Современная электронная библиотека ModernLib.Net

Большая Советская Энциклопедия (ЭЛ)

ModernLib.Net / Энциклопедии / БСЭ / Большая Советская Энциклопедия (ЭЛ) - Чтение (стр. 25)
Автор: БСЭ
Жанр: Энциклопедии

 

 


  На крупных объектах рационально строительство электрических сетей с мощными токопроводами 10 и 6 кв(взамен большого числа кабелей), кабельных эстакад и галерей (вместо дорогих и громоздких туннелей), прокладка кабелей 110 и 220 кв(взамен воздушных линий).

  Надёжность Э. зависит от требований бесперебойности работы электроприёмников. Необходимая степень надёжности определяется тем возможным ущербом, который может быть нанесён производству при прекращении их питания. Существуют 3 категории надёжности электроприёмников. К 1-й категории относят те, питание которых обеспечивают не менее чем 2 независимых автоматически резервируемых источника. Такие электроприёмники необходимы на объектах с повышенными требованиями к бесперебойности работы (например, непрерывное химическое производство). Наилучшие в этом случае схемы Э. с территориально разобщёнными независимыми источниками. Допустимый перерыв в Э. для некоторых производств не должен превышать 0,15-0,25 сек, поэтому важным условием является необходимое быстродействие восстановления питания. Для особо ответственных электроприёмников в схеме Э. предусматривают дополнительный третий источник. Ко 2-й категории относятся электроприёмники, допускающие перерыв питания на время, необходимое для включения ручного резерва. Для приёмников 3-й категории допускается перерыв питания на время до 1 сут,необходимое на замену или ремонт поврежденного элемента системы.

  Качество электроэнергии. В системы Э. часто входят электроприёмники, работа которых сопровождается ударными нагрузками и неблагоприятно отражается на работе других («спокойных») электроприёмников, общем режиме работы системы, на качестве электроэнергии (см. ) .К таким электроприёмникам относятся вентильные преобразователи, дуговые электропечи, электросварочные аппараты, электровозы, работа которых сопровождается резкопеременными толчками нагрузки, колебаниями напряжения, снижением коэффициента мощности, образованием высших гармоник, возникновением несимметрии напряжений. Показатели качества электроэнергии улучшаются при повышении мощности короткого замыкания в точке сети, к которой приключены электроприёмники с неблагоприятными характеристиками. Чтобы создать такие условия, уменьшают реактивное сопротивление питающих линий, не включая в них или уменьшая их реактивность, исключая из схем токопроводы и др. При этом должна быть соответственно увеличена отключаемая мощность выключателей.

  Вопросы улучшения качества электроэнергии решаются комплексно при проектировании систем Э. и электропривода. Хорошие результаты даёт разделение питания электроприёмников с ударными и т. н. спокойными нагрузками путём присоединения их к разным трансформаторам и различным ветвям расщепленных трансформаторов или плечам сдвоенных реакторов. Улучшению качества электроэнергии способствует внедрение в схемы Э. электроприводов с пониженным потреблением реактивной мощности, применение многофазных схем выпрямления и др. При недостаточности этих мероприятий применяют специальные устройства: синхронные компенсаторы с быстродействующим возбуждением, большой кратностью перегрузки по реактивной мощности (в 3-4 раза), работающие в т. н. режиме слежения за реактивной мощностью электроприёмников; синхронные электродвигатели со спокойной нагрузкой, присоединяемые к общим с вентильными преобразователями шинам и имеющие необходимую располагаемую мощность и быстродействующее возбуждение с высоким уровнем форсировки; статические источники реактивной мощности с высоким быстродействием, безынерционностью и плавным изменением реактивной мощности; продольную ёмкостную компенсацию, дающую возможность мгновенного безынерционного и непрерывного автоматического регулирования напряжения; силовые резонансные электрические фильтры для гашения высших гармоник.

  Лит.:Князевский Б. Л., Липкин Б. Ю., Электроснабжение промышленных предприятий, М., 1969; Крупович В. И., Ермилов А. А., Трунковский Л. Е., Проектирование и монтаж промышленных электрических сетей, М., 1971; Козлов В. А., Билик Н. И., Файбисович Д. Л., Справочник по проектированию систем электроснабжения городов, Л., 1974; Ермилов А. А., Основы электроснабжения промышленных предприятий, 3 изд., М., 1976.

  А. А. Ермилов.

Рис. 1. Схема глубоких вводов 110 и 220 кв: а - радиальная; б - магистральная; ПГВ - подстанции глубокого ввода; УРП - узловая распределительная подстанция.

Рис. 2. Схемы сетей 6 и 10 кв: а - двухступенчатая радиальная с промежуточными распределительными пунктами (РП); б - магистральная с токопроводами; в - двухлучевая с автоматическим включением резерва (АВР) на напряжение 0,4 кв; ГПП - главная понизительная подстанция; ТП - трансформаторная подстанция.

Электросталеплавильное производство

Электросталеплави'льное произво'дство,получение стали в металлургических или машиностроительных заводов. Электросталь, предназначенная для дальнейшего передела, выплавляется главным образом в дуговых печах с основной футеровкой. Существует несколько разновидностей электроплавки в ;с полным окислением примесей; переплав легированных отходов без окисления н с применением газообразного кислорода; метод смешения; плавка на жидком полупродукте ( ) и др.

  Технология плавки с полным окислением примесей включает 3 периода - расплавление, окислительный и восстановительный. В окислительный период плавки присадкой твёрдых окислителей (железные руды, агломерата и др.) или вдуванием газообразного кислорода окисляют примеси стальной ванны (Р, Si и др.). Активное кипение металла, вызванное выделением пузырьков окиси углерода в результате реакции обезуглероживания, способствует быстрому нагреву ванны, ,удалению .В восстановительный период плавки удаляют серу, сталь раскисляют (см. ) и с помощью корректируют её состав по .Переплав легированных отходов без окисления позволяет сохранить ценные легкоокисляющиеся легирующие элементы (Cr и др.), что существенно улучшает технологические показатели производства. При переплаве высокохромистых отходов с применением газообразного кислорода горячий ход процесса (1800-1900 °С) обеспечивает низкое содержание углерода в металле (чего нельзя достичь при переплаве без окисления) без заметных потерь хрома. Широкое распространение получили внепечные методы обезуглероживания высоколегированных сталей (коррозионностойких и др.) продувкой металла аргоно-азото-парокислородными смесями в специальных рафинировочных агрегатах конвертерного типа или окислительным вакуумированием.

  Пути интенсификации электроплавки: сокращение периода расплавления (увеличением удельной мощности трансформаторов, использованием газокислородных горелок, предварит, подогревом шихты), применение кислорода, продувка жидкого металла порошкообразными шлакообразующими материалами, переход на одношлаковый процесс, сокращение восстановительного периода путём применения средств внепечного рафинирования (вакуумная обработка, продувка металла аргоном, обработка стали синтетическими шлаками).

  Дуговые печи с кислой футеровкой применяются главным образом для получения стали, предназначенной для фасонного литья. Большое сопротивление кислых шлаков (насыщенных SiО 2) позволяет быстрее нагреть металл до высокой температуры, что важно для литья тонкостенных изделий. Существенный недостаток кислой плавки - невозможность удаления фосфора и серы из стали.

  О плавке стали в и методах специальной электрометаллургии, а также о месте и роли Э. п. среди других процессов выплавки стали см. в статьях , .

  Лит.:см. при ст. .

  В. А. Григорян.

«Электросталь»

«Электроста'ль»им. И. Ф. Тевосяна, электрометаллургический завод в г. Электросталь Московской области. Выпускает высококачественные легированные и специальные стали. Введён в действие в 1918 на базе литейной мастерской, существовавшей с 1916. В 1926-37 осуществлена коренная реконструкция завода; построены цехи: два сталеплавильных с мартеновскими печами и электропечами, прокатный (станы 350, 600, 800), термический, штамповочный, кузнечный, молотовой. В 1940 выпуск стали составил 226 тыс. т.

 В начале Великой Отечественной войны 1941-45 завод был эвакуирован на Урал. В 1942 реэвакуирован, с июля 1942 выпускал продукцию для фронта. В 50-70-е гг. на заводе проведены реконструкция и комплексная механизация многих производственных участков, построены цехи, оснащенные уникальным оборудованием новейшей конструкции, первоклассные лаборатории с современной аппаратурой. Широко применяются прогрессивные процессы производства: кислородное дутьё, глубинное раскисление, переплав металла в расплавленных шлаках и глубоком вакууме и др.; внедряется электроннолучевая и плазменная плавка. Завод ведёт научно-исследовательскую работу по изысканию и промышленному освоению новых марок стали. Освоен выпуск свыше 2000 различных марок стали и сплавов. В 1975 по сравнению с 1945 выплавка стали возросла в 3,5 раза. Награжден орденом Ленина (1945) и орденом Октябрьской Революции (1971).

  И. С. Прянишников.

Электросталь (город в Московской обл.)

Электроста'ль(до 1938 - Затишье), город областного подчинения в Московской области РСФСР, в 58 кмк В. от Москвы. Ж.-д. ст. на ветке от линии Москва - Орехово-Зуево. 135 тыс. жителей в 1977 (43 тыс. в 1939, 97 тыс. в 1959, 123 тыс. в 1970). Электрометаллургический завод «Электросталь», завод тяжёлого машиностроения, книжная фабрика, предприятия автомобильного и ж.-д. транспорта, филиал Московского института стали и сплавов; машиностроительный и строительный техникумы, музыкальное училище.

  Лит.:Малахов Я. И., Пекарева Н. А., Электросталь, М., 1963.

Электросталь (сталь)

Электроста'ль,сталь, получаемая в электрических печах. См. .

Электростанция

Электроста'нция,электрическая станция, совокупность установок, оборудования и аппаратуры, используемых непосредственно для производства электрической энергии, а также необходимые для этого сооружения и здания, расположенные на определённой территории. В зависимости от источника энергии различают , , , ,а также , , и Э. с .

 Тепловые Э. (ТЭС) являются основой ;они вырабатывают электроэнергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. По виду энергетического оборудования ТЭС подразделяют на паротурбинные, газотурбинные и дизельные Э.

  Основное энергетическое оборудование современных тепловых паротурбинных Э. составляют , , ,а также пароперегреватели, питательные, конденсатные и циркуляционные насосы, ,воздухоподогреватели, электрические .Паротурбинные Э. подразделяются на и (теплофикационные Э.).

  На конденсационных Э. (КЭС) тепло, полученное при сжигании топлива, передаётся в парогенераторе водяному пару, который поступает в ,внутренняя энергия пара преобразуется в турбине в механическую энергию и затем электрическим генератором в .Отработанный пар отводится в конденсатор, откуда конденсат пара перекачивается насосами обратно в парогенератор. КЭС, работающие в энергосистемах СССР, называются также .

 В отличие от КЭС на теплоэлектроцентралях (ТЭЦ) перегретый пар не полностью используется в турбинах, а частично отбирается для нужд теплофикации. Комбинированное использование тепла значительно повышает экономичность тепловых Э. и существенно снижает стоимость 1 квт· чвырабатываемой ими электроэнергии.

  В 50-70-х гг. в электроэнергетике появились электроэнергетические установки с .Газотурбинные установки в 25-100 Мвтиспользуются в качестве резервных источников энергии для покрытия нагрузок в часы «пик» или в случае возникновения в энергосистемах аварийных ситуаций. Перспективно применение комбинированных парогазовых установок (ПГУ), в которых продукты сгорания и нагретый воздух поступают в газовую турбину, а тепло отработанных газов используется для подогрева воды или выработки пара для паровой турбины низкого давления.

  Дизельной Э. называется энергетическая установка, оборудованная одним или несколькими электрическими генераторами с приводом от .На стационарных дизельных Э. устанавливаются 4-тактныс дизель-агрегаты мощностью от 110 до 750 Мвт;стационарные дизельные Э. и (по эксплуатационным характеристикам они относятся к стационарным Э.) оснащаются несколькими дизельагрегатами и имеют мощность до 10 Мвт.Передвижные дизельные Э. мощностью 25-150 квтразмещаются обычно в кузове автомобиля (полуприцепа) или на отдельных шасси либо на ж.-д. платформе, в вагоне. Дизельные Э. используются в сельском хозяйстве, в лесной промышленности, в поисковых партиях и т. п. в качестве основного, резервного или аварийного источника электропитания силовых и осветительных сетей. На транспорте дизельные Э. применяются как основные энергетические установки (дизель-электровозы, дизель-электроходы).

  Гидроэлектрическая станция (ГЭС) вырабатывает электроэнергию в результате преобразования энергии потока воды. В состав ГЭС входят гидротехнические сооружения ( ,водоводы, водозаборы и пр.), обеспечивающие необходимую концентрацию потока воды и создание ,и энергетическое оборудование ( , ,распределительные устройства и т. п.). Сконцентрированный, направленный поток воды вращает гидротурбину и соединённый с ней электрический генератор.

  По схеме использования водных ресурсов и концентрации напоров ГЭС обычно подразделяют на русловые, приплотинные, деривационные, гидроаккумулирующие и приливные. Русловые и приплотинные ГЭС сооружают как на равнинных многоводных реках, так и на горных реках, в узких долинах. Напор воды создаётся плотиной, перегораживающей реку и поднимающей уровень воды верхнего бьефа. В русловых ГЭС здание Э. с размещенными в нём гидроагрегатами является частью плотины. В деривационных ГЭС вода реки отводится из речного русла по водоводу ( ) ,имеющему уклон, меньший, чем средний уклон реки на используемом участке; деривация подводится к зданию ГЭС, где вода поступает на гидротурбины. Отработавшая вода либо возвращается в реку, либо подводится к следующей деривационной ГЭС. Деривационные ГЭС сооружают главным образом на реках с большим уклоном русла и, как правило, по совмещенной схеме концентрации потока (плотина и деривация совместно).

  Гидроаккумулирующая Э. (ГАЭС) работает в двух режимах: аккумулирования (энергия, получаемая от других Э., главным образом в ночные часы, используется для перекачки воды из нижнего водоёма в верхний) и генерирования (вода из верхнего водоёма по трубопроводу направляется к гидроагрегатам; вырабатываемая электроэнергия отдаётся в энергосистему). Наиболее экономичны мощные ГАЭС, сооружаемые вблизи крупных центров потребления электроэнергии; их основное назначение - покрывать пики нагрузки, когда мощности энергосистемы использованы полностью, и потреблять излишки электроэнергии в то время суток, когда другие Э. оказываются недогруженными.

  Приливные Э. (ПЭС) вырабатывают электроэнергию в результате преобразования энергии морских приливов. Электроэнергия ПЭС из-за периодического характера приливов и отливов может быть использована лишь совместно с энергией др. Э. энергосистемы, которые восполняют дефицит мощности ПЭС в пределах суток и месяца.

  Источником энергии на атомной Э. (АЭС) служит ,где энергия выделяется (в виде тепла) вследствие цепной реакции деления ядер тяжёлых элементов. Выделившееся в ядерном реакторе тепло переносится теплоносителем, который поступает в теплообменник (парогенератор); образующийся пар используется так же, как на обычных паротурбинных Э. Существующие способы и методы дозиметрического контроля полностью исключают опасность радиоактивного облучения персонала АЭС.

  Ветроэлектростанция вырабатывает электроэнергию в результате преобразования энергии ветра. Основное оборудование станции - ветродвигатель и электрический генератор. Ветровые Э. сооружают преимущественно в районах с устойчивым ветровым режимом.

  Геотермическая Э. - паротурбинная Э., использующая глубинное тепло Земли. В вулканических районах термальные глубинные воды нагреваются до температуры свыше 100°С на сравнительно небольшой глубине, откуда они по трещинам в земной коре выходят на поверхность. На геотермических Э. пароводяная смесь выводится по буровым скважинам и направляется в сепаратор, где пар отделяется от воды; пар поступает в турбины, а горячая вода после химической очистки используется для нужд теплофикации. Отсутствие на геотермических Э. котлоагрегатов, топливоподачи, золоуловителей и т. п. снижает затраты на строительство такой Э. и упрощает её эксплуатацию.

  Э. с магнитогидродинамическим генератором (МГД-генератор) - установка для выработки электроэнергии прямым преобразованием внутренней энергии электропроводящей среды (жидкости или газа).

  Лит.:см. при статьях , , , . , а также при ст. (раздел Энергетическая наука и техника. Электротехника).

  В. А. Прокудин.

Электростатика

Электроста'тика(от и ) ,раздел теории ,в котором изучается взаимодействие неподвижных электрических зарядов. Оно осуществляется посредством .Основной закон Э. - ,определяющий силу взаимодействия неподвижных точечных зарядов в зависимости от их величины и расстояния между ними.

  Электрические заряды являются источниками электростатического поля. Этот факт выражает .Электростатическое поле потенциально, т. е. работа сил, действующих на заряд со стороны электростатического поля, не зависит от формы пути.

  Электростатическое поле удовлетворяет уравнениям:

  div D= 4pr, rot Е= 0,

  где D -вектор электрической индукции (см. электрическая и магнитная), Е -напряжённость электростатического поля, r - плотность электрического заряда. Первое уравнение представляет собой дифференциальную форму теоремы Гаусса, а второе выражает потенциальный характер электростатического поля. Эти уравнения можно получить как частный случай .

 Типичные задачи Э. - нахождение распределения зарядов на поверхностях проводников по известным полным зарядам или потенциалам каждого из них, а также вычисление энергии системы проводников по их зарядам и потенциалам.

  Лит.:Тамм И. Е., Основы теории электричества, 9 изд., М., 1976; Калашников С. Г., Электричество, 3 изд., М., 1970 (Общий курс физики, т. 2).

  Г. Я. Мякишев.

Электростатическая дефектоскопия

Электростати'ческая дефектоско'пия,см. в ст. .

Электростатическая запись

Электростати'ческая за'пись,процесс нанесения и сохранения различного вида информации, представленной электрическими сигналами, на диэлектрическом носителе (ДН) посредством создания на нём того или иного распределения электрических зарядов (зарядного рельефа), несущего в себе скрытое изображение записанной информации. Системы Э. з. в зависимости от способов подразделяют на 2 основные группы. В 1-й группе органом записи (ОЗ) систем служит электродная головка или с металловолоконным экраном. Элемент скрытого изображения формируется переносом зарядов с электродов (волокон) ОЗ на ДН через воздушный зазор толщиной 5-20 мкмв результате электрического разряда при подаче на электроды ОЗ напряжения 700-900 в. Скрытое изображение на ДН, полученное в результате относительного перемещения ОЗ и ДН, преобразуют в видимое изображение методами .Запись осуществляется либо на электростатической бумаге, состоящей из электропроводящей основы и слоя диэлектрика, с использованием при визуализации скрытого изображения как сухих, так и жидких электрографических проявителей, либо на диэлектрическом барабане с последующим переносом изображения, проявленного с помощью порошка, с барабана на обычную бумагу. Достоинства систем Э. з. 1-й группы: высокая информационная скорость (для дискретной информации она составляет 10-20 тыс. знаков в 1 сек,для аналоговой соответствует частоте в несколько десятков кгц); возможность записи различной информации (в т. ч. полутоновых изображений) и практически немедленной её визуализации; отсутствие при записи и воспроизведении химических и ударных воздействий на ДН; нечувствительность к свету; сравнительно низкая стоимость применяемых для записи материалов. Эти системы используют в качестве электростатических регистраторов для вывода данных из ЭВМ, записи процессов в экспериментальной физике и измерительной технике и т. д.

  Ко 2-й группе относят системы с записью электрических сигналов с помощью сфокусированного на ДН сканирующего электронного луча в вакуумной камере и воспроизведением информации также в виде электрических сигналов (которые затем преобразуют в телевизионное изображение или документируют). ДН в таких системах - лента шириной 35 или 70 мм,состоящая из 3 слоев: основы из полиэтилентере-фталата (лавсана) толщиной 50-80 мкм;тонкого (до 1 мкм) металлического слоя; диэлектрического слоя толщиной до 10 мкм.Электронный луч формируется с помощью (электронного прожектора). При воспроизведении сканирующий электронный луч от того же или дополнительного электронного прожектора обегает поверхность ДН. Вторичные электроны (см. ) ,выбитые лучом из ДН, направляются в ;модулированный по плотности поток вторичных электронов преобразуется в .Достоинства систем Э. з. 2-й группы по сравнению с системами :более широкая полоса частот (до 20 Мгц) ;большая плотность записи; более высокое качество воспроизведения. Недостатки: конструктивная сложность; необходимость применять вакуумно-чистые материалы и производить откачку камеры после каждой смены ленты. Системы 2-й группы используют для передачи изображений из космоса. Разновидность Э. з. - .

  Лит.:Рейнберг М. Г., Электростатическая запись, М., 1974.

  М. Г. Рейнберг.

Электростатический генератор

Электростати'ческий генера'тор,высоковольтное устройство, в котором разность потенциалов создаётся механическим переносом электрических зарядов. См. .

Электростатический прибор

Электростати'ческий прибо'р, ,принцип действия которого основан на механическом взаимодействии электродов, несущих разноимённые электрические заряды. В Э. п. измеряемая величина преобразуется в напряжение переменного или постоянного тока, определяемое электростатическим измерительным механизмом ( рис. ). Измеряемое напряжение подводится к подвижному электроду, укрепленному на оси, связанной со стрелкой, и к изолированному от него неподвижному электроду. В результате взаимодействия зарядов, возникающих на электродах, на оси появляется вращающий момент, пропорциональный квадрату приложенного напряжения. Действующая на ось пружина создаёт момент, противодействующий вращающему моменту и пропорциональный углу поворота оси подвижного электрода. При взаимодействии вращающего и противодействующего моментов стрелка измерительного механизма поворачивается на угол, пропорциональный квадрату поданного на электроды напряжения. Шкала, градуируемая в единицах измеряемых величин, получается неравномерной, выполняется часто со световым указателем. Э. п. используют обычно для измерения напряжений переменного или постоянного тока, в том числе высокочастотных. Для этих приборов характерно малое потребление энергии и независимость показаний от частоты. Они подвержены влиянию внешних электростатических полей, которое ослабляется внутренним экранированием прибора. Э. п. выпускаются наивысшего класса точности 0,005.

  Лит.:Электрические измерения, под ред. Е. Г. Шрамкова, М., 1972.

  Н. Н. Вострокнутов.

Электростатический измерительный прибор: 1 - подвижный электрод; 2 - неподвижный электрод; 3 - ось; 4 - пружина; 5 - стрелка; 6 - шкала.

Электростатический ракетный двигатель

Электростати'ческий раке'тный дви'гатель, реактивный двигатель, в котором рабочее тело, обычно щелочные металлы - цезий, рубидий, а также другие элементы - ртуть, аргон, и т. п., сначала подвергается ионизации, а затем образовавшиеся ионы ускоряются в сильном электростатическом поле до скоростей в десятки и сотни км/сек.См. также .

Электростатический ускоритель

Электростати'ческий ускоритель,одни из типов высоковольтных ускорителей заряженных частиц, в котором источником высокого напряжения служит электростатический генератор. См. .

Электростатический флюксметр

Электростати'ческий флюксме'тр,прибор для измерения напряженности электростатического поля. Его действие основано на связи между плотностью заряда s, индуцированного полем на проводнике, и напряженностью электрического поля Е,т. е. Е=4p s. Различают статические Э. ф., в которых с помощью измеряется величина заряда, наведённая измеряемым полем на хорошо изолированный измерительный электрод (обычно плоскую пластину), и динамические Э. ф., в которых напряжённость поля у измерительного электрода всё время меняется за счёт перемещения дополнительного электрода. Ток или изменения потенциалов, создаваемые Э. ф. динамического типа, являются мерой измеряемой напряжённости ноля. С помощью Э. ф. удаётся измерять поля напряжённостью от 10 -1-1 кв· м -1до 10 6- 10 7 кв· м -1 .меняющиеся с частотой от 0 до 1000 гц.

Э. ф. широко используется в геофизике, технике, особенно для измерения быстро меняющихся величин на движущихся объектах (самолёты, ракеты и т. д.), в средах с большой влажностью (облака), с низкой проводимостью и т. д.

Лит.:Имянитов И. М., Приборы и методы для изучения электричества атмосферы, М., 1957; Чалмерс Дж. А., Атмосферное электричество, пер. с англ., Л., 1974.

И. М. Имянитов.

Электростатическое поле

Электростати'ческое по'ле,электрическое поле неподвижных электрических зарядов, осуществляющее взаимодействие между ними. Как и переменное электрическое поле, Э. п. характеризуется напряжённостью электрического поля Е: отношением силы, действующей на заряд, к величине заряда. Силовые линии напряжённости Э. п. не замкнуты: они начинаются на положительных зарядах и оканчиваются на отрицательных. В диэлектриках Э. п. характеризуется вектором электрической индукции D(см. электрическая и магнитная). Вектор Оудовлетворяет .Э. п. потенциально, т. е. работа этого поля по перемещению электрического заряда между двумя точками не зависит от формы траектории: на замкнутом пути она равна нулю. Вследствие потенциальности Э. п. его можно характеризовать одной скалярной функцией - электростатическим потенциалом j, связанным с вектором Есоотношением Е=-grad j. Потенциал j удовлетворяет .В однородном диэлектрике Э. п. вследствие убывает в e раз, где e - .Внутри проводников Э. п. равно нулю; все точки поверхности проводника имеют один и тот же потенциал j. Если в проводнике есть полость, то Э. п. в ней также равно нулю; на этом основана электростатическая защита электрических приборов.

Лит.:см. при ст. .

Электростимулятор

Электростимуля'тор,генератор электрических колебаний, назначение которого - лечебное воздействие электрическими импульсами на сердце, мочевой пузырь и другие органы и ткани. Подробнее см. .

Электростимуляция

Электростимуля'ция,лечебный метод дозированного воздействия электрическим током на какие-либо органы для стимуляции их деятельности. Подробнее см.

Электрострикция

Электростри'кция(от и лат.


  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41