()
ModernLib.Net / / / () -
(. 22)
:
|
|
:
|
|
-
(3,00 )
- fb2
(8,00 )
- doc
(1 )
- txt
(1 )
- html
(7,00 )
- :
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91
|
|
При Н. фиксируются свойства кислот, такие, как изменение под их воздействием окраски некоторых растворимых красителей-индикаторов (например, фиолетового лакмуса - в красный цвет), каталитическое действие на некоторые химические реакции (например, инверсия сахаров), растворяющее действие на активные металлы (Mg, Zn и др.), карбонаты и некоторые др. малорастворимые соединения, кислый вкус водных растворов, а также потеря всех этих свойств при реакциях с основаниями. Наиболее типичная реакция нейтрализации в водных растворах происходит между гидратированными ионами водорода (называемыми иначе ионами
гидрония
) и ионами гидроксила (см.
Гидроксильная группа
)
,содержащимися соответственно в сильных кислотах и основаниях:
H
3O
+(или Н
+ЧН
2О) + ОН
-= 2Н
2О.
В результате концентрация каждого из этих ионов становится равной той, которая свойственна самой воде (около 10
-7
г=
ионов/лпри комнатной температуре). При Н. слабой кислоты сильным основанием, например уксусной кислоты едким натром:
реакция до конца не идёт, является обратимой, и концентрация ионов гидроксила в растворе больше, чем в чистой воде (щелочная реакция раствора). При Н. слабого основания сильной кислотой реакция раствора становится кислой. Следовательно, в обоих последних случаях полная Н. не достигается и
водородный показатель
(pH) раствора лишь приближается к 7.
В неводных растворах с прототропными растворителями, т. е. такими, которые сами способны принимать или отдавать ионы водорода (протоны), Н. при взаимодействии кислоты и основания наступает тогда, когда концентрация сольватированных ионов водорода в растворе становится равной её концентрации в чистом растворителе. В растворах кислот и оснований непрототропного типа Н. наступает при достижении в реакции нейтрализации той концентрации катионов или анионов, которая свойственна чистому растворителю. Реакции нейтрализации применяются в химических производствах и при обработке отходов в др. производствах, а также в лабораторной практике, особенно в химическом анализе. См. также
Нейтрализации методы.
Лит.:Шатенштейн А. И., Теории кислот и оснований, М. - Л., 1949; Дей М. К., Селбин Дж., Теоретическая неорганическая химия, пер, с англ., 2 изд., М., 1971; Денеш И., Титрование в неводных средах, пер. с англ., М., 1971.
Ю. А. Клячко.
Нейтралитет
Нейтралите'т(нем. Neutralitдt, от лат. neuter - ни тот, ни другой), в международном праве политика неучастия в войне, а в мирное время - отказ от участия в военных блоках. Нейтральное государство имеет право на неприкосновенность его территории, граждан, не участвующих в военных действиях воюющих сторон, и имущества, которое не отнесено к военной контрабанде. Нейтральное государство может защищать свой Н. с помощью оружия (вооружённый Н.).
Н. во время войны распространяется на государства, не участвующие в войне после её начала. Страна может сделать специальное заявление о Н. (но это не обязательно). Права и обязанности нейтрального государства во время войны регламентированы 5-й и 13-й Гаагскими конвенциями 1907 о правах и обязанностях нейтральных держав в случае сухопутной войны и в случае морской войны. В этих документах запрещаются любые военные действия, которые могли бы быть рассмотрены как содействие воюющим сторонам. По Женевским конвенциям 1949 нейтральная страна может выступать как покровительница, содействующая применению конвенций, т. е. может, с согласия воюющих сторон, посылать санитарные формирования для оказания помощи лицам, взятым под покровительство воюющих государств в соответствии с Женевскими конвенциями.
Постоянный Н. предусматривает обязательство государства воздерживаться от войны (кроме случаев самообороны), а в мирное время - проводить миролюбивую внешнюю политику, не участвовать в военных союзах и коалициях, не заключать соглашений, направленных на вовлечение его в войну. В отличие от государств, объявивших себя нейтральными во время войны, постоянно нейтральные государства обязуются проводить соответствующую политику постоянно (как в военное, так и в мирное время). Постоянно нейтральными государствами являются Швейцария (с 1815) и Австрия (с 1955). Постоянный Н. называют договорным, если государства проводят соответствующую политику на основе международного соглашения. В 50-70-е гг. 20 в. большое значение имеет политика позитивного (или конструктивного) Н., которую проводят многие независимые развивающиеся государства Азии, Африки, Латинской Америки, что отражает миролюбивый курс их внешней политики. Часто такой Н. называют нейтрализмом, политикой неучастия в блоках, активным Н. и т.д.
Нейтральная зона
Нейтра'льная зо'на, в международном праве определённый географический район, в котором запрещается подготовка военных действий и который не может быть использован в качестве театра военных действий. Как правило, Н. з. объявляют часть суши или моря пограничного и (или) спорного характера. Н. з. образуется заинтересованным государством в одностороннем порядке или же на основе международного договора (например, была объявлена Н. з. территория между Ираком и Саудовской Аравией по Багдадскому договору 1938).
Н. з. может быть создана временно каким-либо прибрежным государством для обеспечения своей безопасности на период войны между др. государствами (такие Н. з. установлены, например, законодательством Бельгии, Бразилии, Нидерландов, Японии) или постоянно (например, нейтрализация Магелланова пролива по договору Чили и Аргентины 1881, Панамского канала по договору США с Панамой 1903). К временным Н. з. относятся также зоны, которые устанавливаются воюющими сторонами для ведения каких-либо переговоров (например, об обмене военнопленными, ранеными и больными, о перемирии и т.д.), для охраны памятников культуры и старины. Создание Н. з. часто сопровождается её демилитаризацией (см.
Демилитаризация территории
)
.
Нейтральные точки неба
Нейтра'льные то'чки не'ба,небольшие участки ясного дневного неба, посылающие неполяризованный свет; см.
Поляризация небесного свода.
Нейтринная астрономия
Нейтри'нная астроно'мия,новый раздел наблюдательной астрономии, связанный с поиском и исследованием потоков
нейтрино
от источников внеземного происхождения. Нейтрино является единственным видом излучения, который приходит к земному наблюдателю из самых глубоких недр
Солнца
и звёзд и несёт в себе информацию об их внутренней структуре и о происходящих там процессах. Современные средства регистрации нейтрино допускают возможность обнаружения нейтринного излучения лишь от Солнца и
сверхновых звёзд
нашей Галактики.
Нейтринная астрономия Солнца.Существование мощного потока нейтрино от Солнца вытекает из современной концепции происхождения и строения Солнца, согласно которой его светимость полностью обеспечивается энергией термоядерного превращения водорода в гелий в центральной области Солнца. Как показывают расчёты моделей Солнца (см.
Звёздные модели
)
,основной вклад в энерговыделение даёт водородный цикл, а доля углеродно-азотного (CNO) цикла составляет не более 1% (см.
Термоядерные реакции
)
.Синтез каждого атома
4He сопровождается испусканием двух электронных нейтрино n
e. а полный поток нейтрино, определяемый светимостью, составляет у поверхности Земли 6,5Ч10
10нейтрино/
см
2сек, причём нейтрино уносят ~3% энергии термоядерного синтеза. Наблюдение солнечных нейтрино явилось бы убедительным подтверждением основных идей термоядерной эволюции Солнца. Измерение потоков нейтрино от различных реакций с помощью соответствующего набора детекторов составляет полную программу исследования внутренней структуры Солнца. Поскольку поток солнечных нейтрино испытывает сезонные вариации с амплитудой около 7% (что связано с наличием эксцентриситета у земной орбиты), наблюдение этих вариаций служило бы доказательством того, что регистрируемые нейтрино - солнечные. Др. способ определения направления прихода нейтрино состоит в измерении углового распределения электронов, образующихся при захвате нейтрино в детекторе (см. ниже): электроны из-за несохранения
чётности
в b-распаде должны вылетать преимущественно в направлении на Солнце.
Первые эксперименты по наблюдению солнечных нейтрино осуществлены американским учёным Р. Девисом с сотрудниками в 1967-68 с помощью радиохимического нейтринного детектора, содержащего 610
тжидкого перхлорэтилена (C
2Cl
4). Детектор устанавливался под землёй на глубине 1480
мдля подавления фона
космических лучей.Регистрация нейтрино основана на методе, предложенном в 1946 Б. М.
Понтекорво.Солнечные нейтрино с энергией > 0,814
Мэвобразуют в реакции
37Cl + n
е® е
-+ Ar радиоактивный Ar с периодом полураспада 35
сут.Согласно расчётам, основной вклад (76%) в эффект должны давать нейтрино наиболее высокой энергии (до 14
Мэв) от распада
8В ®
8Ве + e
++ n
eв самой редкой ветви водородного цикла. Поток этих нейтрино зависит от температуры
Ткак
T
20
,поэтому хлорный детектор является уникальным «термометром» для измерения температуры центральной области Солнца
T
c.Теория предсказывала значение
T
c» 15·10
6K
.
В экспериментах Девиса
37Ar накапливался в детекторе в течение 100
сут,затем извлекался продуванием через жидкость гелия, адсорбировался активированным углём при температуре 77 К и помещался в пропорциональный счётчик, который подсчитывал количество распавшихся атомов
37Аг. Измерения, полученные в 1972 (как и первые измерения 1967-68), показали, что нейтринный эффект в несколько раз ниже предсказываемого теорией и не превосходит фоновый эффект детектора (в детекторе под действием солнечных нейтрино накапливалось не более 8 атомов
37Ar за эксперимент вместо ожидаемых 45).
Хотя солнечные нейтрино не были с достоверностью зарегистрированы, результаты экспериментов являются важным достижением Н. а., так как показывают, что современные представления о солнечных нейтрино в чём-то неверны. Решение загадки солнечных нейтрино можно искать в трёх направлениях. 1) Возможно,
T
cниже теоретического значения, предсказываемого стандартными моделями Солнца, и составляет около 13Ч10
6K, т. е. лежит за порогом чувствительности «нейтринного термометра»; это означает, что Солнце устроено иначе, чем считалось до сих пор. 2) Может оказаться, что при расчётах моделей используются неверные значения скоростей ядерных реакций; это означало бы, что шкала «нейтринного термометра» неправильно отградуирована. 3) «Нейтринный термометр» вообще может оказаться «испорченным», если по пути к Земле с нейтрино что-то происходит, например распад (если бы они оказались нестабильными частицами), осцилляции (переводящие нейтрино в невзаимодействующие с хлором состояния) и т.п. Для окончательного решения проблемы необходимо повысить чувствительность хлорного детектора, а также провести дополнительно эксперименты с детекторами, чувствительными к нейтрино меньших энергий, например
7Li,
71Ga,
87Rb,
55Mn. Др. важная задача Н. а. - наблюдение солнечных нейтрино от реакции
1H + p + e
-®
2H + n
e(с помощью детекторов
37Cl и
7Li), которая обязательно сопутствует водородному циклу. Их обнаружение явилось бы доказательством протекания водородного цикла на Солнце, исключило бы гипотезы об аномальных свойствах нейтрино и тем самым подтвердило правильность заключения о том, что CNO-цикл не вносит заметного вклада в генерацию энергии на Солнце (если бы CNO-цикл вносил основной вклад, в детекторе Девиса должно было бы образовываться около 300 атомов
37Ar).
Нейтринные вспышки.Потоки нейтрино от др. «спокойных» звёзд, даже самых близких, очень малы и не могут быть зарегистрированы современными методами. Вместе с тем вполне осуществимой представляется задача наблюдения нейтринных вспышек от звёзд в момент их гравитационного коллапса. Наиболее вероятными объектами являются сверхновые звёзды нашей Галактики, непосредственно перед взрывом которых происходит коллапс центрального ядра. Нейтринная вспышка может быть зарегистрирована даже в том случае, если сверхновая оптически ненаблюдаема. Длительность такой вспышки ~0,01
сек(потоки нейтрино у Земли 10
10-10
12нейтрино/
см
2за вспышку). Измеряя время запаздывания начала вспышки, зарегистрированного детекторами в разных местах земного шара, можно установить направление прихода нейтринного излучения. Вспышки могут быть зарегистрированы водородсодержащим сцинтиллятором массой в несколько сотен
тв виде характерной серии импульсов. Такие эксперименты планируются в СССР и в США.
Нейтринная астрофизика.Необходимость исследования астрофизических явлений с участием нейтрино породила новую ветвь в астрофизике - нейтринную астрофизику. По современным представлениям, нейтринное излучение, которое сильно растет с увеличением температуры, оказывает решающее влияние на картину эволюции звёзд на завершающих стадиях, когда температура в недрах звезды достигает ~ 10
9K и выше. Это связано с тем, что испускание нейтрино происходит из самых горячих, внутренних областей звезды (так как пробеги нейтрино в веществе значительно больше размеров звезды), и поэтому именно нейтринное излучение определяет скорость потери энергии такими звёздами. Примером является влияние гипотетического электронно-нейтринного взаимодействия (предсказываемого универсальной теорией слабого взаимодействия; см.
Нейтрино
) на эволюцию ядра планетарных туманностей, учёт которого позволяет согласовать наблюдаемые данные о времени эволюции с теоретическими расчётами; в свою очередь, возможность такого согласования является аргументом в пользу существования этого взаимодействия.
Когда температура в центре звезды достигает значения ~10
11К, пробег n
eстановится сравнимым с размерами звезды и при дальнейшем увеличении температуры звезда становится непрозрачной для нейтрино. Поскольку, однако, пробеги нейтрино остаются ещё несравнимо большими пробегов фотонов, перенос энергии в звезде осуществляется посредством нейтринного газа (нейтринная теплопроводность) и потери энергии продолжают определяться нейтринным излучением. При температурах ³ 2Ч10
11К звёзды становятся непрозрачными и для мюонных нейтрино n
m. Такие стадии жизни звезды наиболее загадочны и интересны. Предполагается, что нейтринное излучение играет решающую роль в механизме взрыва сверхновых.
Развитие Н. а. и нейтринной астрофизики обещает дать ценную информацию не только о строении небесных тел, но по природе самого нейтрино и свойствах слабого взаимодействия.
Лит.:Нейтрино. Сб. ст., пер. с англ., М., 1970 (Современные проблемы физики); Бакал Дж., Солнечные нейтрино, «Успехи физических наук», 1970, т. 101, в. 4, с. 739-53; Азимов А., Нейтрино - призрачная частица атома, пер. с англ., М., 1969, с. 92-105.
Г. Т. Зацепин, Ю. С. Копысов.
Нейтрино
Нейтри'но(итал. neutrino, уменьшительное от neutrone - нейтрон), электрически нейтральная элементарная частица с массой покоя много меньшей массы электрона (возможно равной нулю),
спином
1/
2(в единицах постоянной Планка
) и исчезающе малым, по-видимому, нулевым, магнитным моментом. Н. принадлежит к группе
лептонов,а по своим статистическим свойствам относится к классу
фермионов.Название «Н.» применяется к двум различным элементарным частицам - к электронному (n
e) и к мюонному (n
m) Н. Электронным называется Н., взаимодействующее с др. частицами в паре с электроном е
-(или позитроном е
+), мюонным - Н., взаимодействующее в паре с
мюоном
(m
-, m
+). Оба вида Н. имеют соответствующие
античастицы:электронное
и мюонное
антинейтрино. Электронные и мюонные Н. принято различать с помощью сохраняющихся аддитивных лептонных квантовых чисел (лептонных зарядов)
L
eи
L
m, при этом принимается, что
L
e= + 1,
L
m= 0
для n
еи
L
e= - 1,
L
m= 0 для
,
L
e= 0,
L
m= + 1 для n
mи
L
e= 0,
L
m= - 1 для
. В отличие от др. частиц, Н. обладают удивительным свойством иметь строго определённое значение спиральности l - проекции спина на направление импульса: Н. имеют левовинтовую спиральность (l = -
1/
2), т. е. спин направлен против направления движения частицы, антинейтрино - правовинтовую (l = +
1/
2), т. е. спин направлен по направлению движения.
: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91
|
|