Современная электронная библиотека ModernLib.Net

Большая Советская Энциклопедия (МН)

ModernLib.Net / Энциклопедии / БСЭ / Большая Советская Энциклопедия (МН) - Чтение (стр. 6)
Автор: БСЭ
Жанр: Энциклопедии

 

 


  А. И. Маркушевич.

Многощетинковые черви

Многощети'нковые че'рви,полихеты (Polychaeta), класс .Длиной от 2 ммдо 3 м. Тело - из множества, иногда до нескольких сот, колец-сегментов, в каждом из которых повторяется комплекс внутренних органов. Туловищные сегменты снабжены примитивными конечностями - -с многочисленними щетинками (отсюда название). С параподиями часто связаны ветвистые придатки - жабры; у некоторых М. ч. функцию жабр выполняет венчик щупалец на головном участке. Имеются глаза, иногда сложно устроенные, и органы равновесия (статоцисты). М. ч., как правило, раздельнополы; оплодотворение наружное. Развитие с ;из яйца развивается личинка .Бесполое размножение путём почкования и живорождение редки. При созревании половых продуктов у некоторых М. ч. ( , и др.) происходят резкие морфологические изменения (разрастаются параподии, появляются добавочные придатки и т. д.), червь всплывает на поверхность и здесь вымётывает половые продукты (т. н. ) .

 М. ч. живут в морях, лишь немногие - в пресных водах (например, Manayunkia в Байкале). В классе около 70 семейств (свыше 6 тыс. видов); в СССР не менее 700 видов. Большинство М. ч. - обитатели дна (встречаются на глубине до 10 тыс. м) :свободно ползают по грунту или зарываются в ил; многие строят из песчинок или других материалов разной формы трубки, которые никогда не покидают. Питаются детритом; многие хищники, нередко комменсалы; паразиты - лишь как исключение. Некоторым видам свойственно свечение (см. ) .М. ч. служат пищей для многих рыб. В 1939-1941 из Азовского моря в Каспийское море был перевезён М. ч. ,ставший основной пищей осетровых рыб. Некоторые крупные черви (пескожилы и др.) используются как наживка для рыбной ловли. Некоторые виды наносят вред народному хозяйству (участвуют в ) .К М. ч. относят и сильно видоизменённых в связи с паразитизмом .Ископаемые остатки М. ч. известны с кембрия.

  Лит.:Руководство по зоологии, т. 2, М. - Л., 1940; Большой практикум по зоологии беспозвоночных, ч. 1, Л., 1941; Ушаков П. В., Многощетинковые черви дальневосточных морей СССР (Polychaeta), М. - Л., 1955; Жизнь животных, т. 1, М., 1968; Фауна СССР. Многощетинковые черви, т. 1, Л., 1972 (АН СССР. Зоологический институт. Нов. серия, № 102.)

  П. В. Ушаков.

Многощетинковые черви: 1 - пескожил (Arenicola); 2 - Thelepus (в трубке, сложенной из песчинок); 3 - Serpula (в известковой трубке); 4 - Lepidonotus (спинная сторона прикрыта чешуйками, или элитрами); 5 - нереис; 6 - Tomopteris.

Многоэтажные здания

Многоэта'жные зда'ния.Понятие «М. з.» изменяется исторически в зависимости от этажности городской застройки, обусловленной социальными, экономическими и градостроительными требованиями. Жилые и общественные М. з. начали широко распространяться в античных городах вследствие потребности в ускоренном строительстве дешёвых жилищ для населения с низким доходом (например, в Древнем Риме), а позднее и в средневековых городах ввиду ограниченности их территорий, защищенной городскими стенами (дома зажиточных горожан Европы с жильём, мастерскими и лавками в 1-2-х этажах и амбарами в остальных). В эпоху капитализма бурный рост городов и значительное удорожание городских земельных участков вызвали резкое расширение строительства М. з., а совершенствование их инженерного оборудования (в первую очередь появление лифта) позволило значительно поднять их высоту (16-этажный Монаднок-билдинг в Чикаго, 1891, архитекторы Д. Х. Бёрнем и Дж. У. Рут). В конце 19 - начале 20 вв. в США появились М. з. в несколько десятков этажей (т. н. небоскрёбы), используемые для контор, банков, гостиниц, жилья. Построенный в 1930-31 в Нью-Йорке небоскрёб Эмпайр стейт билдинг (архитекторская фирма «Шрив, Лэмб и Хармон») насчитывает 102 этажа (высотой без телевизионной вышки, выстроенной в 1951, - около 380 м) .Со 2-й половины 1940-х гг., в связи с интенсивной ,а иногда и недостатком свободных территорий, М. з. получили широкое распространение во многих странах мира. Наряду с основным массовым строительством М. з. в 9-17 этажей возводятся т. н. высотные здания, часто многофункционального назначения (например, 100-этажный Джон Хэнкок билдинг в Чикаго, 1971, архитекторы Л. Скидмор, Н. А. Оуингс, Дж. О. Мерилл, где размещаются магазины, банк, гараж, конторы, жильё и др.). В условиях капиталистического градостроительства стихийная концентрация М. з. на ограниченной территории и скопление значительных масс людей и транспортных средств приводят к разрушению функциональных, физико-гигиенических и эстетических качеств городкой среды (транспортные пробки, оглушающе шумные, узкие улицы, лишённые свежего воздуха, ощущение хаоса, которое создаёт вид тесной застройки разновысотными, нередко невыразительными по архитектуре М. з.).

  В СССР и других социалистических странах М. з. размещаются обычно в соответствии с градостроительными требованиями, согласно генеральным планам городов (в частности, в целях экономии территорий в центре города, особо ценных вследствие их насыщенности дорогостоящими коммуникациями, инженерным оборудованием и пр.). В конце 1940-х - начале 1950-х гг. в Москве по единому градостроительному замыслу было построено 7 высотных зданий в 26-32 этажа (архитекторы В. Г. Гельфрейх, А. Н. Душкин, Б. С. Мезенцев, М. А. Минкус, А. Г. Мордвинов, Л. М. Поляков, Л. В. Руднев, Д. Н. Чечулин и др.). Сооружение этих зданий ускорило технический прогресс в области строительства. Поставленные в ключевых местах столицы и увенчанные шпилями, они придали ей новый силуэт и масштабность. Для этих зданий характерны сложная композиция из разновысотных объёмов, обилие декора на фасадах и в интерьерах, низкий процент полезной площади. Строительство М. з. индустриальными методами резко увеличилось в СССР во 2-й половине 1960-х гг. (в 1973 - 20 % от общего строительства жилых зданий). Наряду с основной массой 9-17-этажных зданий воздвигаются и здания в 25 этажей и выше. Иногда М. з. образуют целые комплексы (например, проспект Калинина в Москве, 1964-69, архитекторы М. В. Посохин, А. А. Мндоянц и др.; см. илл. ). Единой классификации М. з. не существует. Критерием отнесения зданий к категории М. з. принято считать появление (в результате большой высоты) качественных изменений в их планировке, конструкции и техническом оснащении. В М. з. требуется обеспечение пожарной безопасности (повышенная огнестойкость конструкций, устройство незадымляемых лестниц, систем пожарного водопровода, дымоудаления и др.), конструктивной устойчивости под действием ветровых, в том числе динамических, нагрузок, усложняются лифтовое хозяйство и техническое оборудование. Конструктивная устойчивость жилых М. з. достигается главным образом за счёт поперечных несущих стен или связевого каркаса (в СССР преимущественно сборного железобетонного; см. , ) ,в общественных зданиях - в сочетании с т. н. ядром жёсткости (железобетонной коробкой, ограждающей собранные вместе лифтовые шахты, технические коммуникации). В высотных зданиях за рубежом распространены ядрооболочковые конструкции, в которых «оболочка» - несущие фасадные ограждения решётчатого типа из стальных или предварительно напряжённых железобетонных элементов - соединяется перекрытиями с расположенным в центре «ядром», образуя единую систему большой жёсткости (две 110-этажные башни Центра международной торговли в Нью-Йорке, архитекторы М. Ямасаки и др., 1971-73). Из-за большого (порой отрицательного) влияния на традиционный облик старых городов огромных объёмов, повторения многих тысяч одинаковых фасадных элементов создать выразительное архитектурное решение М. з. очень сложно. Стремясь преодолеть сверхчеловеческий масштаб и однообразие, архитекторы вводят в композицию М. з. сопоставление разновысотных объёмов, иногда криволинейные очертания, ищут выразительные пропорции и силуэт, прибегают к ритмической организации фасадных элементов (например, группировка балконов и их ограждений или окон в композиции орнаментального характера), к эффектной отделке фасадов нержавеющей сталью, алюминием, бронзой, стеклом (например, 38-этажное здание Сигрем-билдинг в Нью-Йорке, 1958, архитектор Л. Мис ван дер Роэ).

  Лит.:Дыховичный Ю. А., Конструирование и расчет жилых и общественных зданий повышенной этажности, М., 1970; 1 Международный симпозиум. Многоэтажные здания. Сборник докладов. Москва - СССР. Октябрь 1971, М., 1972 (на рус. и англ. яз.); Rafeiner F., Hochhдuser. Planung, Kosten, Bauausfьhrung, В., 1968.

  А. И. Опочинская.

М. В. Посохин, А. А. Мидоянц и др. Проспект Калинина в Москве. 1964-69.

Множеств теория

Мно'жеств тео'рия,учение об общих свойствах множеств, преимущественно бесконечных. Понятие множества, или совокупности, принадлежит к числу простейших математических понятий; оно не определяется, но может быть пояснено при помощи примеров. Так, можно говорить о множестве всех книг, составляющих данную библиотеку, множестве всех точек данной линии, множестве всех решений данного уравнения. Книги данной библиотеки, точки данной линии, решения данного уравнения являются элементами соответствующего множества. Чтобы определить множество, достаточно указать характеристическое свойство элементов, т. е. такое свойство, которым обладают все элементы этого множества и только они. Может случиться, что данным свойством не обладает вообще ни один предмет; тогда говорят, что это свойство определяет пустое множество. То, что данный предмет хесть элемент множества М, записывают так: хО М(читают: хпринадлежит множеству М).

  Подмножества.Если каждый элемент множества Аявляется в то же время элементом множества В, то множество Аназывается подмножеством, или частью, множества В. Это записывают так: AН Вили ВК А. Т. о., подмножеством данного множества Вявляется и само множество В. Пустое множество, по определению, считают подмножеством всякого множества. Всякое непустое подмножество Аданного множества В, отличное от всего множества В, называют правильной частью последнего.

  Мощность множеств.Первым вопросом, возникшим в применении к бесконечным множествам, был вопрос о возможности их количественного сравнения между собой. Ответ на этот и близкие вопросы дал в конце 70-х гг. 19 в. Г. ,основавший М. т. как математическую науку. Возможность сравнительной количественной оценки множеств опирается на понятие взаимно однозначного соответствия между двумя множествами. Пусть каждому элементу множества Апоставлен в соответствие в силу какого бы то ни было правила или закона некоторый определённый элемент множества В; если при этом каждый элемент множества оказывается поставленным в соответствие одному и только одному элементу множества А, то говорят, что между множествами Аи Вустановлено взаимно однозначное, или одно-однозначное, соответствие [сокращённо: (1-1)-соответствие]. Очевидно, между двумя конечными множествами можно установить (1-1)-соответствие тогда и только тогда, когда оба множества состоят из одного и того же числа элементов. В обобщение этого факта определяют количественную эквивалентность, или равномощность, двух бесконечных множеств как возможность установить между ними (1-1)-соответствие.

  Ещё до создания М. т. Б. владел, с одной стороны, вполне точно формулированным понятием (1-1)-соответствия, а с другой стороны, считал несомненным существование бесконечностей различных ступеней; однако он не только не сделал (1-1)-соответствие основой установления количественной равносильности множеств, но решительно возражал против этого. Больцано останавливало то, что бесконечное множество может находиться в (1-1)-соответствии со своей правильной частью. Например, если каждому натуральному числу nпоставить в соответствие натуральное число 2 n, то получим (1-1)-соответствие между множеством всех натуральных и множеством всех чётных чисел. Вместо того чтобы в применении к бесконечным множествам отказаться от аксиомы: часть меньше целого, Больцано отказался от взаимной однозначности как критерия равномощности и, т. о., остался вне основной линии развития М. т. В каждом бесконечном множестве Мимеется (как легко доказывается) правильная часть, равномощная всему М, тогда как ни в одном конечном множестве такой правильной части найти нельзя. Поэтому наличие правильной части, равномощной целому, можно принять за определение бесконечного множества ( Р. ) .

 Для двух бесконечных множеств Аи Ввозможны лишь следующие три случая: либо Аесть правильная часть, равномощная В, но в Внет правильной части, равномощной А; либо, наоборот, в Весть правильная часть, равномощная А, а в Анет правильной части, равномощной В; либо, наконец, в Аесть правильная часть, равномощная В, и в Весть правильная часть, равномощная А. Доказывается, что в третьем случае множества Аи Bравномощны (теорема Кантора - Бернштейна). В первом случае говорят, что мощность множества Абольше мощности множества В, во втором - что мощность множества Вбольше мощности множества А. A priori возможный четвёртый случай - в Анет правильной части, равномощной В, а в Внет правильной части, равномощной А, - в действительности не может осуществиться (для бесконечных множеств).

  Ценность понятия мощности множества определяется существованием неравномощных бесконечных множеств. Например, множество всех подмножеств данного множества Мимеет мощность большую, чем множество М. Множество, равномощное множеству всех натуральных чисел, называется счётным множеством. Мощность счётных множеств есть наименьшая мощность, которую может иметь бесконечное множество; всякое бесконечное множество содержит счётную правильную часть. Кантор доказал, что множество всех рациональных и даже всех алгебраических чисел счётно, тогда как множество всех действительных чисел несчётно. Тем самым было дано новое доказательство существования т. н. трансцендентных чисел, т. е. действительных чисел, не являющихся корнями никакого алгебраического уравнения с целыми коэффициентами (и даже несчётность множества таких чисел). Мощность множества всех действительных чисел называется мощностью континуума. Множеству всех действительных чисел равномощны: множество всех подмножеств счётного множества, множество всех комплексных чисел и, следовательно, множество всех точек плоскости, а также множество всех точек трёх- и вообще n-мерного пространства при любом n. Кантор высказал гипотезу (т. н. континуум-гипотезу): всякое множество, состоящее из действительных чисел, либо конечно, либо счётно, либо равномощно множеству всех действительных чисел; по поводу этой гипотезы и существенных связанных с нею результатов см. .

  Отображения множеств.В М. т. аналитическое понятие функции, геометрическое понятие отображения или преобразования фигуры и т. п. объединяются в общее понятие отображения одного множества в другое. Пусть даны два множества Хи Y, пусть каждому элементу хО Хпоставлен в соответствие некоторый определённый элемент у= f( x) множества Y; тогда говорят, что имеется отображение множества Хв множество Y, или что имеется функция, аргумент хкоторой пробегает множество X, а значения упринадлежат множеству Y; при этом для каждого данного хО Хэлемент у= f( x) множества Yназывается образом элемента хО Хпри данном отображении или значением данной функции для данного значения её аргумента х.

  Примеры. 1) Пусть задан в плоскости с данной на ней прямоугольной системой координат квадрат с вершинами (0; 0), (0; 1), (1; 0), (1; 1) и осуществлена проекция этого квадрата, например на ось абсцисс; эта проекция есть отображение множества Хвсех точек квадрата на множество Yвсех точек его основания; точке с координатами ( х; у) соответствует точка ( х; 0).

  2) Пусть Х- множество всех действительных чисел; если для каждого действительного числа xО Xположить у= f( x) = x 3, то тем самым будет установлено отображение множества Хв себя.

  3) Пусть Х- множество всех действительных чисел; если для каждого хО Хположить у= f( x) = arctg х, то этим будет установлено отображение множества Хна интервал ( - p/2, p/2).

  (1-1)-соответствие между двумя множествами Хи Yесть такое отображение множества Хв множество Y, при котором каждый элемент множества Yявляется образом одного и только одного элемента множества X. Отображения примеров 2) и 3) взаимно однозначны, примера 1) - нет.

  Операции над множествами.Суммой, или объединением, двух, трёх, вообще произвольного конечного или бесконечного множества множеств называется множество всех тех предметов, каждый из которых есть элемент хотя бы одного из данных множеств-слагаемых. Пересечением двух, трёх, вообще любого конечного или бесконечного множества множеств называется множество всех элементов, общих всем данным множествам. Пересечение даже двух непустых множеств может быть пустым. Разностью между множеством Ви множеством Аназывается множество всех элементов из В, не являющихся элементами из А: разность между множеством Ви его частью Аназывается дополнением множества Ав множестве В.

  Операции сложения и пересечения множеств удовлетворяют условиям сочетательности и переместительности (см. , ). Операция пересечения, кроме того, распределительна по отношению к сложению и вычитанию. Эти действия обладают тем общим свойством, что если их производить над множествами, являющимися подмножествами одного и того же множества М, то и результат будет подмножеством множества М. Указанным свойством не обладает т. н. внешнее умножение множеств: внешним произведением множеств Хи Yназывается множество Хґ Увсевозможных пар ( х, у), где хО Х, yО Y. Другим в этом смысле «внешним» действием является «возведение в степень»: степенью Y Xназывается множество всех отображений множества Хв множество Y. Можно определить внешнее умножение любого множества множеств так, что в случае совпадения множителей оно перейдёт в возведение в степень. Если x и h мощности множеств Хи Y, то xh и h xопределяются соответственно как мощности множеств Хґ Yи Y Х, что в случае конечных множеств согласуется с умножением и возведением в степень натуральных чисел. Аналогично определяется сумма мощностей как мощность суммы попарно непересекающихся множеств с заданными мощностями.

  Упорядоченные множества.Установить в данном множестве Хпорядок - значит установить для некоторых пар x', х"элементов этого множества какое-то правило предшествования (следования), выражаемое словами «элемент x'предшествует элементу х", x'< х"», или, что то же, «элемент x'следует за элементом х", x'< х"», причём предполагается выполненным условие транзитивности: если х< x'и x'< х",то х< х".Множество, рассматриваемое вместе с каким-нибудь установленным в нём порядком, называется «частично упорядоченным множеством»; иногда вместо «частично упорядоченное множество» говорят «упорядоченное множество» (Н. ). Однако чаще упорядоченным множеством называется такое частично упорядоченное множество, в котором порядок удовлетворяет следующим дополнительным требованиям («линейного порядка»): 1) никакой элемент не предшествует самому себе; 2) из всяких двух различных элементов х, x'один предшествует другому, т. е. или х< x', или x’< х.

  Примеры. 1) Всякое множество , элементами которого являются некоторые множества х, является «частично упорядоченным ''по включению''»: х< x', если хМ x'.

  2) Любое множество функций f, определённых на числовой прямой, частично упорядочено, если положить f 1< f 2, тогда и только тогда, когда для каждого действительного числа х имеем f 1( x) Ј f 2( x).

  3) Всякое множество действительных чисел линейно упорядочено: меньшее из двух чисел считается предшествующим большему.

  Два упорядоченных множества называются подобными между собой, или имеющими один и тот же порядковый тип, если между ними можно установить (1-1)-соответствие, сохраняющее порядок. Элемент упорядоченного множества называется первым, если он предшествует в этом упорядоченном множестве всем остальным элементам; аналогично определяется и последний элемент. Примеры: в упорядоченном множестве всех действительных чисел нет ни первого, ни последнего элемента; в упорядоченном множестве всех неотрицательных чисел нуль есть первый элемент, а последнего элемента нет; в упорядоченном множестве всех действительных чисел x, удовлетворяющих неравенствам аЈ хЈ b, число аесть первый элемент, b- последний.

  Упорядоченное множество называется вполне упорядоченным, если оно само и всякое его правильное подмножество имеют первый элемент. Порядковые типы вполне упорядоченных множеств называются порядковыми, или ординальными, числами. Если вполне упорядоченное множество конечно, то его порядковое число есть обычное порядковое число элементарной арифметики. Порядковые типы бесконечных вполне упорядоченных множеств называются .

  Точечные множества.Теория точечных множеств, т. е. в первоначальном понимании слова - теория множеств, элементами которых являются действительные числа (точки числовой прямой), а также точки двух-, трёх- и вообще n-мерного пространства, основана Г. Кантором, установившим понятие множества и примыкающие к нему понятия и др. Дальнейшее развитие теории точечных множеств привело к понятиям и , изучением которых занимается общая . Наиболее самостоятельное существование ведёт дескриптивная теория множеств. Основанная французскими математиками Р. Бэром и А. в связи с классификацией разрывных функций (1905), дескриптивная М. т. началась с изучения и классификации т. н. борелевских множеств ( B-множеств). Борелевские множества определяются как множества, могущие быть построенными, отправляясь от замкнутых множеств, применением операций сложения и пересечения в любых комбинациях, но каждый раз к конечному или к счётному множеству множеств. А. Лебег показал, что те же множества - и только они - могут быть получены как множества точек, в которых входящая в действительная функция f( x) обращается в нуль или, более общо, удовлетворяет условию вида а< f( x) Ј b. Дальнейшее развитие дескриптивной М. т. было осуществлено преимущественно русскими и польскими математиками, особенно московской школой, созданной Н. Н. (П. С. Александров, М. Я. Суслин, М. А. Лаврентьев, А. Н. Колмогоров, П. С. Новиков). Александров доказал теорему (1916) о том, что всякое несчётное борелевское множество имеет мощность континуума. Аппарат этого доказательства был применен Суслиным для построения теории А-множеств, охватывающих как частный случай борелевские (или В-) множества (считавшиеся до того единственными множествами, принципиально могущими встретиться в анализе). Суслин показал, что множество, дополнительное к А-множеству М, является само А-множеством только в том случае, когда множество М- борелевское (дополнение к борелевскому множеству есть всегда борелевское множество). При этом А-множества оказались совпадающими с непрерывными образами множества всех иррациональных чисел. Теория А-множеств в течение нескольких лет оставалась в центре дескриптивной М. т. до того, как Лузин пришёл к общему определению проективных множеств, которые могут быть получены, отправляясь от множества всех иррациональных чисел при помощи повторного применения операции вычитания и непрерывного отображения. К теории А-множеств и проективных множеств относятся также работы Новикова и др. Дескриптивная М. т. тесно связана с исследованиями по основаниям математики (с вопросами эффективной определимости математических объектов и разрешимости математических проблем).

  Значение М. т.Влияние М. т. на развитие современной математики очень велико. Прежде всего, М. т. явилась фундаментом ряда новых математических дисциплин (теории функций действительного переменного, общей топологии, общей алгебры, функционального анализа и др.).

  Постепенно теоретико-множественные методы находят всё большее применение и в классических частях математики. Например, в области математического анализа они широко применяются в качественной теории дифференциальных уравнений, вариационном исчислении, теории вероятностей и др.

  Наконец, М. т. оказала глубокое влияние на понимание самого предмета или таких её больших отделов, как . Только М. т. позволила отчётливо сформулировать понятие систем объектов, заданных вместе со связывающими их отношениями, и привела к пониманию того обстоятельства, что каждая математическая теория в её чистой абстрактной форме изучает ту или иную систему объектов лишь «с точностью до изоморфизма», т. е. может быть без всяких изменений перенесена на любую систему объектов, изоморфную той, для изучения которой теория была первоначально создана.

  Что касается М. т. в вопросах обоснования математики, т. е. создания строгого, логически безупречного построения математических теорий, то следует иметь в виду, что сама М. т. нуждается в обосновании применяемых в ней методов рассуждения. Более того, все логические трудности, связанные с обоснованием математического учения о бесконечности (см. в математике), при переходе на точку зрения общей М. т. приобретают лишь большую остроту (см. , , , ).

  Лит.:Лузин Н. Н., Теория функций действительного переменного, 2 изд., М., 1948; Александров П. С., Введение в общую теорию множеств и функций, М. - Л., 1948; Хаусдорф Ф., Теория множеств, пер. с нем., М. - Л., 1937.

  П. С. Александров.

Множественные процессы

Мно'жественные проце'ссы,рождение большого числа вторичных сильно взаимодействующих частиц ( ) в одном акте столкновения частиц при высокой энергии. М. п. характерны для столкновения адронов, однако в редких случаях они наблюдаются и при столкновениях других частиц, если их энергия достаточна для рождения нескольких адронов (например, при электронных столкновениях на ускорителях со встречными пучками). При столкновениях адронов с энергией выше нескольких ГэвМ. п. доминируют над процессами одиночного рождения мезонов и упругого рассеяния частиц. Впервые М. п. наблюдались в , однако тщательное их изучение стало возможным после создания ускорителей заряженных частиц высоких энергий. В результате исследований взаимодействия частиц космических лучей с энергией до 10 6-10 7 Гэвв лабораторной системе координат, а также частиц от ускорителей с энергией до ~ 10 3 Гэв(встречные пучки) выявлены некоторые эмпирические закономерности М. п.

  С наибольшей вероятностью в М. п. рождаются самые лёгкие адроны - , составляющие 70-80 % вторичных частиц. Значительную долю составляют также и (~ 10-20 %) и нуклон-антинуклонные пары (порядка нескольких процентов). Многие из этих частиц возникают от распада рождающихся .

  Вероятность столкновения, сопровождаемого М. п. (эффективное сечение М. п.), при высоких энергиях почти не зависит от энергии сталкивающихся частиц (меняется не более чем на несколько десятков процентов при изменении энергии столкновения в 10 4раз). Приблизительное постоянство сечения М. п. привело к модели «чёрных шариков» для описания процессов столкновения адронов. Согласно этой модели, при каждом сближении адронов высокой энергии на расстояния, меньшие радиуса действия ядерных сил, происходит неупругий процесс множественного рождения частиц; упругое рассеяние при этом носит в основном дифракционный характер (дифракция частиц на «чёрном шарике»). Эта модель сыграла важную роль в развитии теории сильных взаимодействий (в частности, в установлении теоремы Померанчука о равенстве эффективных сечений взаимодействия частиц и античастиц при предельно высоких энергиях). С другой стороны, согласно квантовой теории поля, возможен медленный рост сечения М. п. с увеличением энергии Е, не быстрее, чем ln 2 Е(теорема Фруассара).


  • Страницы:
    1, 2, 3, 4, 5, 6, 7