения Галактики показывает, что на расстоянии Солнца оно происходит по законам, промежуточным между законами вращения твёрдого тела и законами Кеплера (ближе к последним). Влияние дифференциального эффекта вращения Галактики на компоненты собственных движений D
(
lи D
mbв галактических координатах
lи
bи лучевые скорости D
v
rдля звёзд в пределах около 1
kncот Солнца выражаются формулами, предложенными голландским астрономом Я. Оортом (1927):
D
v
r
= Arsin
21 cos
2b; D
(
l=
Acos 2
l + В;
D
mb=
-Arsin
21sin
bcos
b.
Вращение Галактики на расстоянии Солнца может быть описано следующими значениями параметров (постоянных Оорта):
А= 15 (
км/сек)
/кnc; В =
-10 (
км/сек)
/кnc.
Лит.см. при ст.
Звёздная астрономия.
Е. Д. Павловская.
«Звёздная палата»
«Звёздная пала'та»(англ. Court of Star Chamber), высшее судебное учреждение Англии в 15-17 вв. (получило название от украшенного звёздами потолка зала в королевском дворце в Вестминстере). Создана в 1487 Генрихом VII главным образом для борьбы с мятежными феодалами; позднее, при Елизавете I Тюдор и особенно при первых Стюартах, «З. п.» превратилась в орудие подавления противников феодально-абсолютистского строя и англиканской церкви. Была упразднена во время Английской революции 17 в. актом Долгого парламента (1641).
Звёздная плотность
Звёздная пло'тностьв Галактике, число звёзд, содержащихся в объёме, равном 1 кубическому
парсеку
в данном месте звёздной системы. Звёздная плотность монотонно убывает с удалением от оси симметрии и плотности симметрии Галактики. В окрестностях Солнца она составляет около 0,12 звезды на кубический
парсек.
Звёздная статистика
Звёздная стати'стика,раздел
звёздной астрономии,изучающий методами математической статистики пространственное распределение звёзд, обладающих сходными физическими характеристиками, и различные статистические зависимости между характеристиками звёзд. Начало З. с. было положено В.
Гершелем,который в конце 18 в. обнаружил рост числа звёзд, видимых в его телескоп, по мере приближения к плоскости Млечного Пути (т. н. галактическая концентрация) и объяснил это сплюснутостью нашей Галактики. Одной из важных задач З. с. является определение звёздной плотности
D(
r), т. е. числа звёзд в единице объёма в данном направлении на расстоянии
r. При решении этой задачи чаще всего используются статистические методы, т. к. непосредственно определить расстояние можно либо до ближайших к Солнцу объектов (
r< 100
nc), либо до некоторых особых типов звёзд, например
переменных звёзд.
Широкое применение в З. с. получили дифференциальная функция распределения звёзд по видимым звёздным величинам
А(
м) и интегральная функция
N(
m)
,указывающая число звёзд ярче данной звёздной величины
m,а также функция распределения звёзд по их абсолютным звёздным величинам, т. н. функция светимости j(М). Функции А (
м) и
N(
m)
непосредственно определяются по подсчётам звёзд данной видимой величины или звёзд ярче этой величины. Функцию светимости можно определить путём решения интегральных уравнений З. с. Функция
А(
м) связана с функцией звёздной плотности
D(
r) и функцией светимости j(
М) соотношением (первое интегральное уравнение З. с.):
где w - выбранный телесный угол. С помощью среднего параллакса
звёзд видимой величины
mвыводится соотношение (второе интегральное уравнение З. с.):
Эти уравнения используются как для определения
D(
r), так и j(
М). Чаще всего уравнения З. с. решаются численными методами. Оба приведённых уравнения называются уравнениями Шварцшильда (по имени немецкого астронома К. Шварцшильда, который вывел их в 1910).
В предположении существования межзвёздного поглощения света интегральные уравнения сохраняют свой вид, но в результате их решения получается видимая звёздная плотность
D'(
r)
, спомощью которой, если известна зависимость поглощения света от расстояния, т. е. функция поглощения света
А(
r)
,можно определить истинную звёздную плотность
D(
r)
.
При исследовании распределения небесных объектов удобен метод, предложенный в 1937 советским астрономом М. А. Вашакидзе и независимо от него голландским астрономом Я. Оортом в 1938. Этот метод позволяет исследовать распределение звёздной плотности в произвольном направлении, если известно её распределение в направлении, перпендикулярном галактической плоскости. Таким путём установлено, что звёздная плотность имеет общую тенденцию расти в направлении на центр Галактики, а Солнце располагается между двумя местными сгущениями, которые можно отождествить со спиральными ветвями Галактики.
Метод Вашакидзе - Оорта был применен советским астрономом Б. В. Кукаркиным (1947) для исследования пространственного распределения переменных звёзд. Было показано, что различные типы переменных звёзд характеризуются различной степенью концентрации к плоскости Галактики и к галактическому центру, причём параметры пространственного распределения звёзд связаны с их кинематическими характеристиками (см.
Звёздные подсистемы
)
.
Лит.см. при ст.
Звёздная астрономия.
Е. Д. Павловская.
Звёздное время
Звёздное вре'мя,система счёта времени, в основе которой лежат
звёздные сутки
; применяется при различных астрономических наблюдениях. См.
Время.
Звёздное небо
Звёздное не'бо,совокупность светил, видимых ночью на небесном своде. Невооружённым глазом на ночной половине неба при хороших условиях можно видеть одновременно около 2,5 тыс. звёзд (до 6-й звёздной величины), большинство которых расположено вблизи полосы Млечного Пути. Применение телескопа позволяет наблюдать значительно большее число звёзд (см. табл. 1).
Табл. 1. - Количество звёзд на звёздном небе
Звёздная величина (визуальная) |
Количество звёзд до данной звёздной величины |
3вёздная величина (визуальная) |
Количество звёзд до данной звёздной величины |
1 |
13 |
12 |
2,3 млн. |
2 |
40 |
13 |
5,7 млн. |
3 |
100 |
14 |
14,0 млн. |
4 |
500 |
15 |
32,0 млн. |
5 |
1600 |
16 |
71,0 млн. |
6 |
4800 |
17 |
150,0 млн. |
7 |
15000 |
18 |
300,0 млн. |
8 |
42000 |
19 |
550,0 млн. |
9 |
125 000 |
20 |
1 млрд. |
10 |
350 000 |
21 |
2 млрд. |
11 |
900 000 |
|
|
Для удобства ориентировки З. н. разделено на участки, называемые
созвездиями
. В каждом созвездии наиболее яркие звёзды образуют характерные группы, которые после тренировки можно легко распознавать на небе. Разделение звёзд на главнейшие созвездия, в том числе и зодиакальные (см.
Зодиак
)
,относится к глубокой древности. Названия созвездий заимствованы частично из греческой мифологии (например, Андромеда, Персей, Дельфин и др.) или связаны с различными занятиями древних народов - земледелием, скотоводством, охотой (например, Дева с Колосом, Волопас, Рыба, Заяц и др.).
Выделенные в более позднее время созвездия получили названия, связанные с путешествиями и с развитием техники (например, Секстант, Микроскоп и др.). Всего принято 88 созвездий (см. табл. 2), границы между которыми установлены в 1930 согласно решению Международного астрономического союза. В таблице приведены рус. и лат. названия созвездий, а также их сокращённые названия. Яркие звёзды в созвездиях обозначаются буквами греческого алфавита или цифрами. Некоторые типы звёзд имеют специальные обозначения (например, переменные обозначают прописными латинского буквами). Ряд звёзд имеет собственные имена (см. табл. 3). Большинство же звёзд обозначается названием звёздного каталога, содержащего сведения о данной звезде, и номером, под которым звезда в нём записана (например, Лакайль 9352).
Табл. 2. - Названия созвездий
Русское название |
Латинское название |
Сокра- щённое назва- ние |
Положе- ние на звёздном небе |
Русское название |
Латинское название |
Сокра- щённое назва- ние |
Положе- ние на звёздном небе |
Русское название |
Латинское название |
Сокра- щённое назва- ние |
Положе-ние на звёздном небе |
Андромеда |
Andromeda |
And |
С |
Кит |
Cetus |
Get |
Э |
Рыбы |
Pisces |
Psc |
Э |
Близнецы |
Gemini |
Gem |
C |
Козерог |
Capricornus |
Cap |
Ю |
Рысь |
Lynx |
Lyn |
С |
Большая Медведица |
Ursa Major |
UMa |
C |
Компас |
Pyxis |
Pyx |
Ю |
Северная Корона |
Corona Borea-lis |
CrB |
С |
Большой Пёс |
Canis Major |
CMa |
Ю |
Корма |
Puppis |
Pup |
Ю |
Секстант |
Sextans |
Sex |
Э |
Весы |
Libra |
Lib |
Ю |
Крест |
Crux |
Cru |
Ю |
Сетка |
Reticulum |
Ret |
Ю |
Водолей |
Aquarius |
Aqr |
Э |
Лебедь |
Cygnus |
Cyg |
C |
Скорпион |
Scorpius |
Sco |
Ю |
Возничий |
Auriga |
Aur |
C |
Лев |
Leo |
Leo |
C |
Скульптор |
Sculptor |
Scl |
Ю |
Волк |
Lupus |
Lup |
Ю |
Летучая Рыба |
Volans |
Vol |
Ю |
Столовая Гора |
Mensa |
Men |
Ю |
Волопас |
Bootes |
Boo |
C |
Лира |
Lyra |
Lyr |
C |
Стрела |
Sagitta |
Sge |
С |
Волосы Вероники |
Coma Berenices |
Com |
C |
Лисичка |
Vulpecula |
Vul |
C |
Стрелец |
Sagittarius |
Sgr |
Ю |
Ворон |
Corvus |
Crv |
Ю |
Малая Медведица |
Ursa Minor |
UMi |
C |
Телескоп |
Telescopium |
Tel |
Ю |
Геркулес |
Hercules |
Her |
C |
Малый Конь |
Equuleus |
Equ |
C |
Телец |
Taurus |
Tau |
С |
Гидра |
Hydra |
Hya |
Ю |
Малый Лев |
Leo Minor |
LMi |
C |
Треугольник |
Triangulum |
Tri |
С |
Голубь |
Columba |
Col |
Ю |
Малый Пёс |
Canis Minor |
CMi |
C |
Тукан |
Tucana |
Tuc |
Ю |
Гончие Псы |
Canes Venatici |
CVn |
C |
Микроскоп |
Microscopiu |
Mic |
Ю |
Феникс |
Phoenix |
Phe |
Ю |
Дева |
Virgo |
Vir |
Э |
Муха |
Musca |
Mus |
Ю |
Хамелеон |
Chamaeleon |
Cha |
Ю |
Дельфин |
Delphinus |
Del |
C |
Насос |
Antlia |
Ant |
Ю |
Центавр |
Centaurus |
Cen |
Ю |
Дракон |
Draco |
Dra |
C |
Наугольник |
Norma |
Nor |
Ю |
Цефей |
Cepheus |
Cep |
С |
Единорог |
Monoceros |
Mon |
Э |
Овен |
Aries |
Ari |
C |
Циркуль |
Circinus |
Cir |
Ю |
Жертвенник |
Ara |
Ara |
Ю |
Октант |
Octans |
Oct |
Ю |
Часы |
Horologium |
Hor |
Ю |
Живописец |
Pictor |
Pic |
Ю |
Орёл |
Aquila |
Aql |
Э |
Чаша |
Crater |
Crt |
Ю |
Жираф |
Camelopardalis |
Cam |
C |
Орион |
Orion |
Ori |
Э |
Щит |
Scutum |
Sct |
Э |
Журавль |
Grus |
Gru |
Ю |
Павлин |
Pavo |
Pav |
Ю |
Эридан |
Eridanus |
Eri |
Ю |
Заяц |
Lepus |
Lep |
Ю |
Паруса |
Vela |
Vel |
Ю |
Южная Гидра |
Hydrus |
Hyi |
Ю |
Змееносец |
Ophiuchus |
Oph |
Э |
Пегас |
Pegasus |
Peg |
C |
Южная Корона |
Corona Austrina |
Cr A |
Ю |
Змея |
Serpens |
Ser |
Э |
Персей |
Perseus |
Per |
C |
Южная Рыба |
Piscis Austrinus |
Ps A |
Ю |
Золотая Рыба |
Dorado |
Dor |
Ю |
Печь |
Fornax |
For |
Ю |
Южный Треугольник |
Triangulum Australe |
TrA |
Ю |
Индеец |
Indus |
Ind |
Ю |
Райская Птица |
Apus |
Aps |
Ю |
Ящерица |
Lacerta |
Lac |
С |
Кассиопея |
Cassiopeia |
Cas |
C |
Рак |
Cancer |
Cnc |
C |
|
|
|
|
Киль |
Carina |
Car |
Ю |
Резец |
Caelum |
Cae |
Ю |
|
|
|
|
Обозначения: С - Северное полушарие, Ю - Южное полушарие,
Э - экватор.
Табл. 3. - Названия звёзд.
Аламак |
g |
Андромеды |
Алараф |
b |
Девы |
Алголь |
b |
Персея |
Алиот |
e |
Большой Медведицы |
Альбирео |
b |
Лебедя |
Альгена |
g |
Близнецов |
Альгениб |
g |
Пегаса |
Альгиеба |
g |
Льва |
Альдебаран |
a |
Тельца |
Альдерамин |
a |
Цефея |
Алькор |
g |
Большой Медведицы |
Альрами |
a |
Стрельца |
Альтаир |
a |
Орла |
Альфард |
a |
Гидры |
Альциона |
h |
Тельца |
Антарес |
a |
Скорпиона |
Арктур |
a |
Волопаса |
Ахернар |
a |
Эридана |
Беллатрикс |
g |
Ориона |
Бенетнаш |
h |
Большой Медведицы |
Бетельгейзе |
a |
Ориона |
Вега |
a |
Лиры |
Гемма |
a |
Северной Короны |
Денеб |
a |
Лебедя |
Денеб Кайтос |
b |
Кита |
Денебола |
b |
Льва |
Дубхе |
a |
Большой Медведицы |
Канопус |
a |
Киля |
Капелла |
a |
Возничего |
Кастор |
a |
Близнецов |
Кохаб |
b |
Малой Медведицы |
Маркаб |
a |
Пегаса |
Мегрец |
d |
Большой Медведицы |
Менкар |
a |
Кита |
Мерак |
b |
Большой Медведицы |
Меропа |
23 |
Тельца |
Мира |
o |
Кита |
Мирах |
b |
Андромеды |
Мирзам |
b |
Большого Пса |
Мирфак |
a |
Персея |
Мицар |
x |
Большой Медведицы |
Нат |
b |
Тельца |
Плейона |
28 |
Тельца |
Поллукс |
b |
Близнецов |
Полярная |
a |
Малой Медведицы |
Процион |
a |
Малого Пса |
Рас Альгети |
a |
Геркулеса |
Рас Альхаге |
a |
Змееносца |
Регул |
a |
Льва |
Ригель |
b |
Ориона |
Садальмелик |
a |
Водолея |
Сириус |
a |
Большого Пса |
Сиррах |
a |
Андромеды |
Спика |
a |
Девы |
Тубан |
a |
Дракона |
Факт |
a |
Голубя |
Фекда |
g |
Большой Медведицы |
Фомальгаут |
a |
Южной Рыбы |
Хамал |
a |
Овна |
Целено |
16 |
Тельца |
Шаф |
b |
Кассиопеи |
Шеат |
b |
Пегаса |
Шедир |
a |
Кассиопеи |
Электра |
17 |
Тельца |
На З. н. можно наблюдать также
звёздные скопления,
звёздные ассоциации,
туманности галактические,
галактики,
квазары,скопления галактик и др.; тела, входящие в состав Солнечной системы:
планеты,
спутники планет,
малые планеты,
кометы; искусственные космические объекты:
искусственные спутники Земли,
космические зонды.
Большинство этих объектов может наблюдаться только с помощью телескопов. Среди видимых невооружённым глазом: рассеянные звёздные скопления Плеяды и Гиады в созвездии Тельца, Ясли в созвездии Рака; шаровые звёздные скопления в созвездиях Тукана и Центавра; галактическая туманность в созвездии Ориона; галактики в созвездии Андромеды, Большое и Малое Магеллановы Облака; планеты Венера, Юпитер, Марс, Сатурн, Меркурий, Уран; малая планета Веста; кометы; наиболее яркие искусственные спутники Земли.
Фон неба никогда не бывает вполне чёрным, небо слабо светится вследствие атомных процессов в верхних слоях атмосферы. Это т. н. свечение ночного неба с 1 квадратного градуса создаёт освещённость в среднем как звезда 4,5 звёздной величины. Днём почти все небесные светила исчезают на светлом голубом фоне освещенного Солнцем воздуха. Кроме Солнца, лишь Луна и Венера бывают видны невооружённым глазом на ясном дневном небе.
Вид З. н. непрерывно меняется из-за видимого суточного вращения небесной сферы, обусловленного вращением Земли, а также медленно изменяется вследствие видимого годичного перемещения Солнца среди звёзд, являющегося следствием обращения Земли вокруг Солнца.
Карта Северного полушария из атласа звёздного неба польского астронома Я. Гевелия (17 в.).
Карта Южного полушария из атласа звёздного неба польского астронома Я. Гевелия (17 в.).
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
|
|