Большая Советская Энциклопедия (ГА)
ModernLib.Net / Энциклопедии / БСЭ / Большая Советская Энциклопедия (ГА) - Чтение
(стр. 12)
Автор:
|
БСЭ |
Жанр:
|
Энциклопедии |
-
Читать книгу полностью
(2,00 Мб)
- Скачать в формате fb2
(11,00 Мб)
- Скачать в формате doc
(1 Кб)
- Скачать в формате txt
(1 Кб)
- Скачать в формате html
(10,00 Мб)
- Страницы:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54
|
|
В зарубежных социалистических странах Г. п. является молодой отраслью. Проведённые поиски газовых месторождений позволили значительно увеличить изученные запасы газа в Румынии и Венгрии; крупные месторождения природного газа открыты в Польше, растут разведанные запасы газа в Болгарии, Югославии, Чехословакии, добывается газ в ГДР. Рост ресурсов газа позволил повысить добычу и расширить использование его в различных отраслях промышленности и для газификации населённых пунктов. В 1969 добыча природного газа достигла в Румынии 24,1 млрд.
м
3,в Польше 3,7 млрд.
м
3,в Венгрии 3,2 млрд.
м
3.
Значительное место в использовании газа в социалистических странах занимают коммунально-бытовые потребители, вместе с тем всё шире применяют газово-химические, энергетические и др. отрасли промышленности. В социалистических странах продолжается разведка недр, строятся газопроводы и др. сооружения газового хозяйства.
В капиталистических странах Г. п. развивается уже более 70 лет, особенный размах она получила в США, Канаде, Мексике (табл. 2). В общем топливно-энергетическом балансе США газ занимал в 1968 37%.
Открытие крупных газовых месторождений в Северном море создало базу для добычи газа и транспортировки его во многие страны. Из Нидерландов газ поступает по газопроводам в Бельгию, ФРГ и Францию. В Алжире, Ливии, а также на Аляске строятся заводы сжижения природного газа для транспорта его в газовозах ряду стран, где нет или не хватает ресурсов газа (в Японию, Великобританию и др.).
Лит.:Энергетические ресурсы СССР. Топливно-энергетические ресурсы, М., 1968; Боксерман Ю. И., Пути развития новой техники в газовой промышленности СССР, М., 1964: Арский А. К., Арянин А. Н., Промышленность природного газа капиталистических и развивающихся стран, М., 1969.
И. Боксерман
Табл. 1.-Добыча и производство газа в СССР, млрд.
м
3
Годы |
Всего |
В том числе |
природный газ (включая попутный) |
искусственный газ |
1950 |
6,2 |
5,8 |
0,4 |
1955 |
10,4 |
9,0 |
1.4 |
1960 |
47,2 |
45,3 |
1,9 |
1965 |
129,4 |
127,7 |
1,7 |
1970 |
200,0 |
198,0 |
2,0 |
Табл. 2.- Динамика добычи природного газа в капиталистических и развивающихся странах, млн.
м
3.
|
1938 |
1960 |
1967 |
1968 |
Европа |
|
|
|
|
Нидерланды |
- |
360 |
6991 |
14056 |
Италия |
17 |
6447 |
9354 |
10408 |
Франция |
- |
4416 |
8313 |
8626 |
ФРГ |
- |
565 |
4214 |
6347 |
Австрия |
- |
1469 |
1797 |
1629 |
Ближний и Средний Восток |
|
|
|
|
Кувейт |
- |
941 |
1982 |
3249 |
Иран. |
- |
950 |
1466 |
1574 |
Южная Азия |
|
|
|
|
Индонезия |
952 |
2431 |
2776 |
… |
Пакистан |
- |
633 |
2012 |
2230 |
Африка |
|
|
|
|
Ливия |
- |
100
1 |
10200
1 |
… |
Алжир |
- |
7 |
2158 |
2470 |
Северная Америка |
|
|
|
|
США |
66777 |
359673 |
514558 |
547595 |
Канада |
947 |
14521 |
48081 |
52223 |
Мексика
2 |
1109 |
9665 |
16223 |
16336 |
Южная Америка |
|
|
|
|
Венесуэла |
… |
4606 |
7510 |
7754 |
Аргентина |
491 |
1383 |
4793 |
5346 |
1Оценка.
2Включая промышленный газ.
«Газовая промышленность»
«Га'зовая промы'шленность»,ежемесячный производственно-технический журнал, орган министерства газовой промышленности СССР и Научно-технического общества нефтяной и газовой промышленности. Издаётся в Москве. Основан в 1956. Освещает вопросы разведки, разработки и промышленной эксплуатации газовых месторождений, транспорта и хранения газа, газоснабжения городов, использования газа в промышленности, процессов переработки газа. Тираж (1971) 8 тыс. экз.
Газовая резка
Га'зовая ре'зка,то же, что
кислородная резка.
Газовая сварка
Га'зовая сва'рка,процесс сварки с местным расплавлением металла пламенем горючих газов
сварочной горелки.Для повышения температуры пламени применяют смесь горючего газа с технически чистым кислородом. Кислород обычно находится в стальных баллонах под давлением 15
Мн/м
2(150
кгс/см
2)
.В качестве горючего газа применяется преимущественно ацетилен, так как ацетилено-кислородное пламя даёт наиболее высокую температуру: 3100-3200 °С. Водородно-кислородная, бензино-кислородная и др. виды Г. с. имеют незначительное применение.
Ацетилен производят на месте работ разложением карбида кальция водой в
генераторах ацетиленовых
или доставляют в стальных баллонах растворённым в ацетоне. Кислород и ацетилен по шлангам подводятся к сварочной горелке, смешиваются в ней и сгорают на выходе из мундштука горелки, образуя сварочное пламя, которое одновременно оплавляет кромки соединяемых деталей и пруток присадочного металла, создавая сварной шов. Г. с. применяется для стали, чугуна, меди, алюминия, всевозможных сплавов, при толщине свариваемых деталей от 0,1 до 6
мм,реже до 40-50
мм,так как в этих случаях можно использовать более дешёвые и удобные способы сварки.
Широко распространена также наплавка всевозможных деталей. Г. с. мало механизирована и выполняется обычно вручную. Г. с. даёт удовлетворительное качество шва, однако при этом способе сварки нередки случаи коробления свариваемых деталей вследствие нагрева большого объёма металла. Преимущества Г. с.: портативность и невысокая стоимость аппаратуры. К недостаткам Г. с. относятся: высокая стоимость работ и взрывоопасность. Поэтому Г. с. заменяется дуговой
электросваркой.
К. К. Хренов.
Газовая сеть
Га'зовая сеть,система трубопроводов (газопроводов), служащая для транспортировки горючих газов и распределения их между потребителями; основной элемент системы
газоснабжения
населённого пункта.
Городская Г. с. состоит из
газопроводов
различного назначения; узлов редуцирования газов - городских распределительных пунктов (ГРП), городских распределительных станций (ГРС), индивидуальных регуляторов давления, обеспечивающих постоянство давления у приборов; газохранилищ (
газгольдеров
)
,компенсирующих неравномерность суточного потребления газа (главным образом для коммунально-бытовых целей). Г. с. оборудуется приборами измерения давления, устройствами связи, сигнализации, автоматики и запорной арматурой (клапанами, кранами, задвижками, водяными затворами и др.) для отключения отдельных участков сети или зданий при авариях, ремонтных работах и т. д.
В зависимости от назначения различают Г. с.: распределительные, предназначенные для подачи газа от ГРС, ГРП и хранилищ газа к местам потребления, и вводы в здания и сооружения, по которым газ поступает непосредственно к потребителям. Внутри зданий (сооружений) газ распределяется по внутридомовым газопроводам. Газ по городской Г. с. подаётся под определённым избыточным давлением, в зависимости от которого различают: Г. с. низкого давления - до 0,05
кгс/см
2(5
кн/м2); среднего - от 0,05 до 3
кгс/см
2(5-300
кн/м
2); высокого - от 3 до 6
кгс/см
2(300-600
кн/м
2)
и высокого - от 6 до 12
кгс/см
2(600-1200
кн/м
2)
.К Г. с. низкого давления присоединяются жилые и общественные здания, а также мелкие коммунально-бытовые предприятия; сети среднего и высокого (до 6
кгс/см
2) давления служат для питания распределительных газопроводов низкого и среднего давления через общегородские распределительные пункты, а также газопроводов промышленных и крупных коммунально-бытовых предприятий через местные распределительные пункты и газорегуляторные установки; сети высокого (до 12
кгс/см
2) давления предназначенные для подачи газа к хранилищам и крупным промышленным предприятиям.
Для распределения газа применяются системы: одноступенчатые, подающие потребителям газ одного давления (для небольших населённых пунктов); двухступенчатые, подающие газ двух давлений - среднего и низкого, или высокого до 6
кгс/см
2и низкого (в средних городах); трёхступенчатые, подающие газ трёх давлений - высокого до 6
кгс/см
2,среднего и низкого (в больших городах); многоступенчатые, подающие газ четырёх давлений - высокого до 12
кгс/см
2,высокого до 6
кгс /см
2,среднего и низкого (в крупнейших городах). Для трубопроводов Г. с. применяются цельнотянутые и шовные трубы, изготовляемые из малоуглеродистых и низколегированных сталей.
Г. с. населённых мест обычно устраиваются в виде системы замкнутых колец или контуров, что обеспечивает бесперебойность газоснабжения при отключении отдельных участков газопровода. Все городские Г. с., как правило, укладываются в грунт. На территориях промышленных и коммунально-бытовых предприятий применяется преимущественно наземная прокладка газовых сетей. Подземные стальные Г. с., как и магистральные газопроводы, защищаются от почвенной коррозии и блуждающих токов противокоррозионной изоляцией; применяются также электрические методы защиты (катодная, дренажная, протекторная и др.). Диаметры газопроводов определяются гидравлическим расчётом с учётом всех потребителей в часы максимального расхода газа. Глубина заложения городских Г. с., прокладываемых в земле, зависит от уровня промерзания почвы и степени осушки транспортируемого газа. По действующим правилам газопроводы влажного газа должны укладываться ниже средней глубины промерзания грунта, а осушенного газа могут размещаться в зоне мёрзлого грунта на расстоянии не менее 0,8
мот верха трубы до поверхности земли (в связи с необходимостью предохранения газопровода от разрушения транспортной нагрузкой). Внутридомовые Г. с. прокладываются из стальных труб, соединяемых на сварке или резьбе, они состоят из стояков, транспортирующих газ в вертикальном направлении обычно по всей высоте здания, и внутриквартирных газопроводов, подающих газ от стояков к отдельным
газовым приборам.Газовые стояки, как правило, прокладываются в лестничных клетках, коридорах и кухнях; не допускается прокладка стояков в жилых комнатах и санузлах. В местах установки газовых приборов и арматуры применяют фланцевые и резьбовые соединения.
Лит.:Строительные нормы и правила, ч. 2, раздел Г, гл. 13. Газоснабжение, наружные сети и сооружения, М.. 1963: Гордюхин А. И., Городские газовые сети, 2 изд., М., 1962; Справочник по транспорту горючих газов, М., 1962.
П.Б. Майзельс.
Газовая составляющая
Га'зовая составля'ющаямежпланетного вещества, см.
Межпланетная среда.
Газовая съёмка
Га'зовая съёмка,1) метод поисков нефтяных и газовых месторождений, основанный на определении газообразных углеводородов, мигрирующих из нефтегазовых залежей через покрывающие их породы до поверхности земли. Количества этих углеводородов, достигающие поверхностных отложений, невелики, но они являются прямыми признаками наличия нефтяных и газовых залежей на глубине. Проведение Г. с. заключается в отборе проб газа (подпочвенного воздуха) или породы с последующим извлечением из неё газа с глубин 2-3
мили более (10-50
ми глубже). Точки отбора проб располагаются на исследуемой площади по профилям на расстояниях в несколько сотен
мдруг от друга. Полученные пробы газа анализируются на приборах, позволяющих определять метан, этан, пропан и др. углеводороды с чувствительностью до 10
-5-10
-6%. По результатам анализов выявляют "газовые аномалии", т. е. повышенные и закономерно расположенные концентрации углеводородов. Газовая аномалия на исследуемой площади является признаком возможного наличия в толще пород нефтяного или газового месторождения. Метод Г. с. был разработан в СССР В. А. Соколовым (1932).
Лит.:Соколов В. А., Григорьев Г. Г., Методика и результаты газовых геохимических нефтегазопоисковых работ, М., 1962: Соколов В. А., Геохимия газов земной коры и атмосферы, М., 1966; его же, Геохимия природных газов, М., 1971.
2) Метод определения интенсивности выделения метана в горные выработки шахты (см.
Газовый баланс
)
.Г. с. производится отбором и последующим анализом проб воздуха для установления концентрации метана и замера количества проходящего по выработке воздуха. Различают продольную и поперечную Г. с. При продольной Г. с. определяется изменение концентрации и дебита газа по длине выработки, при поперечной - концентрация газа по её поперечному сечению. Повторные Г. с. позволяют измерять интенсивность газовыделения во времени.
Газовая топка
Га'зовая то'пка,топка котла или промышленной печи, оборудованная
газовыми горелками,предназначенными для сжигания газообразного топлива. Преимущество Г. т. - простота обслуживания, отсутствие шлака. Топки котлов большой мощности часто рассчитывают на сжигание двух видов топлива: газ - мазут или уголь - газ, для чего применяются комбинированные газо-мазутные и пыле-газовые горелки. Основным газообразным топливом для котлов является природный газ; в печах используются также доменные, генераторные и др. газы (см.
Камерная топка
)
.
Газовая турбина
Га'зовая турби'на,тепловой двигатель непрерывного действия, в лопаточном аппарате которого энергия сжатого я нагретого газа преобразуется в механическую работу на валу. Нагревание сжатого газа может осуществляться в камере сгорания, ядерном реакторе и др. Первые Г. т. появились в конце 19 в. как часть
газотурбинного двигателя
и по конструктивному выполнению были близки к
паровой турбине.Г. т. представляет собой ряд последовательно расположенных неподвижных лопаточных венцов соплового аппарата и вращающихся венцов рабочего колеса, образующих её проточную часть. Сопловой аппарат в сочетании с рабочим колесом составляет ступень турбины. Ступень состоит из статора, в который входят неподвижные детали (корпус, сопловые лопатки, бандажные кольца), и ротора, представляющего собой совокупность вращающихся частей (рабочие лопатки, диски, вал).
Г. т. классифицируют по направлению газового потока, количеству ступеней, способу использования теплоперепада и способу подвода газа к рабочему колесу. По направлению газового потока различают Г. т. осевые (наиболее распространены) и радиальные, а также диагональные и тангенциальные. В осевых газовых турбинах (
рис.
) поток в меридиональном сечении движется в основном вдоль оси турбины, в радиальных турбинах - перпендикулярно оси. Радиальные турбины могут быть центростремительными и центробежными. В диагональной турбине газ течёт под некоторым углом к оси вращения турбины. Рабочее колесо тангенциальной турбины не имеет лопаток, такие турбины применяются при очень малом расходе газа, например в приборах. Г. т. бывают одноступенчатые и многоступенчатые. Число ступеней определяется назначением турбины, её конструктивной схемой, мощностью, развиваемой одной ступенью, а также срабатываемым перепадом давления. По способу использования располагаемого теплоперепада различают турбины со ступенями скорости, в рабочем колесе которых происходит только поворот потока, без изменения давления (активные турбины), и турбины со ступенями давления, в которых давление уменьшается как в сопловых аппаратах, так и на рабочих лопатках (реактивные турбины). Газ может подводиться к рабочему колесу по части окружности соплового аппарата (парциальные Г. т.) или по полной его окружности.
Процесс преобразования энергии в многоступенчатой турбине состоит из ряда последовательных процессов в отдельных ступенях. Сжатый и подогретый газ с начальной скоростью поступает в межлопаточные каналы соплового аппарата, где в процессе расширения происходит преобразование части располагаемого теплоперепада в кинетическую энергию вытекающей струи. Дальнейшее расширение газа и преобразование теплоперепада в полезную работу происходит в межлопаточных каналах рабочего колеса. Поток газа, действуя на рабочие лопатки, создаёт крутящий момент на валу турбины. При этом абсолютная скорость газа уменьшается. Чем меньше эта скорость, тем большая часть располагаемой энергии газа преобразуется в механическую работу на валу турбины. Рабочие лопатки воспринимают усилия, возникающие как вследствие изменения направления скорости газа, обтекающего их (активное действие потока), так и в результате ускорения потока газа при его относительном движении в межлопаточных каналах (реактивное действие потока).
Совершенство Г. т. характеризуется эффективным кпд, представляющим собой отношение работы, снимаемой с вала, к располагаемой энергии газа перед турбиной. Эффективный кпд современных многоступенчатых турбин достигает 0,92- 0,94.
Большой вклад в развитие Г. т. внесли советские учёные Б. С. Стечкин, Н. Р. Брилинг, В. В. Уваров, Г. С. Жирицкий, К. В. Холщевиков, И. И. Кириллов и др. Значительных успехов в создании Г. т. для стационарных и передвижных газотурбинных установок достигли зарубежные фирмы (швейцарская «Броун-Бовери», в которой работал известный словацкий учёный А. Стодола, и «Зульцер», американская «Дженерал электрик» и др.).
Дальнейшее развитие Г. т. зависит от возможности повышения температуры газа перед турбиной, что связано с созданием жаропрочных материалов и надёжных систем охлаждения лопаток, совершенствования проточной части и др.
Применение Г. т. и литературу см. в статьях
Газотурбинный двигатель,
Авиационная газовая турбина,
Газотурбинная электростанция.
В. С. Бекнев.
Рабочая часть двухступенчатой осевой газовой турбины: 1 - сопловая лопатка 1-й ступени; 2 - рабочее колесо 1-й ступени; 3 - сопловая лопатка 2-й ступени; 4 - рабочее колесо 2-й ступени.
Газовое освещение
Га'зовое освеще'ние,см. в ст.
Освещение.
Газовое отопление
Га'зовое отопле'ние,вид отопления, при котором в качестве топлива используются горючие газы, а отопительные приборы, приспособленные для сжигания газа, устанавливаются непосредственно в обогреваемых помещениях. В систему Г. о. входят также газопроводы, подводящие газ к отопительным приборам, запорно-регулирующая арматура и автоматически действующие приборы безопасности пользования газом (см.
Газоснабжение
)
.
Отопительные приборы Г. о. бывают различных конструкций. Для помещений большого объёма часто применяют инфракрасные газовые излучатели, располагаемые обычно под потолком, в которых пространство, где происходит горение, открыто в помещение. Инфракрасный газовый излучатель представляет собой кожух в виде повёрнутого к полу рефлектора, в нижней части которого помещена насадка из плоских керамических плиток, имеющих большое количество мелких (диаметром до 1,5
мм) отверстий. Горючая смесь (газ с воздухом) подаётся в пространство между кожухом и насадкой, откуда выходит ровным потоком через отверстия, и поджигается запальной свечой. Керамические плитки разогреваются до температуры 700-900 °С, после чего дальнейшее горение газа идёт на раскалённой поверхности насадки, которая и является элементом, излучающим поток тепла в отапливаемую зону помещения. При поверхностном (беспламенном) горении происходит более полное сжигание газа, благодаря чему окись углерода в продуктах сгорания почти полностью отсутствует. Продукты сгорания удаляются из помещения вместе с воздухом вентиляционными устройствами.
Лучшими в гигиеническом отношении являются газовые отопительные приборы с отводом продуктов сгорания в атмосферу, например камины, а также приборы с изолированными от помещения газоходом и топливником, к которому необходимый для горения воздух подводится снаружи. Эти приборы устанавливаются обычно у наружных стен под окнами. Они состоят из корпуса-нагревателя с топливником, где сжигается газ, и надеваемого на него защитного кожуха, имеющего отверстия для прохода подогретого воздуха в помещение. Корпус-нагреватель сообщается с наружным воздухом двумя проходящими через стену каналами: по одному к топливнику подводится наружный воздух, а по другому - отводятся наружу прошедшие через корпус-нагреватель и отдавшие тепло продукты сгорания.
Г. о. в СССР применяется главным образом в некоторых производственных, а также в общественных зданиях с временным пребыванием людей. Вместе с тем газ широко применяется для отопления как топливо в котлах (реже - воздухоподогревателях) систем водяного, парового и воздушного отопления. Целесообразность широкого использования газа для отопления промышленных и коммунально-бытовых предприятий, а также в котельных централизованного теплоснабжения, особенно в крупных городах, в значительной мере определяется тем, что продукты его сгорания почти не загрязняют воздушный бассейна города, подача газа к потребителям происходит по трубопроводам, не загружается транспорт. Внедрение автоматики и дистанционного управления при сжигании газа создаёт благоприятные условия для безопасности его применения. Котельные, работающие на газовом топливе, могут располагаться в верхнем этаже отапливаемого здания. Газ может использоваться также в комбинированных установках, которые обеспечивают зимой отопление зданий, а летом - их охлаждение.
Лит.:Отопление и вентиляция, 3 изд., ч. 1, М., 1964.
И.Ф. Ливчак.
Газовое хранилище
Га'зовое храни'лище,природный или искусственный резервуар для хранения газа. Различают Г. х. наземные (см.
Газгольдер
) и подземные. Основное промышленное значение имеют подземные Г. х., способные вмещать сотни млн.
м
3(иногда млрд.
м
3) газа. Они менее опасны и во много раз экономически эффективнее, чем наземные. Удельный расход металла на их сооружение в 20-25 раз меньше. В отличие от газгольдеров, предназначенных для сглаживания суточной неравномерности потребления газа, подземные Г. х. обеспечивают сглаживание сезонной неравномерности. В зиму 1968-69 из подземных Г. х. в Москву в сутки подавалось до 20 млн.
м
3природного газа, а из газгольдеров - только 1 млн.
м
3.Летом, когда резко уменьшается расход газа, особенно за счёт отопления, его накапливают в Г. х., а зимой, когда потребность в газе резко возрастает, газ из хранилищ отбирают (
рис.
). Кроме того, подземные Г., х. служат аварийным резервом топлива и химического сырья.
Газотранспортная система, рассчитанная на максимальную потребность в газе, на протяжении года будет не загружена, если же исходить из минимальной подачи, то город в отдельные месяцы не будет полностью обеспечен газом. Поэтому газотранспортную систему сооружают исходя из средней её производительности, а вблизи крупных потребителей газа создают Г. х. Сезонную неравномерность потребления газа частично выравнивают с помощью т. н. буферных потребителей, которые летом переводятся на газ, а зимой используют др. вид топлива (обычно мазут или уголь).
Подземные Г. х. сооружаются двух типов: в пористых породах и в полостях горных пород. К первому типу относятся хранилища в истощённых нефтяных и газовых месторождениях, а также в водоносных пластах. В них природный газ обычно хранится в газообразном состоянии. Ко второму типу относятся хранилища, созданные в заброшенных шахтах, старых туннелях, в пещерах, а также в специальных горных выработках, которые сооружаются в плотных горных породах (известняках, гранитах, глинах, каменной соли и др.). В полостях горных пород газы хранятся преимущественно в сжиженном состоянии при температуре окружающей среды и при давлении порядка 0,8-1,0
Мн/м
2(8-10
кгс/см
2)
и более. Обычно это пропан, бутан и их смеси. С начала 60-х гг. применяется в промышленных масштабах подземное и наземное хранение природного газа в жидком состоянии при атмосферном давлении и низкой температуре (т. н. изотермические хранилища).
Наиболее дёшевы и удобны Г. х., созданные в истощённых нефтяных и газовых залежах. Приспособление этих ёмкостей под хранилища сводится к установке дополнительного оборудования, ремонту скважин, прокладке необходимых коммуникаций. В тех районах, где нужны резервы газа, а истощённые нефтяные и газовые залежи отсутствуют, Г. х. устраивают в водоносных пластах. Г. х. в водоносном пласте представляет собой искусственно созданную газовую залежь, которая эксплуатируется циклически. Для устройства такой залежи необходимо, чтобы водоносный пласт был достаточно порист, проницаем, имел бы ловушку для газа и допускал оттеснение воды из ловушки на периферию пласта. Обычно ловушка - это куполовидное поднятие пласта, перекрытое непроницаемыми породами, чаще всего глинами. Газ, закачанный в ловушку, оттесняет из неё воду и размещается над водой. Плотные отложения, образуя кровлю над пластом-коллектором, не позволяют газу просочиться вверх. Пластовая вода удерживает газ от ухода его в стороны и вниз. При создании Г. х. в водоносном пласте основная трудность состоит в том, чтобы выяснить, действительно ли разведываемая часть пласта представляет собой ловушку для газа. Кроме того, необходимо в условиях обычно значит, неоднородности пласта наиболее полно вытеснить из него воду, не допуская при этом ухода газа за пределы ловушки. Создание Г. х. в водоносном пласте продолжается в среднем 3- 8 лет и обходится в несколько млн. руб. Срок окупаемости капитальных затрат составляет 2-3 года. Г. х. в водоносных пластах устраивают обычно на глубине от 200- 300 до 1000-1200
м.
В СССР на основе теоретических работ И. А. Чарного разработано и впервые в мире осуществлено в промышленных масштабах вблизи Ленинграда (Гатчинское подземное Г. х.) хранение газа в горизонтальных и пологопадающих водоносных пластах (1963). Этот метод основан на том, что газовый объём, находящийся в водонасыщенной пористой среде (при достаточно больших его размерах), расплывается в горизонтальном пласте очень медленно и утечки не имеют существенного значения. Хранение газа без ловушек представляет большой практический интерес, поскольку во многих газопотребляющих районах отсутствуют благоприятные условия для создания водоносных газохранилищ обычного типа.
Из Г. х. в полостях горных пород наибольшее значение имеют хранилища, сооруженные в отложениях каменной соли. Создание такой ёмкости в 10-20 раз дешевле, чем в др. горных породах. Ёмкость в каменной соли создаётся обычно путём выщелачивания её водой через скважины, которые используются затем при эксплуатации хранилища. Объём одной каверны достигает 100-150 тыс.
м
3.Размыв такой каверны продолжается 3-4 года. Хранилище в соли сооружают на глубине от 80-100 до 1000
ми более. Для хранения природного газа целесообразны глубокие хранилища, т. к. в них можно поддерживать более высокие давления и, следовательно, содержать в заданном объёме больше газа.
Особое место занимают изотермические подземные Г. х. (например, для сжиженного метана), которые представляют собой котлован с замороженными стенками. Верхняя часть резервуара укреплена бетонным кольцом, на которое опирается стальная крыша с теплоизоляционным материалом. Для сооружения изотермического хранилища по его периметру бурится кольцевая батарея скважин, с помощью которых грунт вокруг будущего хранилища на период строительства замораживается. После сооружения ёмкости и заполнения её сжиженным метаном надобность в морозильных скважинах отпадает. Сжиженный метан хранится при атмосферном давлении и температуре - 161, - 162 °С. Толщина замороженных грунтовых стенок резервуара медленно растет и достигает 10-15
м.Потери тепла со временем уменьшаются.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54
|
|