Большая Советская Энциклопедия (ПО)
ModernLib.Net / Энциклопедии / БСЭ / Большая Советская Энциклопедия (ПО) - Чтение
(стр. 3)
Автор:
|
БСЭ |
Жанр:
|
Энциклопедии |
-
Читать книгу полностью
(4,00 Мб)
- Скачать в формате fb2
(24,00 Мб)
- Скачать в формате doc
(1 Кб)
- Скачать в формате txt
(1 Кб)
- Скачать в формате html
(22,00 Мб)
- Страницы:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127
|
|
А. Б. Иванов.
Поверхности выравнивания
Пове'рхности выра'внивания,участки земной поверхности со сглаженным рельефом различного генезиса, формирующиеся в условиях преобладания экзогенных процессов над эндогенными. П. в. характерны как для платформенных, так и для складчатых областей. Различают П. в. денудационного происхождения (см.
Денудационные поверхности
,
Пенеплен
,
Педиплен
,
Педимент
), а также абразионные, абразионно-аккумулятивные и денудационно-эрозионные. Денудационные П. в., как правило, сочленяются с аккумулятивными морскими и аллювиальными равнинами, которые могут считаться элементами сложных полигенетических (денудационно-аккумулятивных) П. в.
Возраст П. в. соответствует периоду наиболее полной планации рельефа, который обычно прерывается интенсивным поднятием, приводящим к расчленению поверхности. Выделение П. в., изучение их строения и определение возраста - основной метод установления этапов геоморфологической истории крупных территорий. Наряду с большим теоретическим значением анализ П. в. представляет значительный практический интерес, поскольку с П. в. связан ряд полезных ископаемых (бокситы, железные руды и др.). В целях систематизации и обобщения данных о П. в. территории Советского Союза составлена «Карта поверхностей выравнивания и кор выветривания СССР» в масштабе 1: 2 500 000 (главный редактор И. П. Герасимов, А. В. Сидоренко, 1972).
Лит.:Проблемы поверхностей выравнивания, М., 1964.
Поверхностная ионизация
Пове'рхностная иониза'ция,термическая
десорбция
(испарение) положительных (положительная П. и.) или отрицательных (отрицательная П. и.) ионов с поверхностей твёрдых тел. Чтобы эмиссия ионов при П. и. была стационарной, скорость поступления на поверхность соответствующих ионам атомов, молекул или
радикалов
(за счёт
диффузии
этих частиц из объёма тела или протекающей одновременно с П. и.
адсорбции
) должна равняться суммарной скорости десорбции ионов и нейтральных частиц. П. и. происходит и при собственном испарении твёрдых тел, например тугоплавких металлов.
Количественной характеристикой П. и. служит степень П. и. a= n
i/n
0, где n
iи n
0- потоки одновременно десорбируемых одинаковых по химическому составу ионов и нейтральных частиц. n
i= CNexp (
-l
i/kT), a n
0= DNexp
(
-l
0/k T), здесь
k-
Больцмана постоянная
,
T- абсолютная температура поверхности,
l
iи
l
0- теплоты десорбции в ионном и нейтральном состояниях,
N- концентрация частиц данного сорта на поверхности, а коэффициенты
Си
Dслабо (в сравнении с экспонентами) зависят от
Т. Отсюда
a =
.
Взаимодействие частиц с поверхностями отображают кривыми типа показанной на
рис. 1
. Переход с кривой для нейтральных частиц А на кривую для ионов А
+на расстоянии
х® Ґ от поверхности соответствует
ионизации
частицы с переводом освободившегося электрона в твёрдое тело. Требуемая для этого энергия равна e (
V-j);
V-
ионизационный потенциал
частицы, еj -
работа выхода
тела, е - заряд электрона. Выражение a через эти величины приводит к
Ленгмюра - Саха уравнению
, причём для положительной П. и. (
l
i+- l
0) =
e(
V-j), а для отрицательной П. и. (
l
i-- l
0) =
е(j-
S), где
eS- энергия
сродства к электрону
частицы. П. и. наиболее эффективна (a велико) для частиц с
l
i<
l
0или j
>
Vи
S>
j; a для них уменьшается с ростом
Т. При обратных неравенствах П. и. усиливается с возрастанием
Т(
рис. 2
).
l
iи
l
0зависят от
N -обычно
l
iрастет, а
l
0падает с увеличением
N.Если при
Т>
Т
0соблюдается условие эффективной П. и. (
l
i<
l
0и n
i>> n
0), то при
Т = Т
0знак (
l
0-
l
i) меняется, а a начинает скачкообразно падать до малых значений.
Т
0называется температурным порогом П. и.
Внешнее электрическое поле
Е,ускоряющее ионы с поверхности, снижает величину
l
i. При
E<
10
7
в/смэто снижение D
l = е
= 3,8Ч10
-4
эв(
Eдолжно быть выражено в
в/см)
.Соответственно растет a. Если
l
i<
l
0и n
I> n
0,
Епри стационарной П. и. уменьшает
Nи
T
0.Так,
T
0для атомов Cs на W с 1000
Кпри
Е=
10
4
в/смснижается до 300 °
Kпри
Е= 10
7
в/см.Это даёт основание рассматривать явления десорбции и испарения ионов электрическим полем при низких
Ткак П. и. Современная экспериментальная техника позволяет наблюдать П. и. частиц с
VЈ
10
ви
S ³0.6
в. С помощью электрического поля эти пределы могут быть существенно расширены.
Приведённые выше закономерности П. и. справедливы (подтверждены опытом) для однородных поверхностей. Однако на практике чаще приходится иметь дело с неоднородными поверхностями. на которых
l
0,
l
i,j и
Nнеодинаковы на различных участках. В таких случаях указанные зависимости a от
Ти
Есохраняются для некоторых усреднённых значений
l
0, l
iи j.
П. и. широко используется в
ионных источниках
различного назначения, в чувствительных детекторах частиц, для компенсации объёмного заряда электронов в
термоэлектронных преобразователях,перспективна для создания
плазменных двигателей,а также лежит в основе многих методов изучения физико-химических характеристик поверхностей твёрдых тел и взаимодействующих с ними частиц.
Лит.:Зандберг Э. Я., Ионов Н. И., Поверхностная ионизация, М,, 1969.
Н. И. Ионов.
Рис. 2. Характерные зависимости степени поверхностной ионизации a в стационарных процессах от температуры T: 1 - для случая, когда теплота десорбции иона l
i, меньше теплоты десорбции нейтральной частицы l
0; 2 - в случае, когда l
i>l
0. T
0- температурный порог поверхностной ионизации.
Рис. 1. Потенциальные кривые взаимодействия систем поверхность твёрдого тела - нейтральная частица (А) и поверхность - положительный ион (А
+); х - удаление от поверхности; U(x) - энергия связи частицы с поверхностью. Расстояние х
рсоответствует равновесному состоянию частицы у поверхности, а глубины «потенциальных ям» l
iи l
0равны теплотам десорбции иона и нейтральной частицы соответственно. Разность l
i-l
0в данном случае равна разности энергии ионизации eV нейтральной частицы (V - её ионизационный потенциал, е - заряд электрона) и работы выхода поверхности ej.
Поверхностная морена
Пове'рхностная море'на, обломочный материал, залегающий на поверхности ледника. Образуется за счёт падения на ледник обломков горных пород со склонов долины, а также путём вытаивания его из толщи самого льда.
Поверхностная сила
Пове'рхностная си'лав механике, сила, приложенная к точкам поверхности тела. Пример П. с. -
атмосферное давление
на поверхность тела.
Поверхностная энергия
Пове'рхностная эне'ргияв термодинамике, избыток энергии в тонком слое вещества у поверхности соприкосновения тел (фаз) по сравнению с энергией вещества внутри тела. Полная П. э. складывается из работы образования поверхности, т. е. работы, необходимой для преодоления сил межмолекулярного (или межатомного) взаимодействия при перемещении молекул (атомов) из объёма фазы в
поверхностный слой,и теплового эффекта, связанного с этим процессом. В соответствии с термодинамическими зависимостями удельная полная П. э.
u =s
+
q =s
-
,
где s
-удельная свободная П. э., тождественно равная для подвижных жидкостей
поверхностному натяжению, q -скрытая теплота (связанная энергия) единицы площади поверхности,
Т -абсолютная температура и
-удельная поверхностная
энтропия,имеющая обычно отрицательную величину. Свободная П. э. с ростом температуры уменьшается, тогда как полная П. э. неполярных (неассоциированных) жидкостей остаётся постоянной, а полярных - несколько возрастает. Так, для воды при 0, 20 и 100 °С значения
uсоответственно равны 117, 120 и 129
мдж/м
2или
эрг/см
2.С приближением к
критической температуре
различие в составе и свойствах контактирующих фаз сглаживается, поверхность раздела фаз исчезает и П. э. обращается в нуль. П. э. влияет на многие физико-химические свойства твёрдых тел и жидкостей. Особенно возрастает её роль в высокодисперсных
коллоидных системах,где поверхность раздела фаз предельно велика.
Лит.см. при ст.
Поверхностное натяжение
и
Поверхностные явления.
Л. А. Шиц.
Поверхностная эрозия
Пове'рхностная эро'зия, смыв поверхностного слоя почвы в результате действия ливневых дождей и талых вод. См.
Эрозия,
Поверхностный сток.
Поверхностно-активные вещества
Пове'рхностно-акти'вные вещества', вещества, способные накапливаться (сгущаться) на поверхности соприкосновения двух тел, называемой поверхностью раздела фаз, или межфазной поверхностью. На межфазной поверхности П.-а. в. образуют слой повышенной концентрации - адсорбционный слой (см. также
Мономолекулярный слой
).
Любое вещество в виде компонента жидкого раствора или газа (пара) при соответствующих условиях может проявить поверхностную активность, т. е. адсорбироваться под действием межмолекулярных сил на той или иной поверхности (см.
Адсорбция
)
,понижая её
свободную энергию.Однако поверхностно-активными обычно называются лишь те вещества, адсорбция которых из растворов уже при весьма малых концентрациях (десятые и сотые доли %) приводит к резкому снижению
поверхностного натяжения.
Типичные П.-а. в. - органические соединения дифильного строения, т. е. содержащие в молекуле атомные группы, сильно различающиеся по интенсивности взаимодействия с окружающей средой (в наиболее практически важном случае - водой). Так, в молекулах П.-а. в. имеются один или несколько углеводородных радикалов, составляющих олео-, или липофильную, часть (она же - гидрофобная часть молекулы), и одна или несколько полярных групп - гидрофильная часть (см. также
Гидрофильность и гидрофобность
). Слабо взаимодействующие с водой олеофильные (гидрофобные) группы определяют стремление молекулы к переходу из водной (полярной) среды в углеводородную (неполярную). Гидрофильные группы, наоборот, удерживают молекулу в полярной среде или, если молекула П.-а. в. находится в углеводородной жидкости, определяют её стремление к переходу в полярную среду. Т. о., поверхностная активность П.-а. в., растворённых в неполярных жидкостях, обусловлена гидрофильными группами, а растворённых в воде - гидрофобными радикалами.
По типу гидрофильных групп П.-а. в. делят на ионные, или ионогенные, и неионные, или неионогенные. Ионные П.-а. в. диссоциируют в воде на ионы, одни из которых обладают адсорбционной (поверхностной) активностью, другие (противоионы) - адсорбционно неактивны. Если адсорбционно активны анионы, П.-а. в. называются анионными, или анионоактивными, в противоположном случае - катионными, или катионо-активными. Анионные П.-а. в. - органические кислоты и их соли, катионные - основания, обычно амины различной степени замещения, и их соли. Некоторые П.-а. в. содержат и кислотные, и основные группы. В зависимости от условий они проявляют свойства или анионных, или катионных П.-а. в., поэтому их называют амфотерными, или амфолитными, П.-а. в.
Все П.-а. в. можно разделить на две категории по типу систем, образуемых ими при взаимодействии с растворяющей средой. К одной категории относятся мицеллообразующие П.-а. в., к другой - не образующие
мицелл.В растворах мицеллообразующих П.-а. в. выше критической концентрации мицеллообразования (ККМ) возникают коллоидные частицы (мицеллы), состоящие из десятков или сотен молекул (ионов). Мицеллы обратимо распадаются на отдельные молекулы или ионы при разбавлении раствора (точнее, коллоидной дисперсии) до концентрации ниже ККМ. Таким образом, растворы мицеллообразующих П.-а. в. занимают промежуточное положение между истинными (молекулярными) и коллоидными растворами (
золями
)
,поэтому их часто называют
полуколлоидными системами.К мицеллообразующим П.-а. в. относят все моющие вещества (см.
Моющие средства,
Моющее действие,
Мыла)
,эмульгаторы, смачиватели, диспергаторы и др.
В мировом производстве П.-а. в. большую часть составляют анионные вещества. Среди них можно выделить следующие основные группы: карбоновые кислоты, а также их соли, алкилсульфаты (сульфоэфиры), алкилсульфонаты и алкил-арилсульфонаты, пр. продукты. Наиболее распространены натриевые и калиевые мыла жирных и смоляных кислот; нейтрализованные продукты сульфирования высших жирных кислот, олефинов, алкилбензолов. Второе место по объёму промышленного производства занимают неионные П.-а. в. - эфиры полиэтиленгликолей. Большинство неионных П.-а. в. получают присоединением окиси этилена к алифатическим спиртам, алкилфенолам, карбоновым кислотам, аминам и др. соединениям с реакционноспособным атомом водорода. Ассортимент П.-а. в. чрезвычайно велик. Приведённые ниже данные (1971) позволяют видеть соотношение объёмов производства П.-а. в. различных типов.
Поверхностно-активные вещества |
тыс.
т |
% |
Анионные Неионные Катионные и пр. |
2480 1160 360 |
62 29 9 |
Всего |
4000 |
100 |
Мировое производство П.-а. в. постоянно возрастает, причём доля неионных и катионных веществ в общем выпуске всё время увеличивается. В зависимости от назначения и химического состава П.-а. в. выпускают в виде твёрдых продуктов (кусков, хлопьев, гранул, порошков), жидкостей и полужидких веществ (паст, гелей). Особое внимание всё больше и больше уделяется производству П.-а. в. с линейным строением молекул, которые легко подвергаются биохимическому разложению в природных условиях и не загрязняют окружающую среду.
П.-а. в. находят широкое применение в промышленности, сельском хозяйстве, медицине, быту. Важнейшие области потребления П.-а. в.: производство мыл и моющих средств для технических и санитарно-гигиенических нужд; текстильно-вспомогательных веществ, т. е. веществ, используемых для обработки тканей и подготовки сырья для них; лакокрасочной продукции. П.-а. в. используют во многих технологических процессах химических, нефтехимических, химико-фармацевтических, пищевой промышленности. Их применяют как присадки, улучшающие качество
нефтепродуктов;как флотореагенты при флотационном обогащении полезных ископаемых (см.
Флотация
)
;компоненты гидроизоляционных и антикоррозионных покрытий и т.д. П.-а. в. облегчают механическую обработку металлов и др. материалов, повышают эффективность процессов
диспергирования
жидкостей и твёрдых тел. Незаменимы П.-а. в. как стабилизаторы высококонцентрированных
дисперсных систем
(суспензий, паст, эмульсий, пен). Кроме того, они играют важную роль в биологических процессах и вырабатываются для «собственных нужд» живыми организмами. Так, поверхностной активностью обладают вещества, входящие в состав жидкостей кишечно-желудочного тракта и крови животных, соков и экстрактов растений.
Лит.:Шварц А., Перри Дж., Берч Д ж., Поверхностноактивные вещества и моющие средства, пер. с англ., М., 1960; Ребиндер П. А., Поверхностноактивные вещества и их применение, «Журнал Всесоюзного химического общества им. Д. И. Менделеева», 1959, т. 4, № 5; его же, Поверхностные и объемные свойства растворов поверхностно-активных веществ, там же, 1966, т. 11, № 4; его же, Взаимосвязь поверхностных и объёмных свойств растворов поверхностно-активных веществ, в сборнике: Успехи коллоидной химии, М., 1973; Коллоидные поверхностноактивные вещества, пер. с англ., М., 1966; Nonionic surfactans, ed. M. J. Schick, N. Y., 1967. см. также лит. при ст.
Моющие средства
.
Л. А. Шиц.
Поверхностное давление
Пове'рхностное давле'ние,плоское давление, двумерное давление, сила, действующая на единицу длины границы (барьера), разделяющей чистую поверхность жидкости и поверхность той же жидкости, покрытую адсорбционным слоем поверхностно-активного вещества. П. д. имеет молекулярно-кинетическую природу; оно направлено в сторону чистой поверхности и определяется разностью
поверхностных натяжений
чистой жидкости и жидкости с адсорбционным монослоем.
Поверхностное натяжение
Пове'рхностное натяже'ние,важнейшая термодинамическая характеристика поверхности раздела фаз (тел), определяемая как работа обратимого изотермического образования единицы площади этой поверхности. В случае жидкой поверхности раздела П. н. правомерно также рассматривать как силу, действующую на единицу длины контура поверхности и стремящуюся сократить поверхность до минимума при заданных объёмах фаз. Применительно к легкоподвижным поверхностям оба определения равнозначны, но первое предпочтительнее, т.к. имеет более ясный физический смысл. П. н. на границе двух конденсированных фаз обычно называется межфазным натяжением. Работа образования новой поверхности затрачивается на преодоление сил межмолекулярного сцепления (
когезии
) при переходе молекул вещества из объёма тела в
поверхностный слой.Равнодействующая межмолекулярных сил в поверхностном слое не равна нулю (как в объёме тела) и направлена внутрь фазы с большей когезией. Таким образом, П. н. - мера некомпенсированности межмолекулярных сил в поверхностном (межфазном) слое или, что то же, избытка
свободной энергии
в поверхностном слое по сравнению со свободной энергией в объёмах соприкасающихся фаз. В соответствии с определениями П. н. его выражают в
дж/м
2или
н/м(
эрг/см
2или
дин/см)
.
Благодаря П. н. жидкость при отсутствии внешних силовых воздействий принимает форму шара, отвечающую минимальной величине поверхности и, следовательно, наименьшему значению свободной
поверхностной энергии.П. н. не зависит от величины и формы поверхности, если объёмы фаз достаточно велики по сравнению с размерами молекул; при повышении температуры, а также под действием
поверхностно-активных веществ
оно уменьшается. Расплавы металлов имеют наибольшее среди жидкостей П. н., например у платины при 2000 °С оно равно 1820
дин/см,у ртути при 20 °С - 484. П. н. расплавленных солей значительно меньше - от нескольких десятков до 200-300. П. н. воды при 20 °С - 72,8, а большинства органических растворителей - в пределах 20-60. Самое низкое при комнатной температуре П. н. - ниже 10 - имеют некоторые фторуглеродные жидкости.
В общем случае многокомпонентных систем в соответствии с термодинамическим уравнением Гиббса при адсорбции изменение П. н.
-
ds = Г
1
dm
1+ Г
2
dm
2+...,
где Г
1, Г
2,... - поверхностные избытки компонентов 1, 2,..., т. е. разность их концентраций в поверхностном слое и объёме раствора (или газа), a
dm
1
, dm
2
,... -изменения химических потенциалов соответствующих компонентов (знак «минус» показывает, что П. н. при положительной адсорбции уменьшается). Разницей в П. н. чистой жидкости и жидкости, покрытой адсорбционным монослоем, определяется
поверхностное давление.
На легкоподвижных границах жидкость - газ (пар) или жидкость - жидкость П. н. можно непосредственно измерить многими методами. Так, широко распространены способы определения П. н. по массе капли, отрывающейся от конца вертикальной трубки (сталагмометра); по величине максимального давления, необходимого для продавливания в жидкость пузырька газа; по форме капли (или пузырька), лежащей на плоской поверхности, и т.д. Экспериментальное определение П. н. твёрдых тел затруднено из-за того, что их молекулы (или атомы) лишены возможности свободного перемещения. Исключение составляет пластическое течение металлов при температурах, близких к точке плавления. Ввиду
анизотропии
кристаллов П. н. на разных гранях кристалла различно. Понятия П. н. и свободной поверхностной энергии для твёрдых тел не тождественны. Дефекты кристаллической решётки, главным образом
дислокации,ребра и вершины кристаллов, границы зёрен поликристаллических тел, выходящие на поверхность, вносят свой вклад в свободную поверхностную энергию. П. н. твёрдых тел обычно определяют косвенно, исходя из межмолекулярных и межатомных взаимодействий. Величиной и изменениями П. н. обусловлены многие
поверхностные явления,особенно в дисперсных системах (см. также
Капиллярные явления
)
,
Л. А. Шиц.
В живых организмах П. н. клетки - один из факторов, определяющих форму целой клетки и её частей. Для клеток, обладающих жёсткой или полужёсткой поверхностью (многие микроорганизмы, инфузории, клетки растений и т.д.), значение П. н. невелико. У клеток, лишённых прочной надмембранной структуры (большинство клеток животных, некоторые простейшие, сферопласты бактерий), П. н. в основном определяет конфигурацию (клетки, находящиеся во взвешенном в жидкости состоянии, приобретают форму, близкую к сферической). Форма клетки, прикрепленной к какому-либо субстрату или к др. клеткам, зависит преимущественно от др. факторов - цитоскелета, образуемого микротрубочками, контактных структур и т.д. Полагают, что локальные изменения П. н. существенны в таких явлениях, как
фагоцитоз,
пиноцитоз,
гаструляция.Определение П. н. клетки - сложная экспериментальная задача; обычно П. н. клетки не превышает несколько
дин/см(10
-3
н/м)
.
Л. Г. Маленков.
Лит.:Адам Н. К., Физика и химия поверхностей, пер. с англ., М.-Л., 1947; Surface and colloid science, ed. E. Matijeviй, v. 1, N. Y. - [a. o.], 1969. см. также лит. при ст.
Поверхностные явления
.
Поверхностной волны антенна
Пове'рхностной волны' анте'нна,
бегущей волны антенна,отличающаяся тем, что фазовая скорость электромагнитной волны, которая распространяется вдоль антенны, меньше фазовой скорости распространения плоской волны в свободном пространстве, а амплитуда поля в направлении нормали к антенне убывает по экспоненциальному закону (такую волну называют поверхностной). Замедляющую структуру П. в. а. выполняют в виде ребристой металлической поверхности (см. рис. в ст.
Антенна
) либо в виде плоской металлической поверхности, покрытой слоем диэлектрика. Поверхностная волна обычно возбуждается
рупорной антенной
или электрическим вибратором. Основным достоинством П. в. а. является то, что конструктивно она может быть выполнена в виде вставки, практически не выступающей из несущей поверхности, что очень важно при установке таких антенн на летательных аппаратах. П. в. а. применяют главным образом в радиоустройствах, работающих на сантиметровых и дециметровых волнах.
Поверхностные волны
Пове'рхностные во'лны,
упругие волны,распространяющиеся вдоль свободной поверхности твёрдого тела или вдоль границы твёрдого тела с другими средами и затухающие при удалении от границы. Простейшими и вместе с тем наиболее часто встречающимися на практике П. в. являются
Рэлея волны.
О П. в., возникающих и распространяющихся по свободной поверхности жидкости или на поверхности раздела двух несмешивающихся жидкостей, см.
Волны на поверхности жидкости.
Поверхностные явления
Пове'рхностные явле'ния,выражение особых свойств поверхностных слоев, т. е. тонких слоев вещества на границе соприкосновения тел (сред, фаз). Эти свойства обусловлены избытком
свободной энергии
поверхностного слоя, особенностями его структуры и состава. П. я. могут иметь чисто физический характер или сопровождаться химическими превращениями; они протекают на жидких (легкоподвижных) и твёрдых межфазных границах. П. я., связанные с действием
поверхностного натяжения
и вызываемые искривлением жидких поверхностей раздела, называются также
капиллярными явлениями.К ним относятся капиллярное всасывание жидкостей в пористые тела, капиллярная конденсация, установление равновесной формы капель, газовых пузырей, менисков. Свойства поверхности контакта двух твёрдых тел или твёрдого тела с жидкой и газовой средами определяют условия таких явлений, как
адгезия,
смачивание,трение. Молекулярная природа и свойства поверхности могут коренным образом изменяться в результате образования поверхностных мономолекулярных слоев или фазовых (полимолекулярных) плёнок. Такие изменения часто происходят вследствие физических процессов (адсорбции, поверхностной диффузии, растекания жидкости) или химического взаимодействия компонентов соприкасающихся фаз. Любое «модифицирование» поверхностного (межфазного) слоя обычно приводит к усилению или ослаблению молекулярного взаимодействия между контактирующими фазами (см.
Лиофильность и лиофобность
)
.Физические или химические превращения в поверхностных слоях сильно влияют на характер и скорость гетерогенных процессов - коррозионных, каталитических, мембранных и др. П. я. отражаются и на типично объёмных свойствах тел. Так, уменьшение свободной поверхностной энергии твёрдых тел под действием адсорбционно активной среды вызывает понижение их прочности (см.
Ребиндера эффект
)
.Особую группу составляют П. я., обусловленные наличием в поверхностном слое электрических зарядов: электроадгезионные явления,
электрокапиллярные явления,электродные процессы. Физические или химические изменения в поверхностном слое проводника или полупроводника существенно сказываются на
работе выхода
электрона. Они также влияют на П. я. в
полупроводниках
(поверхностные состояния, поверхностную проводимость, поверхностную рекомбинацию), что отражается на эксплуатационных характеристиках полупроводниковых приборов (солнечных батарей, фотодиодов и др.). П. я. имеют место в любой гетерогенной системе, состоящей из двух или нескольких фаз. По существу весь материальный мир - от космических объектов до субмикроскопических образований - гетерогенен. Как гомогенные можно рассматривать системы лишь в ограниченных объёмах пространства. Поэтому роль П. я. в природных и технологических процессах чрезвычайно велика. Особенно важны П. я. в коллоидно-дисперсных (микрогетерогенных) системах, где межфазная поверхность наиболее развита. С П. я. связана сама возможность возникновения и длительного существования таких систем. К П. я. в
дисперсных системах
сводятся основные проблемы
коллоидной химии.Во взаимосвязи
броуновского движения
и П. я. протекают все процессы, приводящие к изменению размеров частиц высокодисперсной фазы (
коагуляция,
коалесценция,
пептизация,эмульгирование). В грубодисперсных и макрогетерогенных системах на первый план выступает конкуренция поверхностных сил и внешних механических воздействий. П. я., влияя на величину свободной поверхностной энергии и строение поверхностного слоя, регулируют зарождение и рост частиц новой фазы в пересыщенных парах, растворах и расплавах, взаимодействие коллоидных частиц при формировании разного рода
дисперсных структур.На глубину и направление процессов, обусловленных П. я., часто решающим образом влияют
поверхностно-активные вещества,меняющие в результате адсорбции структуру и свойства межфазных поверхностей. Основы современной термодинамики П. я. созданы американским физикохимиком Дж.
Гиббсом.В трудах советских учёных П. А.
Ребиндера,А. Н.
Фрумкина,Б. В.
Дерягина,А. В.
Думанского
получили развитие теоретические представления о природе и молекулярном механизме П. я., имеющие важное практическое значение.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127
|
|