Большая Советская Энциклопедия (ФТ)
Фтабатэй Симэй
Фтаба'тэй Симэ'й(псевдоним; настоящее имя — Хасэгава Тацуноскэ) (28.2.1864, Токио, — 10.5.1909, Сингапур), японский писатель. Зачинатель япон. критического реализма и современного литературного языка. Учился на рус. отделении Токийского института иностранных языков. Большое влияние на творчество Ф. С. оказала рус. литература. В статье «Общая теория романа» (1886) изложены воззрения Ф. С. на сущность искусства, на реализм как творческий метод литературы. В романе «Плывущее облако» (1887—88) нарисован образ «лишнего человека», разочарованного в новой буржуазной действительности. Известны также романы «Его облик» (1906), «Обыкновенный человек» (1907). Перевёл сочинения Н. В. Гоголя, И. С. Тургенева, И. А. Гончарова, В. Г. Белинского, Н. А. Добролюбова, М. Горького.
Соч.: Дзэнсю, т. 1—8, Токио, 1937—38; в рус. пер. — Мои принципы художественного перевода, в кн.: Восточный альманах, в. 1, М., 1957.
Лит.:Карлина Р., Творческие связи Хасэгава Фтабатэя с русской литературой, в кн.: Японская литература. Исследования и материалы, М., 1959; Рехо К., Достоевский и японский реалистический роман конца XIX в., «Народы Азии и Африки», 1972, № 1; Накамура Мицуо, Фтабатэй Симэй, Токио, 1953.
К. Рехо.
Фтабатэй Симэй.
Фталазол
Фталазо'л,лекарственное средство из группы
. Благодаря медленному всасыванию из желудочно-кишечного тракта концентрируется в толстом кишечнике, где расщепляется с высвобождением активной (сульфаниламидной) части молекулы. Назначают в порошках и таблетках при дизентерии, колитах, гастроэнтеритах, для профилактики гнойных осложнений при операциях на кишечнике.
Фталан
Фтала'н,фольпет, N-трихлорметилтиофталимид,
, применяется для опрыскивания против грибных болезней плодовых культур (в т. ч. ягодных и винограда), картофеля, томата, а также для
семян. Выпускается в виде 50%-ного и 70%-ного препарата. Норма расхода 2—6
кг/га. Малотоксичен для человека и животных.
Фталевые кислоты
Фта'левые кисло'ты,бензолдикарбоновые кислоты, C
6H
4(COOH)
2, дикарбоновые кислоты ароматического ряда:
(или просто фталевая),
(изофталевая) и
Ф. к. (терефталевая); бесцветные кристаллы,
t
пл200°С (с разложением), 348°С и 425°С (в запаянном капилляре) соответственно.
о-Ф. к. получают и используют главным образом в виде её ангидрида (см.
). Практическое значение имеют сложные эфиры
о-Ф. к. C
6H
4(COOK)
2— высококипящие жидкости, применяемые как пластификаторы поливинилхлорида, полистирола и многих др. полимеров (см.
,
), в качестве манометрических жидкостей,
, например диметилфталат; динитрил
о-Ф. к. (фталонитрил) используют в производстве фталоцианиновых красителей и полифталоцианинов. Практическое значение имеют циклический имид (
), дихлорангидрид (фталилхлорид) и
. Широко применяются полиэфирные смолы на основе
о-Ф. к. и многоатомных спиртов, например глицерина и пентаэритрита, называемых соответственно глифталевыми и пентафталевыми смолами (см.
).
м-Ф. к. и
п-Ф. к. получают окислением
м-и
п
. На их основе в промышленности производят ароматические
, например поли-
м-фениленизофталамид, и
. Взаимодействием
п-Ф. к. или её диметилового эфира с этиленгликолем получают полиэтилентерефталат, используемый в производстве
.
В. Н. Фросин.
Фталевый ангидрид
Фта'левый ангидри'д,ангидридофталевой кислоты, бесцветные кристаллы, практически нерастворимые в воде, умеренно растворимые в органических растворителях,
t
пл130,8 °С,
t
kип284,5 °С.
Ф. а. — важный исходный продукт в производстве различных производных
; сложных эфиров,
, фталонитрила и др. Конденсацией Ф. а. с фенолами получают красители, например
. Значительное количество Ф. а. используется в производстве глифталевых и пентафталевых смол (см.
), промежуточных продуктов и красителей — производных флуоресцеина, родамина и антрахинона; лекарственных средств, например
и фенилина (применяется при повышенной свёртываемости крови). Ф. а. получают каталитическим окислением нафталина, а также оксилола воздухом в газовой фазе.
Фталимид
Фталими'д,имид
о-фталевой кислоты, бесцветные кристаллы, ограниченно растворимые в воде и спирте,
t
пл238°С.
Обладая свойствами слабой кислоты, Ф. образует, например с растворами щелочей, металлические производные (C
8H
4O
2NK и др.), используемые для синтеза первичных аминов и a-аминокислот (
), в производстве
. N-Галогенозамещённые Ф., получаемые взаимодействием Ф. с хлором и бромом (например, C
8H
4O
2NBr), используют в лабораторной практике для галогенирования органических соединений. Получают Ф. из
и карбоната аммония или аммиака.
Фталофос
Фталофо'с,фосмет, О,О-диметил-(N-фталимидометил)-дитиофосфат, химический препарат для борьбы с вредителями плодовых, ягодных и полевых культур. Выпускается в виде концентрированных эмульсий или смачивающегося порошка. Норма расхода 0,5—3
кг/га. Высокотоксичен для человека и животных.
Фталоцианиновые красители
Фталоциани'новые краси'тели,группа красителей — производные тетрабензотетраазопорфирина (фталоцианина) и его комплексные соединения с металлами. Из Ф. к. наиболее широко применяется фталоцианин меди —
голубого цвета.
Важное значение для использования Ф. к. имеет их полиморфизм: так, например, для I известны a-, b- и g-модификации, существенно различающиеся по цвету и устойчивости в органических растворителях.
Получают I нагреванием при 160—200 °С фталевого ангидрида с мочевиной, хлоридом меди (CuCl) и катализатором (например, As
2O
5) в среде трихлорбензола, нитробензола или нагреванием фталодинитрила C
6H
4(CN)
2с CuCl; в последнем случае обычно образуется частично хлорированный голубой пигмент Затем для получения a- и g-форм I растворяют и переосаждают соответственно из 98 и 60%-ной серной кислоты, а для получения b-формы I механически измельчают в присутствии органических растворителей и хлорида или сульфата натрия.
Ф. к., содержащие 14—16 атомов хлора в бензольных остатках (пигмент ярко-зелёного цвета), получают хлорированием I. Растворимые в воде прямые Ф. к. получают сульфированием I.
бирюзового цвета синтезируют, действуя на I хлорсульфоновой кислотой и тионилхлоридом, а затем, превращая полученный тетрасульфохлорид в сульфамид, — взаимодействием с ароматическими аминами, содержащими активные группы. Водорастворимые Ф. к., так называемые алцианы, или цианалы, представляющие собой изотиурониевые соли I, содержат 1—3 группы
Их получают действием на I сначала параформальдегида и соляной кислоты, а затем тетраметилтиомочевины; при нанесении на ткань эти Ф. к. после обработки паром образуют в порах волокна пигмент. Другой метод получения Ф. к. в процессе крашения — взаимодействие 1-амино-3-иминоизоиндолина (фталоцианоген, или фталоген II) и солей меди в присутствии органических растворителей; прочный пигмент образуется при нагревании пропитанной этой смесью ткани до 120—150 °С.
II
Нерастворимые в воде Ф. к. широко используются как пигменты в производстве полиграфических красок, пластмасс, резины и др.; водорастворимые (прямые, активные, сернистые и др.) — для крашения тканей.
Центральные фрагменты Ф. к. и биологических пигментов —
и
имеют сходное строение.
Лит.:Чекалин М. А., Пассет Б. В., Иоффе Б. А., Технология органических красителей и промежуточных продуктов, [Л.], 1972.
М. А. Чекалин.
Фтивазид
Фтивази'д,лекарственный препарат из группы
; оказывает избирательное бактериостатическое действие на микобактерии туберкулёза. Применяется внутрь в порошках и таблетках при различных формах туберкулёза.
Фтизиатрия
Фтизиатри'я(от греч. phthнsis — истощение, чахотка и iatrйia — лечение), раздел медицины, изучающий причины, механизмы развития, клинико-морфологические проявления, лечение, эпидемиологию и профилактику туберкулёза. В СССР — самостоятельная научно-практическая дисциплина, выделившаяся из
. Организация государственных лечебно-профилактических и научно-исследовательских учреждений, являвшихся и организационно-методическими центрами борьбы с туберкулёзом, была начата ещё в 1917. Она привела к созданию сети противотуберкулёзных диспансеров, санаториев, больниц и ряда научно-исследовательских институтов, занимающихся совершенствованием диагностики, профилактики и лечения различных форм туберкулёза, а также разработкой теоретических основ Ф. Специальные разделы Ф.: фтизиохирургия, фтизиопедиатрия, фтизиоурология и др. Современная Ф. применяет комплекс диагностических методов: клинических, рентгенологических, эндоскопических, биохимических, бактерио- и иммунологических и др. Традиционными для Ф. были лечение гигиено-диетическим и санаторным режимом, искусственым
,
. Во 2-й половине 20 в. они дополнены
, которые обладают специфическим действием на возбудителя болезни и стали основным методом её терапии, а также хирургическое лечением туберкулёза различных органов (главным образом лёгочного, костно-суставного, урогенитального). Успехи Ф. в области профилактики туберкулёза основаны как на улучшении экономических и санитарно-гигиенических условий жизни населения, так и на проведении специальных предупредительных мер (иммунизация
БЦЖ,
и т. д.).
В СССР в 1976 было более 23 тыс. фтизиатров; преподавание Ф. и подготовка фтизиатров (в интернатуре, клинической ординатуре и аспирантуре) осуществляются на соответствующих кафедрах медицинских институтов и институтов усовершенствования врачей; фтизиатров готовят также на базах институтов туберкулёза и крупных лечебно-профилактических учреждений. Всесоюзное научное общество фтизиатров (основано в 1947) входит в Международный противотуберкулёзный союз (основан в 1920), который издаёт “Bulletin of the International Union Against Tuberculosis” (P., с 1924). Международные конференции проводятся с 1888; 21-я конференция проходила в Москве (1971). В СССР издаётся журнал “Проблемы туберкулёза” (с 1923); отдельные вопросы Ф. освещают многие клинические журналы. За рубежом проблемы Ф. освещают преимущественно журналы, посвященные болезням органов дыхания (см. в ст.
).
Ф. В. Шебанов.
Лит.см. при ст.
.
Фтор
Фтор(лат. Fluorum), F, химический элемент VII группы периодической системы Менделеева, относится к
, атомный номер 9, атомная масса 18,998403; при нормальных условиях (0 °С; 0,1
Мн/м
2
,
или 1
кгс/см
2) — газ бледно-жёлтого цвета с резким запахом.
Природный Ф. состоит из одного стабильного изотопа
19F. Искусственно получены пять радиоактивных изотопов:
16F с периодом полураспада
Т
1
/2< 1
сек,
17F (
T
1/2= 70
сек),
18F (
T
1/2= 111
мин),
20F (
T
1/2= 11,4
сек),
21F (
T
1
/2= 5
сек).
Историческая справка. Первое соединение Ф. — флюорит (плавиковый шпат) CaF
2— описано в конце 15 в. под название «флюор» (от лат. fluo — теку, по свойству CaFa
2делать жидкотекучими вязкие шлаки металлургических производств). В 1771 К.
получил плавиковую кислоту. Свободный Ф. выделил А.
в 1886 электролизом жидкого безводного фтористого водорода, содержащего примесь кислого фторида калия KHF
3.
Химия Ф. начала развиваться с 1930-х гг., особенно быстро — в годы 2-й мировой войны 1939 — 45 и после неё в связи с потребностями атомной промышленности и ракетной техники. Название «Ф.» (от греч. phthуros — разрушение, гибель), предложенное А.
в 1810, употребляется только в рус. языке; во многих странах принято название «флюор».
Распространение в природе. Среднее содержание Ф. в земной коре (кларк) 6,25·10
-2% по массе; в кислых изверженных породах (гранитах) оно составляет 8·10
-2%, в основных — 3,7·10
-2%, в ультраосновных — 1·10
-2%. Ф. присутствует в вулканических газах и термальных водах. Важнейшие соединения Ф. —
,
и топаз (см.
). Всего известно 86 фторсодержащих минералов. Соединения Ф. находятся также в
,
и др. Ф. — важный
. В истории Земли источником поступления Ф. в биосферу были продукты извержения вулканов (газы и др.).
Физические и химические свойства. Газообразный Ф. имеет плотность 1,693
г/л(0°С и 0,1
Мн/м
2, или 1
кгс/см
2), жидкий — 1,5127
г/см
3(при температуре кипения);
t
пл— 219,61°С;
t
kип— 188,13°С. Молекула Ф. состоит из двух атомов (F
2); при 1000°С 50% молекул диссоциирует, энергия диссоциации около 155 ± 4
кдж/моль(37 ± 1
ккал/моль). Ф. плохо растворим в жидком фтористом водороде; растворимость 2,5·10
-3
гв 100
гHF при —70°С и 0,4·10
-3при —20°С; в жидком виде неограниченно растворим в жидком кислороде и озоне. Конфигурация внешних электронов атома Ф. 2
s
22
p
2. В соединениях проявляет степень окисления — 1. Ковалентный радиус атома 0,72Е, ионный радиус 1,33Е. Сродство к электрону 3,62
эв, энергия ионизации (F ® F
+) 17,418
эв. Высокими значениями сродства к электрону и энергии ионизации объясняется сильная электроотрицательность атома Ф., наибольшая среди всех др. элементов. Высокая реакционная способность Ф. обусловливает экзотермичность фторирования, которая, в свою очередь, определяется аномально малой величиной энергии диссоциации молекулы Ф. и большими величинами энергии связей атома Ф. с др. атомами. Прямое фторирование имеет цепной механизм и легко может перейти в горение и взрыв. Ф. реагирует со всеми элементами, кроме гелия, неона и аргона. С кислородом взаимодействует в тлеющем разряде, образуя при низких температурах
O
2F
2, O
3F
2и др. Реакции Ф. с др. галогенами экзотермичны, в результате образуются
. Хлор взаимодействует с Ф. при нагревании до 200—250°С, давая монофтористый хлор CIF и трёхфтористый хлор ClF
3. Известен также CIF
5, получаемый фторированием ClF
3при высокой температуре и давлении 25
Мн/м
2(250
кгс/см
2). Бром и йод воспламеняются в атмосфере Ф. при обычной температуре, при этом могут быть получены BrF
3, BrF
5, IF
5, IF
7. Ф. непосредственно реагирует с криптоном, ксеноном и радоном, образуя соответствующие фториды (например, XeF
4, XeF
6, KrF
2). Известны также оксифториды ксенона.
Взаимодействие Ф. с серой сопровождается выделением тепла и приводит к образованию многочисленных
. Селен и теллур образуют высшие фториды SeF
6TeF
6. Ф. с водородом реагируют с воспламенением; при этом образуется
. Это радикальная реакция с разветвлением цепей: HF* + H
2= HF + H
2*; H
2* + F
2= HF + Н + F (где HF* и H
2* — молекулы в колебательно-возбуждённом состоянии); реакция используется в химических лазерах. Ф. с азотом реагирует лишь в электрическом разряде (см.
). Древесный уголь при взаимодействии с Ф. воспламеняется при обычной температуре; графит реагирует с ним при сильном нагревании, при этом возможно образование твёрдого фтористого графита (CF)
xили газообразных перфторуглеродов CF
4, C
2F
6и др. С бором, кремнием, фосфором, мышьяком Ф. взаимодействует на холоду, образуя соответствующие фториды. Ф. энергично соединяется с большинством металлов; щелочные и щёлочноземельные металлы воспламеняются в атмосфере Ф. на холоду, Bi, Sn, Ti, Mo, W — при незначительном нагревании, Hg, Pb, U, V реагируют с Ф. при комнатной температуре, Pt — при температуре темно-красного каления. При взаимодействии металлов с Ф. образуются, как правило, высшие фториды, например UF
6, MoF
6, HgF
2. Некоторые металлы (Fe, Cu, Al, Ni, Mg, Zn) реагируют с Ф. с образованием защитной плёнки фторидов, препятствующей дальнейшей реакции.
При взаимодействии Ф. с окислами металлов на холоду образуются фториды металлов и кислород; возможно также образование оксифторидов металлов (например, MoO
2F
2). Окислы неметаллов либо присоединяют Ф., например SO
2+ F
2= SO
2F
2, либо кислород в них замещается на Ф., например SiO
2+ 2F
2= SiF
4+ O
2. Стекло очень медленно реагирует с Ф.; в присутствии воды реакция идёт быстро. Вода взаимодействует с Ф.: 2H
2O + 2F
2= 4HF + O
2; при этом образуется также OF
2и перекись водорода H
2O
2. Окислы азота NO и NO
2легко присоединяют Ф. с образованием соответственно фтористого нитрозила FNO и фтористого нитрила FNO
2. Окись углерода присоединяет Ф. при нагревании с образованием фтористого карбонила: CO + F
2= COF
2.
Гидроокиси металлов реагируют с Ф., образуя фторид металла и кислород, например 2Ba(OH)
2+ 2F
2= 2BaF
2+ 2H
2O + O
2. Водные растворы NaOH и KOH реагируют с Ф. при 0°С с образованием OF
2.
Галогениды металлов или неметаллов взаимодействуют с Ф. на холоду, причём Ф. замещает все галогены, Легко фторируются сульфиды, нитриды и карбиды. Гидриды металлов образуют с Ф. на холоду фторид металла и HF; аммиак (в парах) — N
2и HF. Ф. замещает водород в кислотах или металлы в их солях, например HNO
3(или NaNO
3) + F
2® FNO
3+ HF (или NaF); в более жёстких условиях Ф. вытесняет кислород из этих соединений, образуя сульфурилфторид, например Na
2SO
4+ 2F
2= 2NaF + SO
2F
2+ O
2. Карбонаты щелочных и щёлочноземельных металлов реагируют с Ф. при обычной температуре; при этом получаются соответствующий фторид, CO
2и O
2.
Ф. энергично реагирует с органическими веществами (см.
).
Получение. Источником для производства Ф. служит фтористый водород, получающийся в основном либо при действии серной кислоты H
2SO
4на флюорит CaF
2, либо при переработке апатитов и фосфоритов. Производство Ф. осуществляется электролизом расплава кислого фторида калия KF·(1,8—2,0)HF, который образуется при насыщении расплава KF·HF фтористым водородом до содержания 40—41% HF. Материалом для электролизёра обычно служит сталь; электроды — угольный анод и стальной катод. Электролиз ведётся при 95—100°С и напряжении 9—11
в; выход Ф. по току достигает 90—95%. Получающийся Ф. содержит до 5% HF, который удаляется вымораживанием с последующим поглощением фторидом натрия. Ф. хранят в газообразном состоянии (под давлением) и в жидком виде (при охлаждении жидким азотом) в аппаратах из никеля и сплавов на его основе (
), из меди, алюминия и его сплавов, латуни, нержавеющей стали.
Применение. Газообразный Ф. служит для фторирования UF
4, в UF
6, применяемого для
урана, а также для получения трёхфтористого хлора ClF
3(фторирующий агент), шестифтористой серы SF
6(газообразный изолятор в электротехнической промышленности), фторидов металлов (например, W и V). Жидкий Ф. — окислитель ракетных топлив.
Широкое применение получили многочисленные соединения Ф. —
,
,
, фторсульфоновая кислота (растворитель, катализатор, реагент для получения органических соединений, содержащих группу — SO
2F), BF
3(катализатор), фторорганические соединения и др.
Техника безопасности. Ф. токсичен, предельно допустимая концентрация его в воздухе примерно 2·10
-4
мг/л, а предельно допустимая концентрация при экспозиции не более 1
чсоставляет 1,5·10
-3
мг/л.
А. В. Панкратов.
Фтор в организме. Ф. постоянно входит в состав животных и растительных тканей; микроэлемент. В виде неорганических соединений содержится главным образом в костях животных и человека — 100—300
мг/кг; особенно много Ф. в зубах. Кости морских животных богаче Ф. по сравнению с костями наземных. Поступает в организм животных и человека преимущественно с питьевой водой, оптимальное содержание Ф. в которой 1—1,5
мг/л. При недостатке Ф. у человека развивается
, при повышенном поступлении —
. Высокие концентрации ионов Ф. опасны ввиду их способности к ингибированию ряда ферментативных реакций, а также к связыванию важных в биологическом отношении элементов (Р, Ca, Mg и др.), нарушающему их баланс в организме. Органические производные Ф. обнаружены только в некоторых растениях (например, в южноафриканском Dichapetalum cymosum). Основные из них — производные фторуксусной кислоты, токсичные как для др. растений, так и для животных. Биологическая роль Ф. изучена недостаточно. Установлена связь обмена Ф. с образованием костной ткани скелета и особенно зубов. Необходимость Ф. для растений не доказана.
В. Р. Полищук.
Отравления Ф. возможны у работающих в химической промышленности, при синтезе фторсодержащих соединений и производстве фосфорных удобрений. Ф. раздражает дыхательные пути, вызывает ожоги кожи. При остром отравлении возникают раздражение слизистых оболочек гортани и бронхов, глаз, слюнотечение, носовые кровотечения; в тяжёлых случаях — отёк лёгких, поражение центрльной нервной системы и др.; при хроническом — конъюнктивит, бронхит, пневмония, пневмосклероз, флюороз. Характерно поражение кожи типа экземы. Первая помощь: промывание глаз водой, при ожогах кожи — орошение 70%-ным спиртом; при ингаляционном отравлении — вдыхание кислорода. Профилактика: соблюдение правил техники безопасности, ношение специальной одежды, регулярные медицинские осмотры, включение в пищевой рацион кальция, витаминов. Препараты, содержащие Ф., применяют в медицинской практике в качестве противоопухолевых (5-фторурацил, фторафур, фторбензотэф), нейролептических (трифлуперидол, или триседил, фторфеназин, трифтазин и др.), антидепрессивных (фторацизин), наркотических (фторотан) и др. средств.
Лит.:Рысс И. Г., Химия фтора и его неорганических соединений, М., 1956; Фтор и его соединения, пер. с англ., т. 1—2, М., 1953—56; Профессиональные болезни, 3 изд., М., 1973.
Фториды
Фтори'ды,соединения фтора с другими элементами. Ф. элементов I и II групп преиодической системы Менделеева — твердые вещества с ионной связью элемент — фтор; Ф. большинства элементов VI—VII групп — газы с ковалентной связью элемент — фтор; соединения, содержащие связь C—F, образуют многочисленный класс
; высшие Ф. многих металлов (U, V, Mo, W, Re и др.) — летучие вещества. Ф. встречаются в природе (см.
). По химическим свойствам Ф. галогенов, инертных газов, кислорода и азота, а также многих др. элементов в высших степенях окисления (например, PtF
5, CoF
3, AgF
2) — окислители; Ф. мышьяка, сурьмы, бора — сильные льюисовские кислоты (см.
).
Получить Ф. можно взаимодействием фтора с элементами, действием фтористого водорода на металлы и другими способами.
Широкое применение находят фтористый водород, фториды кислорода, фториды азота. Ф. хлора ClF
3и ClF
5— окислители ракетных топлив; кроме того, ClF
3служит фторирующим агентом для получения гексафторида урана UF
6, применяемого в атомной промышленности для изотопов разделения урана; летучие Ф. металлов используются для нанесения металлических покрытий. Ф. лития, магния, кальция, стронция, бария и др. металллов применяют в качестве сырья для производства оптических стёкол. См. также
.
Лит.см. при ст.
.
А. В. Пакратов.
Фториды азота
Фтори'ды азо'та,неорганические соединения, содержащие связь N—F, например трифторид азота NF
3, тетрафторгидразин N
2F
4, дифторамин NF
2H, фтористый нитрозил FNO и др. Ф. а. — бесцветные газы со специфическим запахом. При нагревании разлагаются на элементы или трифторид азота и азот (за исключением NF
3и FNO). Проявляют свойства сильных окислителей. С органическими соединениями некоторые Ф. а. образуют многочисленные органические вещества, содержащие группы —NF
2и —NONF. Особенность Ф. а. состоит в том, что при взаимодействии с сильными льюисовскими кислотами (см.
) они образуют соли с фторазотными катионами
,
,
, F
2NO
+.
Трифторид азота, NF
3— газ;
t
пл— 208,5°С,
t
kип— 129,1°С. Окислительная способность проявляется при высоких температурах. Превращается в тетрафторгидразин при повышенных температурах и в присутствии меди, железа, ртути или угля. Получается электролизом расплава дифторида аммония или фторированием азотсодержащих веществ. Применяется в производстве тетрафторгидразина.
Тетрафторгидразин, N
2F
4— газ;
t
пл— 161,5°С,
t
kип— 74,2°С. Способен к диссоциации: N
2F
4Ы 2NF
2. При 150°С и давлении 0,1
Мн/м
2(1
кгс/см
2) степень диссоциации 0,2. Диссоциация N
2F
4обусловливает его дифтораминирующее действие, которое проявляется, например, в присоединении к олефинам:
. Тетрафторгидразин получается конверсией трифторида азота над углём (промышленный метод), разложением NF
2H или окислением его растворов. Применяется для синтеза органических дифтораминосоединений.
Дифторамин, NF
2H — газ;
t
пл— 116°С,
t
kип— 23°С. Взрывается при ударе (особенно в жидком и твёрдом состояниях). Проявляет амфотерные свойства. В реакциях действует как дифтораминирующий агент. Получается действием серной кислоты на дифтораминомочевину (продукт фторирования мочевины) или на трифенилметил дифторамин, синтезируемый из N
2F
4и трифенилметилхлорида в присутствии ртути. Применяется для синтеза органических дифтораминосоединений.
Лит.:Панкратов А. В., Химия фторидов азота, М., 1973.
А. В. Панкратов.
Фториды галогенов
Фтори'ды галоге'нов,соединения фтора с др. галогенами. Известны следующие Ф. г.: CIF, CIF
3, CIF
5, BrF, BrF
3, BrF
5, IF, IF
5и IF
7. Подробно см. в ст.
.
Фториды кислорода
Фтори'ды кислоро'да,соединения, содержащие связь О—F, например дифторид OF
2, монофторид (диоксофторид) O
2F
2, нитрат фтора FNO
3, перхлорат фтора FClO
4. Фтор с кислородом образует в тлеющем разряде смесь стабильных радикалов F—O—O и атомов фтора; при конденсации этой смеси при —96°С образуются высшие фториды кислорода — O
2F
2, O
3F
2и др., стабильные лишь при низких температурах.
Все Ф. к. обладают сильной окислительной способностью.
Дифторид кислорода, OF
2— бесцветный газ с резким специфическим запахом, сильно токсичен; плотность 1,521
г/см
3при — 145°С,
t
пл— 224°С,
t
kип— 145°С. OFa медленно разлагается на элементы при температуре около 200°С. Чистый дифторид кислорода не взрывается. Слабо растворяется в воде, подвергаясь гидролизу. Жидкий OF
2неограниченно растворим в жидких фторе, кислороде и озоне. По химическим свойствам OF
2— сильный окислитель; он фторирует металлы при слабом нагревании; с водой, водородом, галогенами реагирует со взрывом при инициировании искрой или при нагревании. OF
2получается фторированием водного раствора едких натра или кали: 2F
2+ 2NaOH = OF
2+ 2NaF + H
2O, а также электролизом водного раствора HF.
Монофторид кислорода, диоксофторид, оксид фтора, O
2F
2— соединение нестабильно. При взаимодействии с льюисовскими кислотами (см.
) образует соли диоксигенильного катиона O
2
+, например: O
2F
2+ SbF
5= O
2SbF
6+
1/
2F
2. Получают из смеси фтора с кислородом в тлеющем разряде при температуре — 196°С. Применяют в лаборатории как сильный фторирующий и окисляющий агент.
Лит.см. при ст.
.
А. В. Панкратов.
Фториды природные
Фтори'ды приро'дные,класс минералов, природные соединения элементов Na, К, Ca, Mg, Al, редкоземельных элементов (TR), реже Cs, Sr, Pb, Bi, В с фтором. Известно около 35 Ф. п. Различают простые Ф. п.: группа виллиомита — NaF, флюорита — CaF
2, селлаита — MgF
2, флюоцерита — (Ce, La) F
3, и комплексные, в которых комплексообразователями являются В, Al, Mg, TR, Si, а роль адденда выполняет фтор: группа авогадрита — (К, CS)[BF
4], криолита — Na
3[AlF
6], гагаринита — NaCa [TRF
6], нейборита — Na [MgF
6], веберита — Na
2[MgAlF
7], томсенолита — NaCa [AlF
6]·H
2O, малладрита — Na
2SiF
6] и др. Наиболее распространён в природе
.
Ф. п. бесцветны или окрашены в светлые тона, прозрачные или просвечивающие, со стеклянным блеском, низкой твёрдостью (2—5 по минералогической шкале), плотностью (2000—3180
кг/м
3исключение составляют фториды редких земель) и весьма низкими показателями преломления (1,30—1,50; у флюоцерита 1,61).
Ф. п. возникают в возгонах вулканов (ферручит, авогадрит, криптогалит, малладрит и др.), встречаются как акцессорные минералы гранитов, щелочных пород и их эффузивных аналогов (флюорит). Они характерны для поздних стадий развития карбонатитов (флюорит), гранитных пегматитов, грейзенов и гидротермальных образований (флюорит), щелочных гранитов и связанных с ними метасоматитов (криолит, флюоцерит, гагаринит), а также луявритов, фойяитов и уртитов (виллиомит). Многие алюмофториды возникают при гидротермальном изменении криолита (томсенолит, ральстонит, пахнолит, веберит, хиолит и другие). В зоне окисления по эндогенным Ф. п. часто развиваются гипергенные: геарксутит, кридит, флюеллит, для осадочных толщ характерен флюорит (ратовкит). Практическое значение имеют флюорит и
.
Лит.:Минералы. Справочник, т. 2, в. 1, М., 1963.
А. И. Гинзбург.
Фтористоводородная кислота
Фтористоводоро'дная кислота',плавиковая кислота, водный раствор
HF; фтористый водород смешивается с водой в любых соотношениях. Азеотропная смесь содержит 38,26% HF,
t
kип112°С (750
мм рт. ст.), плотность 1,138
г/см
3. Ф. к. реагирует с окислами с образованием
. Растворяет фториды, образуя с ними комплексные соединения; интенсивно реагирует с силикатными материалами (в частности, со стеклом). Применяется как растворитель, служит для травления стекла, а также реагентом для получения фторидов.
Лит.см. при ст.
.
Фтористый водород
Фто'ристый водоро'д,HF, соединение фтора с водородом. Плотность 0,98
г/см
3(12°С),
t
пл— 83,37°С,
t
kип19,43°С. Выше 19,43°С — бесцветный газ с резким запахом, раздражающим дыхательные пути, ниже этой температуры — бесцветная легкоподвижная жидкость;
t
kpит230,2°С,
р
крит9,45
Мн/м
2(94,5
кгс/см
2), энтальпия образования — 271
кдж/моль(—64,8
ккал/моль). Молекулы Ф. в. ассоциированы, степень ассоциации зависит от агрегатного состояния, температуры и давления. В газообразном Ф. в. ассоциаты включают три или четыре молекулы HF. ф. в. смешивается с водой в любых соотношениях. Водный раствор Ф. в. —
.
Безводный Ф. в. реагирует с металлами, стоящими в ряду напряжений до водорода (за исключением Al, Mg, Pb, Fe, Ni). Ф. в. взаимодействует со многими окислами, например SiO
2+ 4HF = SiF
4+ 2H
2O (реакция травления стекла). Ф. в. присоединяется к органическим соединениям по кратной связи, а в ряде случаев вызывает полимеризацию этих соединений. При действии Ф. в. в присутствии катализатора на полигалогеналканы фтор замещает в них галоген. Ф. в. служит хорошим растворителем неорганических и органических соединений; при этом, в отличие от водных растворов, электролитической диссоциации подвергается сам Ф. в., а не растворённое вещество.
Промышленное получение
ф. в. основано на реакции плавикового шпата с 98%-ной серной кислотой: CaF
2+ H
2SO
4= 2HF + CaSO
4.
Ф. в. широко применяется для получения синтетического
, в производстве
, для синтеза
, для травления стекла, в качестве катализатора алкилирования при получении бензина из нефти и др.
Ф. в. токсичен; попадание на кожу вызывает ожоги, пары HF раздражают верхние дыхательные пути. Предельно допустимая концентрация паров Ф. в. в воздухе 0,0005
мг/л. Первая помощь — вдыхание кислорода; при попадании на кожу — погружение обожжённого участка в ледяной насыщенный раствор сернокислой магнезии или 70%-ный этиловый спирт.
Лит.см. примет.
.
А. В. Панкратов.
Фторкаучуки
Фторкаучу'ки',синтетические фторсодержащие каучукоподобные полимеры (эластомеры), отличающиеся высокой термостойкостью, негорючестью и устойчивостью к действию многих агрессивных сред. Наибольшее распространение в промышленности получили сополимеры винилиденфторида с гексафторпропиленом или с трифторхлорэтиленом (типа СКФ-26 и СКФ-32; см. табл.) — стабильные при хранении, нетоксичные продукты белого цвета с плотностью 1,80—1,86
г/см
3, температурой стеклования около — 20°С и молекулярной массой от 10 тыс. до 1 млн. Основные вулканизующие агенты для Ф. этого типа — диамины и их производные, реагирующие с макромолекулами по метиленовым группам (—СН
2—) с образованием сравнительно непрочных поперечных связей С—N. По этой причине в резинах, вулканизованных диаминами, при их эксплуатации в напряжённом (обычно сжатом) состоянии накапливаются большие остаточные деформации. Резины с меньшей остаточной деформацией сжатия могут быть получены методом радиационной
(в этом случае между макромолекулами образуются прочные поперечные связи С—С), а также при использовании в качестве вулканизующих агентов дикалиевых солей бисфенолов. В состав резиновых смесей на основе Ф. входят обычно наполнители, например сажа, фторид кальция, а также окислы магния и кальция, связывающие HF (его отщепление от макромолекулы при высоких температурах переработки Ф. или эксплуатации изделий вызывает коррозию металлического оборудования).
Типы фторкаучуков и структура их макромолекул
Тип каучука (торговые названия)
Структура макромолекулы
Сополимер винилиденфторида с гексафторпропиленом (СКФ-26 — СССР, Вайтон — США)
Сополимер винилиденфторида с трифторхлорзтиленом (СКФ-32 — СССР, Кель-F — США)
Сополимер винилиденфторида с перфторметилвиниловым эфиром (СКФ-260 — СССР)
Сополимер тетрафторэтилена с трифторнитрозометаном
X=—COOH, —СєN, C
6F
5—
Сополимер тетрафторэтилена с перфторметилвиниловым эфиром (СКФ-460 — СССР, ECD-006 - США)
Перфторалкилентриазиновый
Перфторалкилакрилатный
Фторсилоксановый (СКТФТ — СССР)
Прочность при растяжении резин из СКФ-26 и СКФ-32 составляет 16—27
Мн/м
2(160—270
кгс/см
2), относительное удлинение 250—500%. Резины стойки к топливам, маслам, различным окислителям, кислотам, но нестойки к щелочам, кетонам,
и ионизирующим излучениям. Температура длительной эксплуатации резин из СКФ-26 — 200—250°С, из СКФ-32 — 175—200°С; температура кратковременной эксплуатации — соответственно 300 и 250°С. Существенный их недостаток — низкая морозостойкость. Более морозостойкие резины могут быть получены на основе сополимеров винилиденфторида с перфторметилвиниловым эфиром (СКФ-260). температура стеклования Ф. этого типа около — 40°С.
Резины, стойкие к щелочам, любым растворителям и окислителям, включая фтор, получают из полностью фторированных каучуков, например сополимеров тетрафторэтилена с трифторнитрозометаном (для их вулканизации в макромолекулу вводят третий сомономер, содержащий функциональные группы, например карбоксильные). Такие резины отличаются, кроме того, хорошей морозостойкостью, однако их термостойкость из-за малой прочности связи N—O не превышает 175°С. Более термостойкие резины получают на основе сополимеров тетрафторэтилена с перфторметилвиниловым эфиром (СКФ-460). Хорошие механические свойства этих резин [прочность при растяжении 20—25
Мн/м
2(200—250
кгс/см
2), относительное удлинение до 230%] не изменяются после их выдержки на воздухе при температуре около 300°С в течение 1
мес. Достоинство резин на основе СКФ-460 — малая остаточная деформация сжатия даже в условиях эксплуатации при температуре около 250°С. Наибольшей термостойкостью (кратковременно до 370 и длительно до 300°С) характеризуются резины из перфторалкилентриазиновых каучуков, стойкие к кислотам и окислителям, но разрушающиеся в щелочах. Резины на основе некоторых Ф. этого типа морозостойки до —50°С.
Перфторалкилакрилатные каучуки значительно уступают др. фторкаучукам по термической и химической устойчивости, но обладают высокой масло- и водостойкостью. Маслостойкие фторсилоксановые каучуки (СКТФТ) близки по остальным свойствам к каучукоподобным полиорганосилоксанам, не содержащим в макромолекуле атомов фтора (см.
).
Основной метод синтеза Ф. — радикальная
мономеров в эмульсии. Применяют Ф. главным образом в производстве уплотнительных деталей, работающих в контакте с маслами, окислителями и другими агрессивными средами при 200°С и выше. Перфторалкилакрилатным латексом пропитывают ткани для спецодежды. Ф. дороги; используются главным образом в химической промышленности, в авиации и космической технике.
Лит.:Соколов С. В., Каган Е Г., Иванова Т. Л., Термостойкие эластомеры, «Журнал Всес. химического общества», 1974, т. 19, № 6; Amold R. G., Barney A. L., Thompson D. C., Fluoroelastomers, «Rubber Chemistry and Technology», 1973, v. 46, № 3. См. также лит. при ст.
.
С. В. Соколов.
К ст. Фторкаучуки.
Фторопласты
Фторопла'сты,принятое в СССР техническое название фторсодержащих
, представляющих собой гомополимеры фторпроизводных этилена и сополимеры их, например с др. фторпроизводными олефинами, олефинами, перфторалкилвиниловыми эфирами. Наибольшее значение имеют политетрафторэтилен (85% мирового производства всех Ф.) и политрифторхлорэтилен — кристаллические полимеры белого цвета, отличающиеся высокой химической стойкостью, термо-, морозо- и атмосферостойкостью, ценным комплексом физических свойств, негорючестью.
Политетрафторэтилен, [—CF
2—CF
2—]
n
, молекулярная масса 5·10
5—2·10
6, плотность около 2,2
г/см
3(20°С). Превосходит по химической стойкости платину, кварц, графит и все синтетические материалы; устойчив к действию сильных окислителей, восстановителей, кислот, щелочей, органических растворителей, разрушается лишь расплавленными или растворёнными в жидком аммиаке щелочными металлами, а также газообразным фтором и трёхфтористым хлором (при температурах около 150°С). В полифторированных углеводородах начинает набухать при температуре выше 327°С. Политетрафторэтилен характеризуется прочностью при растяжении 14—35
Мн/м
2, или 140—350
кгс/см
2, относительным удлинением 250—500%, исключительно высокими диэлектрическими свойствами (тангенс угла диэлектрических потерь при 60
гц— 1
Мгц0,0002—0,00025), почти не зависящими от частоты и температуры, высокой дугостойкостью (250
сек). Он не изменяется в воде, жидких топливах и маслах, устойчив в тропическом климате, к действию грибков; физиологически инертен. Сохраняет определённую эластичность при температурах до — 269°С; обладает хладотекучестью под нагрузкой и низкой адгезией, нестоек к радиации. При плавлении (327°С) полимер становится прозрачным и, не переходя в вязкотекучее состояние, разлагается при 415°С.
Политрифторхлорэтилен, [—CF2—CFCI—]
n
, молекулярная масса 56000—360000, плотность при 25°С 2,09—2,16
г/см
3(закристаллизованных образцов). Химически стоек к действию окислителей, щелочей, сильных кислот, набухает в ряде эфиров и галогенопроизводных углеводородов, растворяется в ароматических углеводородах при температурах выше их температур кипения. Политрифторхлорэтилен характеризуется прочностью при сжатии до 500
Мн/м
2, или 5000
кгс/см
2(для обожжённых образцов), хорошими диэлектрическими свойствами при низких частотах (тангенс угла диэлектрических потерь при 1
кгц0,024), высокой дугостойкостью (>360
сек), низкими хладотекучестью, влаго- и газопроницаемостью. Плавится при 210°С, причём при 240—270°С переходит в вязкотекучее состояние. Разлагается при 270°С, но уже при 170—200°С механические свойства полимера резко ухудшаются.
Интервал температур эксплуатации от — 196 до 130—190°С.
Сополимеры тетрафторэтилена с гексафторпропиленом, а также с перфторпропилвиниловым эфиром сочетают высокую химическую и термическую стойкость с хорошей перерабатываемостью; благодаря высокой текучести расплава второй сополимер пригоден в качестве высокотемпературного клея для фторопластов. Сополимеры тетрафторэтилена с перфторолефинами, содержащими сульфогруппу, — термически и химически устойчивые катионообменные смолы, превосходящие по кислотности все др. твёрдые
; успешно используются в качестве мембраны для топливных элементов. Сополимеры тетрафторэтилена с этиленом, винилиденфторидом (а также поливинилфторид и поливинилиденфторид) уступают рассмотренным выше гомополимерам по химической стойкости, но обладают рядом др. ценных качеств, в том числе высокой прочностью и хорошими технологическими свойствами.
Получают Ф. радикальной полимеризацией или сополимеризацией соответствующих мономеров. Перерабатывают методами, принятыми для термопластов, например
,
, за исключением политетрафторэтилена, который перерабатывают холодным таблетированием порошка под давлением 25—35
Мн/м
2, или 250—350
кгс/см
2, с последующим спеканием при 360—380°С. Из Ф. получают плёнки, транспортёрные ленты, антифрикционные материалы для подшипников и сальников, работающих без смазки, волокна и ткани, лабораторную посуду, химически стойкие покрытия, металлопласты. Низкомолекулярный политрифторхлорэтилен используют как химически стойкую смазку. Изделия из Ф. применяют в электро- и радиотехнике, авиации и ракетной технике, машиностроении, химической и атомной промышленности, в криогенной технике, пищевой промышленности и медицине.
В СССР Ф. выпускают под название фторлон: политетрафторэтилен — фторлон-4, политрифторхлорэтилен — фторлон-3, в США — под название тефлон и кель-F соответственно.
Лит.:Фторполимеры, пер, с англ., М., 1975; Энциклопедия полимеров, т. 3, М., 1977.
С. В. Соколов.
Фторорганические соединения
Фтороргани'ческие соедине'ния,органическое соединения, содержащие в молекулах одну или несколько связей F—C. Химия Ф. с. начала интенсивно развиваться лишь со 2-й половины 20 в., но уже выросла в большую специализированную область
. Её развитие было обусловлено потребностями молодой атомной промышленности в материалах, стойких к фторирующему действию UF
6, который применяется для
урана. Известны фторпроизводные всех типов органических соединений.
Номенклатура.Положение атома фтора в Ф. с. обозначают согласно правилам номенклатуры органических соединений (см.
). Для построения название полифторзамещённых соединений удобнее пользоваться приставкой «пер». Так, полностью фторировнные углеводороды называются перфторуглеводородами (или фторуглеродами), например CF
3(CF
2)
5CF
3называется перфторгептаном. Частично фторированные соединения можно рассматривать как производные перфторуглеводородов, например CF
3CFH (CF
2) CF
2H называется 1,6-дигидроперфторгептаном. Очень часто в название Ф. с. сочетание «перфтор» заменяют греческой буквой j; в этом случае, например, перфторэтан называется j-этаном. Для обозначения полностью фторированных углеводородов используют также частицу «фор» (фтор), которую включают в наименование соответствующего углеводорода, например название CF
4— метфоран, C
2F
6— этфоран.
Методы синтеза.Прямое фторирование, а также присоединение F
2по двойной связи — радикальные чрезвычайно экзотермические реакции:
(1
ккал/моль= 4,19
кдж/моль)
Т. к. тепловой эффект фторирования больше, чем разрыва С—С-связей (80—85
ккал/моль), возможна деструкция фторируемых соединений. Во избежание этого необходим эффективный отвод тепла и разбавление смеси реагирующих веществ азотом. Для отвода тепла в реакционное пространство (трубка) вводят медную сетку или медные стружки, покрытые Ag, Co, Ni или др.; на поверхности сетки (стружек) образуются высшие фториды металлов, которые и служат фторирующими агентами, роль фтора при этом сводится, по-видимому, к их регенерации.
В металлофторидном процессе пары фторируемого вещества, сильно разбавленные азотом, пропускают через трубку с CoF
3:
1/
2(—CH
2—) + 2CoF
з®
1/
2(—CF
2—) + HF+ 2CoF
2+ 46
ккал/моль.
Образующийся CoF
3действием фтора при 250°С превращают опять в CoF
3. Выходы перфторуглеводородов 80—85%.
Важен метод электрохимического фторирования. Электролитом служит раствор фторируемого вещества в безводном фтористом водороде. В случае неэлектропроводных соединений обычно добавляют KF. Этим методом j-амины, j-окиси и др. Все рассмотренные выше процессы применяются в промышленности.
Обмен атомов хлора на фтор — важный промышленный метод введения фтора (см.
); может быть произведён безводным HF или
(например, NH
4F, KF, CbF
3Cl
2, AgF
2, HgF
2. Лёгкость обмена зависит от строения хлорсодержащего соединения. Так, хлорангидриды кислот часто легко превращаются во фторангидриды путём растворения их в безводном HF. Атомы Cl в этиленхлоргидрине, хлоруксусной кислоте и её производных легко обмениваются на F при реакции с KF в полярных растворителях (например, этиленгликоле); в моногалогенуглеводородах — лишь действием AgF
2или HgF
2при 150°С. Легче замещаются на фтор атомы хлора в соединениях, содержащих трихлорметильную группу. В промышленности для такого обмена применяют обычно растворы SbF
3или SbF
3Cl
2в безводном HF. Этим способом из хлороформа CHCl
3получают дифторхлорметан, используемый для производства тетрафторэтилена, из CCl
4— дифтордихлорметан (один из важнейших
), из C
2Cl
6— трифтортрихлорэтан (исходное вещество для производства трифторхлорэтилена).
Сравнительно легко на фтор обмениваются атомы хлора в гексахлорбензоле (действием KF при 450—530°С); C
6F
6и C
6F
5Cl при этом получаются с хорошими выходами. Аналогично реагируют и др. полихлорароматические и полихлоргетероциклические соединения.
Диазометод получения фторароматических соединений основан на образовании борфторида выделяют в твёрдом при нагревании:
Замена кислородсодержащих группировок в различных органических соединениях на фтор при помощи SF
4(например, в спиртах, альдегидах, кетонах, кислотах):
(R — органический остаток).
Присоединение безводного фтористого водорода к олефинам, галогенолефинам, окисям, изоцианатам, циклопарафинам и др., например:
Сопряжённое присоединение фтора и др. атомов или групп к соединениям, содержащим кратные связи, легко происходит в избытке безводного HF, например фторнитрование:
Методы получения фторолефинов. Дегалогенирование вицинальных дигалогенполифторалканов металлами (Zn, Mg и др.), например:
CF
2Cl — CF
2Cl + Zn ® CF
2= CF
2+ ZnCl
2.
Пиролиз политетрафторэтилена, приводящий к образованию перфторпропилена и перфторизобутилена наряду с тетрафторэтиленом, перфторбутиленом, фторциклобутаном и др.:
[—CF
2—]
n
® CF
3F = CF
2+ (CF
3)
2C = CF
2+ CF
2= CF
2+ CF
3CF
2CF = CF
2и др.
В промышленности этим способом (а также пиролизом тетрафторэтилена) получают перфторпропилен — важный мономер для производства фторкаучуков.
Пиролиз солей j-карбоновых кислот, например:
Фторированные спирты получают обычными методами синтеза
, например восстановлением эфиров j-карбоновых кислот, фторированных альдегидов и кетонов. Важный промышленный способ их получения —
тетрафторэтилена метанолом:
nCF
2= CF
2+ CH
3OH ® Н [—CF2CF2—]
n
СН
2ОН.
Свойства.Физические свойства. Низшие фторуглероды парафинового ряда (общая формула C
n
F
2
n+2) — газы, начиная с C
5— жидкости, высшие — твёрдые воскообразные соединения. Только первые четыре представителя этого ряда кипят несколько выше соответствующих углеводородных аналогов, все остальные — ниже.
При замещении одного атома водорода в молекуле углеводорода на F температура кипения повышается, но меньше, чем при замене его на хлор. При полной замене атомов водорода на фтор у любых производных углеводородов температуры кипения очень сильно понижаются (см. табл.).
Сравнение температур кипения некоторых соединений
Формула
t
кип, °С
Формула
t
кип, °С
CH
3CN
+78
CF
3CN
-64
CH
3NO
2
+102
CF
3NO
2
-31
NC(CH
2)
4CN
+265
NC(CF
2)
4CN
+63
CH
3CH2NH
2
+19
CF
3CF
2NF
2
-34.3
CH
3COCH
3
+56
CF
3COCF
3
+29
+35
-28
Фторуглероды — хорошие диэлектрики (удельное электрическое сопротивление около 10
14
ом(
см; диэлектрическая проницаемость их значительно выше, чем у парафинов. Скорость распространения ультразвука во фторуглеродах необычайно низка (менее 800
м/сек).
Химические свойства наиболее важных типов Ф. с. Фторуглероды парафинового и алициклических рядов характеризуются необычайно высокими химической инертностью и термостойкостью. Для них известно небольшое число реакций, осуществляемых лишь при высоких температурах. Так, пиролиз перфторэтана начинается около 1000°C, перфторгептана — около 800°C. Фторуглероды не реагируют в обычных условиях и при умеренном нагревании с концентрированными кислотами, сильными окислителями, металлами, щелочами и др.; реакция с металлическим натрием и перекисью натрия начинается при 400°C; Zn, Al, Fe и Sn в этих условиях реагируют очень медленно; Cu, Ag, Hg и некоторые др. в реакцию не вступают.
Перфторбензол и некоторые др. перфторароматические соединения легко взаимодействуют с нуклеофильными реагентами, например с аммиаком, аминами, алкоголятами, сульфидом натрия и др. При этом после замены одного атома фтора замещается второй, находящийся в
положении к первому:
Пентафторхлорбензол образует
C
6F
5MgCl, широко используемое в органическом синтезе.
Перфторолефины, в отличие от олефинов, являющихся нуклеофилами, резко электрофильны. Они легко реагируют с различными нуклеофилами (см.
), причём в зависимости от типа последних образуются продукты присоединения или замещения атома F в винильном (
а) или аллильном (
б) положении на остаток нуклеофила (Nu):
Электрофильные соединения реагируют с фторолефинами значительно труднее, чем с их углеводородными аналогами. Однако фторолефины присоединяют галогены, смешанные галогены, серный ангидрид и др. сильные электрофильные реагенты. Перфторолефины легко вступают в радикальные реакции, например
CF
2= CF
2+ N
2O
4® CF
2NO
2— CF
2NO
2+ CF
2NO
2— CF
2ONO,
легко полимеризуются и сополимеризуются (см.
,
). При окислении j-олефинов в щелочной среде образуются j-окиси (см. ниже).
Монофторметанол — нестойкая жидкость,
t
kип51°C; ди- и трифторметанолы не получены, но известны производные трифторметанола: трифторметилгипофторит CF
3OF — газ,
t
kип— 95°C, и алкоголяты CF
3OK и CF
3OCs. Фторзамещённые спирты (b-, g-, но не a-) — устойчивые, легко перегоняющиеся жидкости. Кислотные свойства спиртов усиливаются по мере накопления атомов фтора.
С увеличением содержания фтора в молекулах альдегидов и кетонов электрофильность карбонильного атома углерода резко усиливается. Перфторальдегиды и перфторкетоны, подобно хлоралю, образуют стойкие геминальные диолы, например CF
3—CH (OH)
2, CF
3—C (OH)
2—CF
3, и полуацетали; легче, чем их углеводородные аналоги, присоединяют NH
3, HCN, NH
2OH и др. нуклеофильные реагенты; легко подвергаются распаду с образованием фтороформа, например:
CF
3COCF
3+ NaOH ® CF
3H + CF
3COONa.
Частично фторированные кетоны и альдегиды характеризуются высоким содержанием енольных форм (см.
), склонных к образованию внутрикомплексных соединений; это свойство их используется для разделения редких и рассеянных элементов, например с помощью теноилтрифторацетона выделяют и очищают Be, Со, Hf, Zr, Ас, а также радиоактивные изотопы, образующиеся в ядерном реакторе.
Фторзамещённые карбоновые кислоты сильнее незамещённых и соответствующих хлорзамещённых кислот. Однако
n-фторбензойная кислота слабее хлорбензойной вследствие большей способности атома F к сопряжению.
Под влиянием третичных аминов или ионов фтора j-окиси легко изомеризуются, а также полимеризуются, образуя исключительно стойкие к действию агрессивных сред масла.
Первичные и вторичные перфторалкиламины типа CF
3NH
2и (CF
3)
2NH малоустойчивы, третичные — исключительно стойки к действию самых агрессивных сред; они лишены основных свойств вследствие сильного снижения электронной плотности на атоме азота.
Разнообразные органические соединения, несущие группы — NF
2, являются сильными окислителями.
Фторнитрозосоединения типа R
FN = O устойчивы; в отличие от водородных аналогов, окрашены в интенсивно-синий цвет, например трифторнитрозометан — синий газ,
t
kип— 84°C. При сополимеризации последнего с тетрафторэтиленом получается один из наиболее химически стойких фторкаучуков, т. н. нитрозокаучук.
Из Ф. с., содержащих серу, известны, например, фтормеркаптаны, сульфиды, ди- и полисульфиды, сульфоокиси, сульфоны, сульфоновые кислоты и их производные; промышленное применение нашли перфторсульфокислоты, в частности
, и дифтортиофосген CF
2S (в синтезе эластомеров).
Из фторалкильных соединений металлов и металлоидов наибольшее значение имеют соединения с Li, Mg, Hg, Si; сравнительно хорошо изучены соединения с Р, As, Sb. Перфтордиметилртуть (CF
3)
2Hg резко отличается от обычных ртутьорганических соединений. Это бесцветное кристаллическое вещество,
t
пл161°C, хорошо растворимо в воде; в отличие от (CH
3)
2Hg, практически не алкилирует. Диперфторвинилртуть — хороший перфторвинилирующий агент. Из соединений кремния наибольшее значение имеет CF
3CH
2CH
2SiCl
2((CH
3), применяемый для производства термостойкого фторсилоксанового эластомера (см.
).
Применение.Ф. с. широко применяются во всех областях техники с её экстремальными условиями эксплуатации. Ф. с. используют для получения фторопластов, превосходящих благородные металлы по устойчивости к действию агрессивных сред; термостойких фторкаучуков; антикоррозионных покрытий; как негорючие, термостойкие и неокисляющиеся смазочные масла и гидравлические жидкости; поверхностно-активные и пламягасящие вещества, пропелленты и хладагенты (см.
).
и её ангидрид применяются как промоторы этерификации; трифторнадуксусная кислота — специфический и удобный окислитель. В медицине Ф. с. применяют как лекарственные препараты и средства для наркоза (см.
), как материалы для изготовления искусственных кровеносных сосудов, клапанов для сердца. Кроме того, на примере Ф. с. изучены фундаментальные вопросы теории: природа водородной связи, вандерваальсовы силы, механизмы реакций и др.
Лит.:Кнунянц И. Л., Фокин А. В., Покорение неприступного элемента, М., 1963; Кнунянц И. Л., Сокольский Г. А., Электрохимическое фторирование, в кн.: Реакции и методы исследования органических соединений, кн. 6, М., 1957; Шеппард У., Шартс К., органическая химия фтора, пер. с англ., М., 1972; Успехи химии фтора, пер. с англ., т. 1—4, Л., 1964—70; Fluorine chemistry reviews, ed. P. Tarrant, v. 1—7, N. Y. — [a. o.], 1967—74; Chambers R. D., Fluorine in organic chemistry, N. Y. — [a. o.], 1973.
И. Л. Кнунянц.
Фторотан
Фторота'н,галотан, флуотан, CF
3—CHBrCl, 1,1,1-трифтор-2-хлор-2-бромэтан, бесцветная жидкость с запахом хлороформа,
t
kип50°C, плотность 1,87
г/см
3(20°C). Ф. практически нерастворим в воде, смешивается со спиртом и большинством др. органических растворителей; на свету медленно разлагается, поэтому его стабилизируют, например добавками 0,01—0,1% спирта или тимола. Получают Ф. обычно из трифторхлорэтилена:
.
Применяют в медицине как эффективное средство для ингаляционного наркоза.
Фтороформ
Фторофо'рм,трифторметан, CHF
3, бесцветный газ,
t
kип— 82,5°C. В отличие от
, Ф. — инертное соединение, например устойчиво к действию щелочей. Получают из хлороформа обменной реакцией с SbF
3или HF, из трифторхлорметана (фреона-13) и Н
2, а также др. способами. Применяют как хладагент.