Большая Советская Энциклопедия (ЭЛ)
ModernLib.Net / Энциклопедии / БСЭ / Большая Советская Энциклопедия (ЭЛ) - Чтение
(стр. 18)
Автор:
|
БСЭ |
Жанр:
|
Энциклопедии |
-
Читать книгу полностью
(2,00 Мб)
- Скачать в формате fb2
(8,00 Мб)
- Скачать в формате doc
(1 Кб)
- Скачать в формате txt
(1 Кб)
- Скачать в формате html
(8,00 Мб)
- Страницы:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41
|
|
Капли можно ускорять до скоростей порядка
в кристалле, т. е. это подвижные области высокой металлической проводимости внутри практически не проводящего (при низких Т) кристалла. Э.-д. ж. можно рассматривать как устойчивые макроскопические «сгустки» введённой в кристалл энергии возбуждения. Эта энергия выделяется в процессе рекомбинации электронов и дырок частично в виде электромагнитного излучения (излучательные переходы), так что Э.-д. ж. являются интенсивными источниками света. Э.-д. ж. наиболее полно изучена в Ge и Si, однако есть указания на её существование и в других полупроводниках.
Лит.см. при ст.
.
Л. В. Келдыш.
Электронно-дырочный переход
Электро'нно-ды'рочный перехо'д(
p -
n-переход), область полупроводника, в которой имеет место пространственное изменение типа проводимости (от электронной
nк дырочной
p)
.Поскольку в
р-области Э.-д. п. концентрация дырок гораздо выше, чем в
n-области, дырки из
n-области стремятся диффундировать в электронную область. Электроны диффундируют в
р-область. Однако после ухода дырок в
n-области остаются отрицательно заряженные акцепторные атомы, а после ухода электронов в
n-области - положительно заряженные донорные атомы. Т. к. акцепторные и донорные атомы неподвижны, то в области Э.-л. п. образуется двойной слой пространственного заряда - отрицательные заряды в
р-области и положительные заряды в
n-области (
рис. 1
). Возникающее при этом контактное электрическое поле по величине и направлению таково, что оно противодействует диффузии свободных носителей тока через Э.-д. п.; в условиях теплового равновесия при отсутствии внешнего электрического напряжения полный ток через Э.-д. п. равен нулю. Т. о., в Э.-д. п. существует динамическое равновесие, при котором небольшой ток, создаваемый неосновными носителями (электронами в
р-области и дырками в
n-области), течёт к Э.-д. п. и проходит через него под действием контактного поля, а равный по величине ток, создаваемый диффузией основных носителей (электронами в
n-области и дырками в
р-области), протекает через Э.-д. п. в обратном направлении. При этом основным носителям приходится преодолевать контактное поле (
)
.Разность потенциалов, возникающая между
p-и
n-областями из-за наличия контактного поля (
или высота потенциального барьера), обычно составляет десятые доли вольта.
Внешнее электрическое поле изменяет высоту потенциального барьера и нарушает равновесие потоков носителей тока через него. Если положит. потенциал приложен к
р-области, то внешнее поле направлено против контактного, т. е. потенциальный барьер понижается (прямое смещение). В этом случае с ростом приложенного напряжения экспоненциально возрастает число основных носителей, способных преодолеть потенциальный барьер. Концентрация неосновных носителей по обе стороны Э.-д. п. увеличивается (инжекция неосновных носителей), одновременно в
р-и
n-области через контакты входят равные количества основных носителей, вызывающих нейтрализацию зарядов инжектированных носителей. В результате возрастает скорость рекомбинации и появляется отличный от нуля ток через Э.-д. п. При повышении приложенного напряжения этот ток экспоненциально возрастает. Наоборот, приложение положит, потенциала к и-области (обратное смещение) приводит к повышению потенциального барьера. При этом диффузия основных носителей через Э.-д. п. становится пренебрежимо малой.
В то же время потоки неосновных носителей не изменяются, поскольку для них барьера не существует. Потоки неосновных носителей определяются скоростью тепловой генерации электронно-дырочных пар. Эти пары диффундируют к барьеру и разделяются его полем, в результате чего через Э.-д. п. течёт ток
I
s(ток насыщения), который обычно мал и почти не зависит от приложенного напряжения. Т. о., зависимость тока
1через Э.-д. п. от приложенного напряжения
U(вольтамперная характеристика) обладает резко выраженной нелинейностью (
рис. 2
). При изменении знака напряжения ток через Э.-д. п. может меняться в 10
5-10
6раз. Благодаря этому Э.-д. п. является вентильным устройством, пригодным для выпрямления переменных токов (см.
)
.Зависимость сопротивления Э.-д. п. от
Uпозволяет использовать Э.-д. п. в качестве регулируемого сопротивления (
)
.
При подаче на Э.-д. п. достаточно высокого обратного смещения
U = U
првозникает электрический пробой, при котором протекает большой обратный ток (
рис. 2
). Различают лавинный пробой, когда на длине свободного пробега в области объёмного заряда носитель приобретает энергию, достаточную для ионизации кристаллической решётки, туннельный (зинеровский) пробой, возникающий при туннелировании носителей сквозь барьер (см.
)
,и тепловой пробой, связанный с недостаточностью теплоотвода от Э.-д. п., работающего в режиме больших токов.
От приложенного напряжения зависит не только проводимость, но и ёмкость Э.-д. п. Действительно, повышение потенциального барьера при обратном смещении означает увеличение разности потенциалов между
п-и
р-областями полупроводника и, отсюда, увеличение их объёмных зарядов. Поскольку объёмные заряды являются неподвижными и связанными с кристаллической решёткой ионами доноров и акцепторов, увеличение объёмного заряда может быть обусловлено только расширением его области и, следовательно, уменьшением ёмкости Э.-д. п. При прямом смещении к ёмкости слоя объёмного заряда (называется также зарядной ёмкостью) добавляется т. н. диффузионная ёмкость, обусловленная тем, что увеличение напряжения на Э.-д. п. приводит к увеличению концентрации неосновных носителей, т. е. к изменению заряда. Зависимость ёмкости от приложенного напряжения позволяет использовать Э.-д. п. в качестве варактора - прибора, ёмкостью которого можно управлять, меняя напряжение смещения (см.
)
.
Помимо использования нелинейности вольтамперной характеристики и зависимости ёмкости от напряжения, Э.-д. п. находит многообразные применения, основанные на зависимости контактной разности потенциалов и тока насыщения от концентрации неосновных носителей. Их концентрация существенно изменяется при различных внешних воздействиях - тепловых, механических, оптических и др. На этом основаны различного рода датчики: температуры, давления, ионизирующих излучений и т. д. Э.-д. п. используется также для преобразования световой энергии в электрическую (см.
)
.
Э.-д. п. являются основой разного рода полупроводниковых диодов, а также входят в качестве составных элементов в более сложные
-
,
и т. д. Инжекция и последующая рекомбинация неосновных носителей в Э.-д. п. используются в
и
.
Э.-д. п. может быть создан различными путями: 1) в объёме одного и того же полупроводникового материала, легированного в одной части донорной примесью (
р-область), а в другой - акцепторной (
n-область); 2) на границе двух различных полупроводников с разными типами проводимости (см.
); 3) вблизи контакта полупроводника с
,если ширина запрещенной зоны полупроводника меньше разности
полупроводника и металла; 4) приложением к поверхности полупроводника с электронной (дырочной) проводимостью достаточно большого отрицательного (положительного) потенциала, под действием которого у поверхности образуется область с дырочной (электронной) проводимостью (инверсный слой).
Если Э.-д. п. получают вплавлением примесей в монокристаллический полупроводник (например, акцепторной примеси в кристалл с проводимостью
n-типа), то переход от
n-к
р-области происходит скачком (резкий Э.-д. п.). Если используется диффузия примесей, то образуется плавный Э.-д. п. Плавные Э.-д. п. можно получать также выращиванием монокристалла из расплава, в котором постепенно изменяют содержание и характер примесей. Получил распространение метод
примесных атомов, позволяющий создавать Э.-д. п. заданного профиля.
Лит.:Стильбанс Л. С., Физика полупроводников, М., 1967; Пикус Г. Е., Основы теории полупроводниковых приборов, М., 1965; Федотов Я. А., Основы физики полупроводниковых приборов, 2 изд., М., 1970; СВЧ-полупроводниковые приборы и их применение, пер. с англ., М., 1972; Бонч-Бруевич В. Л., Калашников С. Г., Физика полупроводников, М., 1977.
Э. М. Эпштейн.
Рис. 1. Схема
p-n-перехода: чёрные кружки - электроны; светлые кружки - дырки.
Рис. 2. Вольтамперная характеристика р - n-перехода: U - приложенное напряжение; I - ток через переход; Is - ток насыщения; Unp - напряжение пробоя.
Электронное зеркало
Электро'нное зе'ркало,электрическая или магнитная система, отражающая пучки электронов и предназначенная либо для получения с помощью таких пучков электроннооптических изображений, либо для изменения направления движения электронов. В значительной своей части Э. з. - системы, симметричные относительно некоторой оси (см.
)
.Электростатические осесимметричные Э. з. (
рис. 1
) используют для создания правильных электроннооптических изображений объектов. Если последний электрод такого Э. з. сплошной и электроны меняют направление движения непосредственно вблизи его поверхности, то можно получить увеличенное изображение микрорельефа этой поверхности. В зеркальном
используется именно это свойство Э. з. Цилиндрические Э. з. с «двухмерным» (оно не зависит от координаты
х) электрическим (
рис. 2
) или магнитным полем применяют для изменения направления электронных пучков, причем для электронов, движущихся в средней плоскости зеркала, угол падения равен углу отражения, подобно тому как это имеет место при отражении луча света от оптического зеркала. Т. н. трансаксиальные Э. з. (
рис. 3
,
4
) отличаются малыми аберрациями (погрешностями изображений) в направлении, параллельном средней плоскости Э. з.
Лит.:Глазер В., Основы электронной оптики, пер. с нем., М., 1957; Кельман В. М., Явор С. Я., Электронная оптика, 3 изд., Л., 1968.
В. М. Кельман, И. В. Родникова.
Рис. 3. Электростатическое трансаксиальное электронное зеркало: 1 и 2 - электроды, находящиеся под потенциалами V1 и V2; R - радиус кривизны зазора между электродами; плоскость xz совмещена со средней плоскостью зеркала.
Рис. 4. Отражение пучка электронов в средней плоскости трансаксиального электростатического электронного зеркала. Сплошными кривыми показаны сечения эквипотенциальных поверхностей средней плоскостью зеркала; пунктирная кривая - эффективная поверхность отражения электронного зеркала, соответствующая поверхности отражения его светооптического аналога - зеркала З.
Рис. 1. Осесимметричные двухэлектродные электронные зеркала: V1 и V2 - потенциалы электродов; тонкие линии - сечения эквипотенциальных поверхностей плоскостью рисунка; линии со стрелками - траектории электронов с разной энергией. Зеркала а и б всегда рассеивающие; зеркала в, г и д могут быть как рассеивающими, так и собирающими.
Рис. 2. Электростатическое цилиндрическое электронное зеркало: 1 и 2 - электроды, потенциалы которых соответственно V1 и V2. Название «цилиндрический» применительно к электроннооптическим системам отражает то обстоятельство, что в качестве электронных линз они могут действовать на электронный пучок так же, как цилиндрическая светооптическая линза - на световой пучок.
Электронное копирование
Электро'нное копи'рование,электронно-искровое, электроискровое, процесс
копирования документов,основанный на использовании теплового действия электрического (искрового) разряда. Э. к. применяют преимущественно при изготовлении ротаторных (трафаретных) и реже офсетных
для
.Э. к. осуществляется в электронно-искровых копировальных аппаратах (
рис.
). В аппарате листовой оригинал (черно-белый или цветной, выполненный карандашом, тушью, машинописным или типографским способом) и заготовку для печатной формы - пластикатную электропроводную плёнку - закрепляют на роторе (металлическом цилиндре). При вращении ротора, и равномерном перемещении оптической головки участки оригинала поочерёдно проходят под оптической головкой, в которой размещаются осветитель и
.Луч света, формируемый осветителем, отражается от поверхности оригинала (при этом интенсивность светового потока меняется в зависимости от отражательной способности участка, над которым проходит головка) и попадает на фотоэлемент, где световой поток преобразуется в электрический сигнал, который после усиления поступает на игольчатый электрод, перемещающийся синхронно с оптической головкой. Между электродом и поверхностью ротора возникает искровой разряд, прожигающий в заготовке отверстия в местах, соответствующих тёмным участкам изображения оригинала. Процесс изготовления копии длится 5-10
мин.Разрешающая способность электронно-искровых копировальных аппаратов 60-240 линий на 1
мм.
Лит.:Алферов А. В., Резник И. С., Шорин В. Г., Оргатехника, М., 1973.
А. В. Алферов.
Рис. к ст. Электронное копирование.
Электронно-искровой копировальный аппарат «ЭЛИКА» (СССР): схема устройства (вверху) и внешний вид (внизу).
Электроннолучевая обработка
Электроннолучева'я обрабо'тка,см. в ст.
.
Электроннолучевая печь
Электроннолучева'я печь,разновидность
,в которой электрическая энергия преобразуется в тепловую непосредственно в расплавляемом металле в результате соударения с ним электронов, вылетающих из
.Электроны разгоняются электрическим полем высокого напряжения (10- 35 Кб) в условиях низкого давления (ниже 10
мн/м
2)
. Э.п., применяемые в металлургии чистых металлов и сплавов, состоят из следующих узлов и систем (
рис.
): излучатель электронов (электронная пушка) с катодом, ускоряющим анодом и магнитной фокусирующей системой; плавильная камера со шлюзовыми устройствами и кристаллизатором (изложницей или тиглем) для металла; вакуумная система; механизмы перемещения переплавляемого металла; блок электропитания с системой автоматического регулирования. Переплавляемый металл подаётся в Э. п. (через вакуумный затвор) в виде так называемого расходуемого электрода, слитка, монокристалла, порошка и т. д. Расплавленный металл стекает каплями либо в водоохлаждаемый кристаллизатор - изложницу (при наплавлении слитка) или тигель (при плавке в
с целью получения фасонных отливок и при выращивании монокристаллов),- либо в холодные водоохлаждаемые подовые ёмкости (при рафинировании жидкого металла). В промышленности работают Э. п. мощностью более 1
Мвтдля переплава слитков стали диаметром до 1000
мм,жаропрочных сплавов - до 500
мм,тугоплавких металлов - до 280
мм.Электрический кпд Э. п. 0,6-0,8. Удельный расход электроэнергии 1-2 для стали, 10-15 для ниобия, тантала, молибдена и 20-
40 квт·
ч/кгдля вольфрама. Проектируют (1978) Э. п. мощностью до 7,2
Мвтдля переплава стальных слитков диаметром до 2000
мм(с холодным подом).
Лит.:Электронные плавильные печи, М., 1971; Егоров А. В., Моржин А. Ф., Электрические печи, М., 1975.
А. В. Егоров, А. Ф. Моржин.
Схемы конструкций электроннолучевых печей: а-д, ж - с электростатическими электронными пушками; е - с магнетронной электронной пушкой; ЭП - электронная пушка; КК - кольцевой катод; ЛК - линейный катод; СК (ДК) - спиральный (или дисковый) катод; А - ускоряющий анод; МФС - магнитная фокусирующая система; МОС - магнитная отклоняющая система; РЭ - расходуемый электрод; Ш - сыпучая шихта; М - монокристалл; Сл - слиток; Кр - кристаллизатор; ГТ - гарнисажный тигель; Т - тигель; Ф - литейная форма; ХП - холодный под; ВС - вакуумная система.
Электроннолучевая плавка
Электроннолучева'я пла'вка,плавка в
,происходящая при высокой температуре и глубоком вакууме, что обеспечивает протекание многих реакций рафинирования, невозможных в иных условиях (например, при вакуумной дуговой плавке и индукционной плавке в тиглях из тугоплавких окислов). Применяется для получения особо чистых тугоплавких металлов и сплавов, крупных слитков из стали и сплавов для деталей ответственного назначения и в других случаях. Основные достоинства Э. п.: регулирование в широких пределах скорости наплавления, определяющей благоприятную для последующей обработки макроструктуру слитка; возможность высокого перегрева металлов, позволяющего в сочетании с глубоким вакуумом удалить вредные примеси (например, цветные металлы); глубокая дегазация металла в вакууме; отсутствие контакта жидкого металла с загрязняющей его футеровкой; переплав практически любой шихты и возобновление процесса плавки после случайного перерыва без ухудшения качества слитка. При получении слитков большой массы (нескольких десятков
т) важное достоинство процесса - возможность переплава сравнительно небольших заготовок, попеременно подаваемых в зону плавления. Жидкий металл поступает в кристаллизатор либо непосредственное переплавляемой заготовки, либо из промежуточной ёмкости, где он дополнительно рафинируется. В результате Э. п. в 2-4 раза снижается содержание газовых примесей и неметаллических включений, повышаются плотность металла, изотропность его свойств. Ответственные изделия, например роторы мощных паровых турбин, изготовленные из металла, выплавленного в электроннолучевой печи, обладают вдвое более высоким сопротивлением хрупкому разрушению по сравнению с ротором из стали, выплавленной, например, в обычной дуговой печи, и, следовательно, более надёжны.
Лит.:Введение в технологию электроннолучевых процессов, пер. с англ., [М.], 1965.
Я. М. Васильев.
Электроннолучевая сварка
Электроннолучева'я сва'рка,см. в ст.
.
Электроннолучевая трубка
Электроннолучева'я тру'бка(ЭЛТ), обобщённое название ряда
,предназначенных для различного рода преобразований электрических или световых сигналов. ЭЛТ, служащие для преобразования электрических сигналов в видимые изображения, в зависимости от их функционального назначения делятся на приёмные телевизионные трубки (
)
;
;
;индикаторные трубки, используемые в радиолокационных станциях (см.
)
;
(в том числе трубки с памятью -
) и др. Преобразование световых изображений в телевизионные сигналы осуществляется
.Существуют ЭЛТ, в которых как входные, так и выходные сигналы представлены в форме электрических сигналов; в таких ЭЛТ выходные сигналы отражают тот или иной вид преобразования, производимого над входными: математическую обработку, задержку во времени, изменение порядка следования или частотного спектра и т. д.
Лит.:Жигарев А. А., Электронная оптика и электроннолучевые приборы, М., 1972.
В. Л. Герус.
Электроннолучевой переключатель
Электроннолучево'й переключа'тель,электроннолучевой коммутатор,
,служащий для безынерционного переключения слаботочных электрических цепей. Основан на управлении положением электронного луча (пучка электронов), который может в заданной последовательности направляться на изолированные друг от друга электроды - ламели, подключенные к внешним цепям. Ток электронного луча может при этом управляться внешним сигналом. Большого распространения не получил. В некоторых случаях функции Э. п. успешно выполняются
.
Электроннолучевые приборы
Электроннолучевы'е прибо'ры(ЭЛП), класс электровакуумных
,предназначенных для различного рода преобразований информации, представленной в форме электрических или световых сигналов; отличительная особенность таких приборов - использование потока электронов, сконцентрированных (сфокусированных) в узкий пучок (электронный луч), управляемый как по интенсивности, так и по положению в пространстве. В простейшем случае (
рис. 1
) пучок формируется
;управляется по интенсивности изменением потенциала управляющего электрода (модулятора); отклоняется в двух взаимноперпендикулярных направлениях с помощью поперечных по отношению к оси ЭЛП электрических или магнитных полей, создаваемых отклоняющими пластинами или внешними по отношению к ЭЛП магнитными катушками; направляется в ту или иную точку двумерной мишени. Взаимодействие пучка с мишенью обеспечивает преобразование сигналов в зависимости от свойств и структуры мишени.
Если мишень ЭЛП представляет собой люминесцентный экран, изготовленный из
(светящихся при бомбардировке их электронами), то такой ЭЛП способен преобразовывать временные последовательности электрических сигналов в двумерное распределение яркости свечения экрана, т. е. визуализировать электрические сигналы. Возможны 2 способа такой визуализации. При 1-м способе отображаемые электрические сигналы поступают на отклоняющие пластины или катушки и управляют положением пучка на экране; в результате на экране создаётся графическое изображение сигналов. Например, если к горизонтально отклоняющим пластинам приложить линейно изменяющееся напряжение, отклоняющее луч в горизонтальном направлении с постоянной скоростью, а на пластины вертикального отклонения подать изучаемый переменный электрический сигнал, то на экране вычерчивается осциллограмма этого сигнала в прямоугольной системе координат. ЭЛП, предназначенные для реализации такого режима, называются
.Если управлять положением луча одновременно по двум направлениям (горизонтальному и вертикальному) специально сформированными сигналами, то можно получать на экране чертежи, цифры, буквы и иные символы, несущие соответствующую информацию. Такие ЭЛП используются, в частности, в
.Разновидность ЭЛП для отображения знаков -
.При 2-м способе электронный луч перемещается по поверхности экрана по определённому закону; в процессе отклонения (
) входной сигнал поступает на управляющий электрод, изменяет интенсивность луча и, следовательно, яркость свечения различных точек экрана, создавая на нём полутоновое изображение, соответствующее последовательности электрических сигналов. На этом принципе основано действие таких ЭЛП, как
(преобразует телевизионный сигнал в телевизионное изображение), индикаторная электроннолучевая трубка (применяется, например, для создания радиолокационного изображения).
Если в качестве мишени использовать светочувствительный слой, изменяющий свои электрические свойства (например, электропроводность) под действием света, то ЭЛП с такими мишенями способны осуществлять обратное преобразование двумерного оптического изображения в последовательность телевизионных сигналов. При проецировании на такую мишень передаваемого изображения происходят локальные изменения потенциала поверхности слоя, что приводит к изменению тока, протекающего через слой, в процессе
мишени электронным лучом постоянной интенсивности по принятому в телевидении закону развёртки. Эти изменения тока во времени и представляют собой телевизионный сигнал. ЭЛП, предназначенные для такого преобразования, называются
.
Существуют ЭЛП, в которых управляемый по интенсивности входным сигналом пучок изменяет какое-либо оптическое свойство мишени, что в процессе отклонения луча приводит к локальным изменениям (модуляции) светового потока от интенсивного внешнего источника света, равномерно освещающего поверхность мишени (
рис. 2
). Промодулированный световой поток создаёт оптическое изображение, проецируемое с помощью объектива на большой экран (см., например,
)
.Такие ЭЛП называются светоклапанными; в них для модуляции света посредством воздействия электронов на вещество используют эффекты окрашивания некоторых кристаллов (см.
)
,деформацию масляных, термопластических или иных плёнок, электрооптические эффекты в кристаллах и др.
Существуют ЭЛП с мишенями, представляющими собой диэлектрический слой на электропроводящей подложке. С помощью электронного луча на такой мишени можно накапливать электрические заряды. Последовательность входных электрических сигналов преобразуется в процессе развёртки в зарядный (потенциальный) рельеф на мишени, который сохраняется в течение необходимого промежутка времени. Этот процесс называется записью сигналов. Закодированная таким способом информация может быть снова воспроизведена в форме выходных электрических сигналов при повторном сканировании мишени тем же или другим электронным лучом. Этот обратный процесс называется считыванием. Изменение скорости развёртки при считывании по отношению к скорости при записи позволяет изменить частотный спектр выходных сигналов по сравнению с входными при передаче информации по узкополосным
.Изменением закона развёртки при считывании можно изменять порядок следования сигналов, что важно, например, при преобразовании радиолокационного сигнала в телевизионный. Многократное накопление перед считыванием периодических сигналов, сопровождаемых случайными сигналами (помехами), позволяет увеличить отношение полезного сигнала к помехе. ЭЛП с такими мишенями позволяют также напоминать сигналы и воспроизводить их с задержкой во времени, сравнивать их с последующими сигналами или многократно воспроизводить однократно записанный сигнал. ЭЛП с диэлектрическими мишенями получили название
.Возможно сочетание диэлектрических мишеней с люминесцентным экраном в одном ЭЛП для создания запоминаемого видимого изображения (см.
)
.Такие ЭЛП используются для осциллографирования однократных процессов, создания яркого немерцающего изображения и других целей.
Особую группу составляют ЭЛП для мгновенного преобразования электрических сигналов с помощью металлических мишеней различной структуры. В принадлежащих к этой группе т. н. функциональных ЭЛП плоская мишень имеет множество отверстий, расположенных таким образом, что прозрачность мишени является заданной функцией
z = f(
x, у) координат
хи
умишени. При подаче на обе пары отклоняющих пластин двух независимых электрических сигналов
U
xи U
y,под действием которых луч отклоняется на мишени в точку с координатами
хи
у,в цепи расположенного за мишенью коллектора прошедших сквозь мишень электронов регистрируется выходной сигнал
z.Каждый тип функциональных ЭЛП предназначен для реализации какой-либо одной функциональной зависимости (например,
;
,z = arctg
y/xи др.). Возможно последовательное соединение нескольких функциональных ЭЛП. С помощью металлической мишени с расположенными по особому закону прямоугольными отверстиями можно преобразовывать аналоговый сигнал в дискретный в форме последовательной или параллельной серии импульсов двоичного кода. ЭЛП с такими мишенями называются кодирующими (см.
)
.Если мишень разделить на ряд изолированных друг от друга секторов, то ЭЛП с такой мишенью можно использовать в качестве коммутатора слаботочных электрических цепей (см.
).
В зависимости от назначения и принципа действия ЭЛП могут иметь не одну, а несколько электронных пушек и отличаться от простейших значительной конструктивной сложностью при сохранении, однако, основного принципа - взаимодействия управляемых электронных потоков с мишенями.
Лит.:Шерстнев Л, Г., Электронная оптика и электроннолучевые приборы, М., 1971; Жигарев А. А., Электронная оптика и электроннолучевые приборы, М., 1972; Денбновецкий С. В., Семенов Г. Ф., Запоминающие электроннолучевые трубки в устройствах обработки информации, М., 1973.
В. Л. Герус.
Рис. 2. Схематическое изображение светоклапанного электроннолучевого прибора: 1 - электронный луч; 2 - источник света с оптической системой; 3 - электронная пушка; 4 - отклоняющие катушки; 5 - мишень; 6 - объектив; 7 - проекционный экран.
Рис. 1. Схема простейшего электроннолучевого прибора: 1 - электронный луч (пучок электронов); 2 - электронная пушка; 3 - отклоняющие пластины; 4 - мишень; 5 - вакуумплотная оболочка; К - катод (источник электронов); М - управляющий электрод (модулятор).
Электроннооптический преобразователь
Электронноопти'ческий преобразова'тель(ЭОП), вакуумный фотоэлектронный прибор для преобразования невидимого глазом изображения объекта (в инфракрасных, ультрафиолетовых и рентгеновских лучах) в видимое либо для увеличения (усиления) яркости видимого изображения.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41
|
|