Современная электронная библиотека ModernLib.Net

Словарь Брокгауза и Ефрона (№2) - Энциклопедический словарь (Б)

ModernLib.Net / Энциклопедии / Брокгауз Ф. А. / Энциклопедический словарь (Б) - Чтение (стр. 44)
Автор: Брокгауз Ф. А.
Жанр: Энциклопедии
Серия: Словарь Брокгауза и Ефрона

 

 


Из других коллекций богатейшей в Европе считается коллекция ваз; основанием ей послужила, купленная еще в 1782 году у английского посланника в Неаполе Вильяма Гамильтона коллекция этрусских ваз, которая особенно увеличилась в 1856 г. приобретением коллекций сэра В. Тэмпльса. В 1880 г. куплена была коллекция ваз, найденных на острове Кипре. Один из богатейших в Европе, нумизматический кабинет (число монет и медалей превышает 200000) Британского музея особенно обогатился после того, как в 1825 г. один из наиболее деятельных попечителей музея, Ричард Найт (Knight), подарил ему свою драгоценную нумизматическую коллекцию. Особенно богаты коллекции греческих, римских и в особенности английских монет. Отметим, наконец, коллекцию гравюр, стекла, майолики и т.п. Коллекции средневековых древностей не представляют ничего особенного, уступая далеко коллекции Кенсингтонского музея; коллекция же английских древностей могла быть прямо названа, бедной и только в последнее десятилетие на нее обратили внимание. Ср. G. Perrot, «Le Musee Britanniqae» («Revue des deux Mondes», 1875 — 76); «Br. Museum acounts of the income and expenditure» (печатаемые с 1813 г. ежегодно); Condan, «Memories of the British Museum» (Лондон, 1871); Edwards, «Lives of the fonnders of the British Museum» (Лонд., 1870).

А. Б — о.

Брожение

Брожение представляет особый химический процесс, вызываемый так наз. ферментами. При процессе брожения сложная частица органического вещества распадается на более простые, т.е. заключающие меньшее число атомов. Среди громадного числа брожений, как самопроизвольно протекающих в природе, так и искусственно вызываемых человеком, то брожение, которое возникает в содержащих сахар жидкостях и носит название алкогольного, спиртового или винного, было раньше других замечено и изучено с наибольшей тщательностью. Наблюдая предоставленный самому себе сок винограда, человек уже в глубокой, почти доисторической древности заметил, что в течение известного промежутка времени с соком совершается и притом без всякой видимой причины удивительная метаморфоза. Он теряет свой сладковатый вкус и приобретает способность опьянять; в тоже время выделяются пузырьки газа, приводящие жидкость, как бы в слабое кипение (от лат. fervere — кипеть некоторые производят и самое слово «ферментация», синоним брожения); наконец в самой жидкости появляются муть и осадок, состоящие из особого вещества, так наз. дрожжей. Какова внутренняя связь только что поименованных явлений — долгое время оставалось полнейшей тайной. Лишь в нынешнем столетии работами Шванна, Гей-Люссака, Каньяра-де-Латура, Мейена, Митчерлиха, Пастера, Рееса, Брефельда, Ад. Майера, Ганзена и др. был разъяснен механизм спиртового брожения. Оказалось, что спиртовое брожение может происходить в самых разнообразных сахаристых жидкостях, как искусственно приготовляемых, так и естественно встречающихся в природе. Виновником, основной причиной брожения нужно считать тот осадок, те дрожжи, которые появляются в бродящей жидкости. Исследуя дрожжевой осадок под микроскопом, заметили, что он весь состоит из мельчайших одноклеточных грибков. Грибок этот был назван Saccharomyces cerevisiae: по своему циклу развития, исследованному Реесом, он принадлежит к так назыв. аскомицетным грибам. Под влиянием жизнедеятельности только что названного грибка сахар бродящей жидкости распадается на алкоголь (опьяняющее вещество) и на углекислоту (выделяющиеся пузырьки газа). Кроме этих двух главнейших продуктов распада, существуют еще и второстепенные: глицерин и янтарная кислота.

Каким именно образом грибок разлагает сахар, в чем состоит внутренний механизм брожения, это до сих пор совершенно неизвестно. Служит ли ему сахар непосредственно пищею, а алкоголь и угольная кислота являются продуктами отброса (экскретами), или же гриб является производителем специфического, разлагающего сахар аморфного фермента, это должны решить будущие исследования (о молекулярнофизической теории Негели, химические и физиологические подробности). Одно только несомненно: Б. наступает лишь тогда, когда присутствуют живые дрожжевые клетки. Если жидкость, находящуюся в оживленном Б., нагреть до 60 — 70° Ц., то Б. сейчас же прекращается, так как при этой температуре дрожжевые грибки уже умирают. Разрушая дрожжевые клетки механическим путем, напр. растирая их в ступке с битым стеклом, мы тем самым уничтожаем навсегда их способность производить брожение. Много есть и химических деятелей, которые, действуя на Saccharomyces ядовито, останавливают тем самым и брожение. Итак, процесс брожения стоит в самой тесной интимной связи с жизненными процессами дрожжевого грибка; мертвая субстанция дрожжей никогда не в силах его вызвать. Благодаря чрезвычайно широкому, почти повсеместному, распространению дрожжевых клеток в природе, брожение легко наступает везде, где только имеются предоставленные самим себе сахаристые жидкости. В эти жидкости сахаромицеты обыкновенно падают прямо из воздуха; в виноградный сок они попадают с поверхности ягод винограда при раздавливания последних. Само собой понятно, что при таких условиях жидкость может заселиться различными породами дрожжей и брожение будет носить не чистый, а смешанный характер. Там, где Б. должно идти быстро и интенсивно и вместе с тем с строго определенным химическим характером, а это все именно и требуется при фабрикации пива и водки, там прибегают к особым разводкам или культурам дрожжевого грибка. Получив путем культуры чистый дрожжевой материал (определенный вид и порода), им засевают подлежащие брожению жидкости (сусло).

После того как природа дрожжей, как определенного грибного организма, выяснилась, естественно должен был возникнуть вопрос: принадлежит ли способность производить спиртовое брожение одному только Saccharomyces (S. cerevisiae и близкие к нему виды), или же этою способностью обладают и другие грибы. Произведенные в этом направлении исследования показали, что хотя ни один растительный организм не в состоянии производить такое интенсивное брожение, как Saccharomyces, но что существуют все таки некоторые грибы, которые, при особых и притом ненормальных для их жизни условиях, в состоянии вызвать слабое брожение. К таким грибам относится, наприм., Saccharomyces mycoderma, затем разные плесени: Mucor racemosus, М. circinelloides и М. mucedo. Нормально эти грибы вегетируют на поверхности жидкости и никакого брожения не вызывают. Если же их погрузить в жидкость и заставить таким образом вести иной образ жизни, они приобретают способность производить спиртовое брожение.

Что касается до материала подлежащего ферментативному изменению под влиянием дрожжей, то таковым является, как уже сказано, сахар. Однако не всякий сахар одинаково легко подвергается процессу спиртового брожения. Наприм., обыкновенный, тростниковый сахар, как таковой, не бродит, тогда как виноградный и плодовый сахар (декстроза и левулёза) и мальтоза бродят легко. Впрочем, если мы жидкость, заключающую тростниковый сахар, приведем в соприкосновение с дрожжами, то через известный промежуток времени брожение все таки наступит. Объясняется это тем, что дрожжи выделяют особый, растворимый в воде фермент, так наз. инвертин, под влиянием которого тростниковый сахар распадается на виноградный и плодовый, а эти уже подвергаются процессу спиртового брожения. Кроме описанного спиртового брожения, существует много других брожений, вызываемых, главным образом, бактериями и рассмотренных поэтому в главе о бактериях. Развиваясь в среде, предназначенной для спиртового брожения, напр. в пивном сусле, эти ферментативные бактериальные процессы причиняют подчас много хлопот и убытков (молочнокислое, слизевое и др. брожения), так как под влиянием жизнедеятельности бактерий сахар распадается не на алкоголь и угольную кислоту, а на совершено иные продукты. К процессам брожения относят также и те своеобразные процессы распада, которые называются тлением и гниением, равно как и те изменения органической субстанции, которые происходят под влиянием неорганизованных аморфных ферментов и играют столь выдающуюся роль при питании как животных, так и растений. Подробнее о брожении см.: Де-Бари, «Ueber Schimmel und Hefе» (Берлин, 1873); Визнер, «Einleitung in die technische Microskopie» (Вена, 1867); Пастер, «Etudes sur le vin» (2 изд., Париж, 1873); Пастер, «Etudes sur la biere» (Париж, 1876); Шютценбергер, «Les fermentations» (Париж, 1879); Ад. Майер. «Lehrbuch der Garungschemie» (Гейдельберг, 1879); Буркело, «Les Fermentations»(Париж, 1889); A. Jorgensen, «Die Mikroorganismen der Garungsindustrie» (2 изд., Берлин, 1890).

Г. Н.

Бром

Бром (Bromum; химич. форм. Br, атомный вес 80) — неметаллический элемент, из группы галоидов, открытый в 1826 г. французским химиком Баларом в маточных растворах солей морской воды; название свое Б. получил от греческого слова BrwmoV— зловоние. Одновременно с Баларом, по словам Ландольта, Б. был получен Лёвигом из маточных растворов солей крейцнахских источников; но в то время, когда Лёвиг занялся приготовлением вещества в больших количествах, появилась работа Балара. Б. никогда не встречается в природе в свободном состоянии, а лишь в соединении с различными металлами. Вместе с хлором (и йодом) он содержится в морской воде (в виде бромистого натрия и магния);но количество его здесь незначительно: на 1 литр приходится около 0,06 гр. Б. (однако в Мертвом море, на глубине 300 метров, содержание его доходит до 7 гр. на литр). Гораздо богаче бромом маточные растворы, получающиеся при добыче поваренной соли в некоторых местностях (Шёнебек, близ Магдебурга, соляные заводы Пенсильвании и др.) или при добыче солей калия, в Стассфурте и Леопольдсгалле. Стассфуртские копи, вместе с некоторыми американскими источниками, доставляют главную массу брома. Б. затем найден во многих минеральных водах (крейцнахских, старорусских и др.): в Чили и Мексике он встречается в виде бромистого серебра; чилийская селитра также содержит небольшие количества Б.; наконец, в золе морских водорослей присутствуют между прочим и бромистые металлы. Добычу Б. в заводских размерах производят следующим образом: маточные растворы, содержащие бромистые металлы, обрабатывают в каменных сосудах перекисью марганца и серной кислотой, в струе водяного пара; пары Б. и воды идут по свинцовой трубке в змеевик со стеклянным форштосом, а оттуда в трехгорлую вульфову склянку, служащую приемником; в начале операции гонится почти чистый Б., затем начинает выделяться хлористый Б., а под конец разложения появляется свободный хлор. По цвету газов в стеклянном форштосе легко различить эти три фазы операции; гонку следует прекращать, лишь только начнут выделяться желтые пары хлористого Б. Не успевший сгуститься Б. отводят в особый сосуд с водой и железными стружками, где и происходит окончательное поглощение. Чтобы по возможности избежать примеси хлора, маточные растворы обрабатывают предварительно слабой серной кислотой, причем выделяются соляная и бромистоводородная кислоты; смесь нагревают при 120°; соляная кислота удаляется в виде газа, а бромистый водород остается в растворе; кислую жидкость отделяют от осевших сернокислых солей и обрабатывают серной кислотой и перекисью марганца; пары Б. отводят сначала в пустую вульфову склянку, а затем в сосуд с раствором едкого натра, где они и поглощаются, образуя бромистый натрий и бромноватонатриеву соль; раствор выпаривают досуха, остаток прокаливают и получают из него обычным путем чистый Б. Для добычи Б. устраивают также сложные аппараты, действующие непрерывно; такого рода приспособление имеется, напр., на заводах в Леопольдсгалле; сущность его заключается в том, что навстречу маточному раствору, падающему в виде мелкого дождя сверху, в особой башне, направляется с известной силой струя водяных паров и хлора; этот последний вытесняет Б., который отводится по особой трубке, помещенной в верхней части башни, в приемник, а обработанный раствор стекает вниз, где в особо приспособленной камере, лишается при помощи струи водяного пара небольших количеств свободного Б. и хлора и затем отводится наружу; остатки Б., хлор и водяной пар своим чередом непрерывно идут опять в башню, действуют на новое количество раствора, и таким путем процесс идет непрерывно. Полученный на заводах Б. не представляет чистого вещества, а содержит главным образом в виде примеси хлор (собственно хлористый Б.), а также йод; этого последнего нет в продажном стассфуртском Б. Хлор удаляют, промывая Б. водою, затем сушат промытое вещество серной кислотой и перегоняют с термометром, собирая порцию, кипящую при 58°; для удаления йода, полученный этим путем Б. переводят в бромистый калий, растворяют его и обрабатывают раствор бромом, причем выделяется йод, который извлекают взбалтыванием с сернистым углеродом. Из очищенного таким образом бромистого калия уже легко приготовить чистый Б., не содержащий йода. Если растворить Б. в крепком растворе бромистого кальция и обработать все водой, то осаждается Б., не содержащий хлора. Чистый Б. представляет темно-бурую жидкость, почти черную в толстом слое, выделяющую красно-бурые пары; запах его удушливый, едкий, сходный с запахом хлора; пары сильно разъедают слизистые оболочки носа и дыхательных органов. Уд. вес Б. при 0° — 3,1872 (Пьерр), при 15° — почти 3,0; температура кипения 58,7°; замерзает при охлаждении в буроватую кристаллическую массу, плавящуюся при — 7° (Рамзай и Юнг); в воде растворим; на 1 часть Б. при 5° требуется 27 ч. воды, при 15° — 29 ч. Водный раствор Б. имеет оранжевый цвет и носит название бромной воды; при охлаждении, из раствора выделяются красные кристаллы соединения, содержащего 10 частиц воды на частицу брома: Br2+10H2O. Температура полного распадения этого гидрата +6,2° (В. Розебом).

Б. хорошо растворим в эфире, хлороформе, сероуглероде и может быть извлечен этими жидкостями из водных растворов; растворы бромистого калия, бромистоводородной и соляной кислоты также растворяют значительные количества Б. Вместе с хлором, йодом и фтором Б. составляет естественную группу галоидов и занимает по химическим свойствам средину между хлором и йодом: подобно прочим своим аналогам, Б. прямо соединяется с металлами, образуя соли; с водородом дает одноосновную бромистоводородную кислоту; способен замещать водород и с кислородом образует окислы кислотного характера. Если водный раствор Б. выставить на солнечный свет, то бурая окраска жидкости постепенно пропадает; появляется кислая реакция и весь Б. вступает в соединение с водородом воды, а кислород становится свободным:

H2О+Br2=2HBr+О.

Этой реакцией обусловливаются окислительные свойства Б. в присутствии воды. В тех или других условиях Б. способен прямо вступать в соединение со многими элементами (но не с углеродом и кислородом), иногда с выделением большого количества тепла. С хлором Б. дает жидкий, летучий хлористый Б.; при действии Б. на крепкие растворы щелочей образуются бромистые металлы и бромноватокислые соли; водный раствор аммиака разлагается с выделением свободного азота и бромистого аммония; с органическими веществами Б. или прямо соединяется, или же дает продукты замещения с образованием бромистого водорода; обесцвечивает красящие вещества, напр. индиго, лакмус и т.п. Б. легко отличить от других веществ по буро-красному цвету паров, характерному запаху и по растворимости в сероуглероде и хлороформе с бурой (или желтой) окраской; поэтому при качественном анализе Б. обыкновенно выделяют из соединений в свободном состоянии перекисью марганца и серной кислотой или, лучше, хлорной водой. Количественно свободный Б. определяется при помощи титрования: испытуемую жидкость смешивают с определенным объемом титрованного раствора йодистого калия и затем определяют титрованием количество вытесненного йода. В бромистоводородной кислоте и ее солях Б. определяется, в виде бромистого серебра, осаждением раствора азотносеребряной солью (ляписом); в органических соединениях определение совершается, в сущности, тем же путем; только здесь необходимо разложить вещество, в присутствии ляписа, нагреванием (выше 100° Ц.) с крепкой азотной кислотой в запаянных трубках; весь Б. получается при этом в виде бромистого серебра (способ Kapиyca). Помимо общеизвестного употребления в медицине и фотографии (в виде различных препаратов, преимущественно бромистого калия), Б. имеет широкое применение в лабораторной практике; он во многих случаях с выгодой может заменять хлор, и притом обращаться с жидким бромом гораздо удобнее, чем с газообразным хлором. В заводской практике бромистый этил, бромистый амил в бромистый метил служат для получения некоторых органических красок; с 1874 г. Б. идет на приготовление эозина (тетрабромфлюоресцеина); по Рейхардту, для приготовления соли Гмелина K3FeCy6, вместо хлора, с выгодой можно пользоваться бромом и т.п. Добыча Б., производившаяся ранее в Европе в небольших, сравнительно, размерах, получила сильное развитие с тех пор, как А. Франк в 1865 г. стал получать Б. из маточных растворов стассфуртских содей. Стассфурт и Леопольдсгалль доставляют ежегодно около 300 тонн, Северная Америка до 200 тонн брома.

Бромистоводородная кислота, бромистый водород , НВr. Бром соединяется с водородом только при высокой температуре или при действии электрических искр; при обыкновенной температуре, даже на солнечном свету. соединения не происходит. Бромистый водород был получен впервые Баларом, открывшим и Б.; он весьма сходен с хлористым водородом, однако не может быть приготовлен в чистом виде, подобно этому последнему, при действии серной кислоты на бромистый калий, так как часть бромистого водорода разлагается серной кислотой с выделением Б., а серная кислота, в свою очередь, восстанавливается до сернистого газа. Впрочем, употребляя кислоту определенной концентрации этим путем можно с удобством готовить водную 48-процентную бромистоводородную кислоту, очищаемую перегонкой («Chemiker-Zeit», 1891 г., №26, стр. 444). Если серную кислоту заменить фосфорной, которую бромистый водород не способен восстанавливать, то выделяющийся газ не содержит примеси Б. Обыкновенно бромистый водород готовят, приливая 10 частей Б. к смеси 1 ч. аморфного фосфора с 2 частями воды. При этом образуется бромистый фосфор, который водою разлагается с выделением бромистого водорода.

Колба, содержащая фосфор и воду, закупорена пробкой с двумя отверстиями; в одно из них плотно вставлена делительная воронка с краном, через которую, по каплям, приливают Б., а в другое — газоотводная трубочка, соединенная с так называемой U-образной трубкой, наполненной кусками обыкновенного фосфора и стекла, смоченного водой. Желтый фосфор предназначается для поглощения паров Б., увлекаемых током бромистого водорода. В начале каждая капля Б. вызывает бурную реакцию, даже с выделением света, но затем газ идет равномерно и спокойно; его собирают над ртутью или же, для получения водного раствора кислоты, пропускают в воду. При обработке бромом парафина, нагретого до 185°, выделяются значительные количества бромистого водорода. Г. Г. Густавсон, в своей докторской диссертации, дает следующий способ получения сухого газа: на продажный антрацен действуют бромом, приливая его понемногу из воронки с краном. Нагревания не требуется. Для устранения паров Б., бромистый водород пропускают через трубку, наполненную чистым антраценом, а для окончательного высушивания — через трубку, наполненную смесью фосфорного ангидрида и асбеста. Чистый бромистый водород представляет бесцветный газ, кислого вкуса, по запаху напоминающий соляную кислоту, во влажном воздухе распространяющий тяжелый белый дым, вследствие образования паров водной кислоты; при 73° Б. сгущается в бесцветную жидкость, которая, при испарении, отчасти затвердевает в кристаллы (Фарадэй). Уд. вес газа 2,797; вода жадно поглощает его с выделением большого количества тепла. Помимо насыщения воды газообразным бромистым водородом, раствор можно также готовить, приливая 10 ч. Б. к смеси 1 ч. красного фосфора с 15 ч. воды и перегоняя затем полученную водную кислоту. При перегонке, сначала идет очень слабая бромистоводородная кислота, но когда содержание газа в растворе достигнет почти 48%, то гонится постоянно кипящий раствор (126° Ц.) указанной концентрации; он отвечает формуле HВr+5Н2O. Более крепкие растворы выделяют, при нагревании, избыток газа и опять дают тот же раствор с t. к. 126°. Крепкая водная кислота дымит на воздухе; уд. вес 82-процентной кислоты, отвечающей по составу формуле HBr+Н2О, равен 1,78; уд. вес 47, 87-процентной (HBr+5H2О) при 14° — 1,485. (Топсое). При пропускании через раскаленную трубку (700°) бромистый водород не разлагается; хлор легко вытесняет из него Б.; некоторые металлы, многие окиси, гидраты окисей и углекислые соли растворяются в водной кислоте с образованием бромистых металлов; бромноватая кислота дает с ней Б. и воду; в смеси с азотной кислотой бромистоводородная способна растворять платину и золото.

Бромистые соединения. Как уже было указано выше, Б. прямо соединяется со многими элементами, образуя более или менее прочные бромистые соединения, которые могут быть также получены косвенными путями, при действии Б. или бромистого водорода на различный вещества. Так напр., углекислые и едкие щелочи, а также окиси щелочноземельных металлов, при накаливании, разлагаются бромом с выделением бромистых металлов; в водных растворах реакция идет иначе: кислород не выделяется, а получаются бромноватокислые (и бромноватистокислые) соли; калий, натрий, олово разлагают бромистоводородный газ, а железо, цинк и т.п., а также окиси многих металлов легко растворяются в водной кислоте, с образованием бромистых металлов. Подробнее образование и свойства важнейших бромистых соединений будут изложены при описании соответственных элементов. В органической химии бромистыми соединениями называются вещества, образующиеся присоединением Б. к непредельным соединениям или атомным группам известного строения; таковы, например, будут: бромистый этилен, С2 Н4 Вr, бромистый стильбен, С14 H12 Br2, бромистый метил, СН3 Вr (болотный газ), бромистый бензилиден. С6 H5. СНВr2 и т. п.

Бромосоединениями называются продукты замещения галоидом; напр., бромбензол, С6Н5Вr, бромэтилен, С2 Н3 Вr, пербромэтан, С2Вr6 и т.п.

Бромноватистая кислота. ВrОН. При действии Б. на слабые водные растворы щелочей, образуются, наряду с бромистыми металлами, соли бромноватистой кислоты, которые, однако, невозможно выделить из раствора вследствие их чрезвычайной непрочности. При обработки окиси ртути бромной водой получается светло-желтый раствор бромноватистой кислоты, также весьма легко разлагающийся (Балар). Кислота и ее соли обладают белящими свойствами. В аналитической химии щелочной раствор брома употребляют для определения азота в мочевине и тому подобных соединениях, выделяющих при действии этого реактива весь азот в виде газа.

Бромноватая кислота — НВrО3. При действии брома на крепкие растворы щелочей образуется смесь солей бромистоводородной и бромноватой кислоты, по уравнению: 6Вr + 6КОН = 5КВr + КВrО3 + 3Н2О;

Калийная и бариевая соли ее трудно растворимы в воде и выпадают при вышеприведенной реакции в виде кристаллического порошка; кристаллизацией из горячей воды они окончательно очищаются от примесей. Если на бромноватосеребряную соль, получающуюся в виде белого осадка при двойном разложении раствора соли калия с азотнокислым серебром, действовать бромом и водой, то получается бесцветный водный раствор бромноватой кислоты, который может быть сгущен в пустоте до содержания 50,59% HBrO3;по составу такая кислота отвечает гидрату НВrО3+7Н2O. (Кеммерер). Бромноватая кислота образуется также и другими путями, напр. при разложении (нагреванием) бромноватистой кислоты с выделением брома, при действии электрического тока на бромную воду и т.д. Вещество разлагается, при нагревании, на бром, кислород и воду и действует: сильно окисляющим образом на различные соединения: сернистый газ окисляется до серной кислоты, из сернистого водорода выделяется сера и т.п.; хлор на вещество не действует; йод разлагает его с выделением йодноватой кислоты. Бромноватая кислота одноосновна и дает только один ряд солей, которые при нагревании разлагаются, частью с выделением кислорода и бромистых металлов, а частью сверх того еще с выделением брома и образованием окисей: при нагревании, на угле происходит вспышка. По этим реакциям, а также по окислительным свойствам, легко открыть присутствие бромноватой кислоты и ее солей. Ср. Balard, «Mem. Sur une substance particuliere contenue dans l'eau de la mer» («Ann. de Chim. et de Phys», 32, стр. 337); Lowig, «Das Brom und seine chemische Verhаltnisse» (Гейдельберг); 1829; A. W. Hofmann, «Bericht uber die Entwickelung d. Chem. Industrie etc.» (стр. 127, Брауншвейг, 1875); Keri und Stohmann (Muspratt), «Handouch d. Techn. Chemie», 4-е изд.

В. P. и М. Л.

Бром

Бром (фальс.). В продажном Б. встречаются след. примеси: хлор, йод, бромоформ, четырехбромистый углерод и бромистый циан. Примесь хлора определяется следующим образом: Б. взбалтывают с водой, образовавшийся водный раствор Б. сливают и насыщают баритовой водой, избыток барита удаляют током углекислого газа; потом выпаривают до суха, остаток прокаливают и по охлаждении обрабатывают безводным алкоголем, который растворяет только бромистый барий, фильтруют и на фильтре будет хлористый барий, если в Б. была примесь хлора. На фильтр наливают горячей воды, хлористый барий растворится и к фильтрату прибавляют раствора азотнокислого серебра; образовавшийся белый осадок хлористого серебра укажет на присутствие хлора в Б. Примесь йода в Б. легко узнается таким способом: в стаканчик наливают дистиллированной воды, кладут туда несколько кусочков железной чистой проволоки и прибавляют несколько капель испытуемого Б. Образуется йодистое железо и прибавка в стаканчик раствора крахмала вызовет синее окрашивание всей жидкости. Поссельже (Posselger) находил в продажном Б. до 8% бромоформа; эта примесь изменяет точку кипения Б., а именно он кипит тогда при 120°, и после испарения Б. на стеклышке остается твердый углистый остаток. Вода растворяет такой нечистый Б. в гораздо меньшем количестве, чем чистый. Примесь четырехбромистого углерода нашел Гамильтон (Hamilton), который рекомендует открывать ее перегонкой маленькой порции Б.; такой Б. закипает при 80° и после удаления его в колбочках остается белый кристаллический осадок, плавящийся при 90°. Фипсон (Phipson) определяет присутствие циана в Б. таким способом: в стаканчик кладут несколько кусочков железной проволоки и наливают в пять раз больше (по весу) дистиллированной воды, прибавляют немного Б., размешивают и быстро фильтруют; через несколько минут из фильтрата начинает выделяться берлинская лазурь.

А. А — н.

Броненосцы

Броненосцы (Dasypoda s. Cingulata) — семейство неполнозубых млекопитающих (Edentata). Они имеют тело, покрытое твердым щитом; голова их удлиненная, уши большие, прямостоячие, морда заостренная, язык короткий. Весь покров твердый вследствие окостенения собственной кожи, которая покрывается весьма твердою роговою кожицею; весь щит состоит из многочисленных пластиночек, расположенных поясками, и между ними находится мягкая кожа с волосами. Ноги сильные, копательные; на передних — 4 или 5, а на задних 5 пальцев, вооруженных большими когтями. На груди 2 сосца. Зубная система состоит только из коренных зубов, имеющих вид простых цилиндров. Подчелюстные слюнные железы сильно развиты и достигают до грудной кости. Желудок и слепая кишка двойные; кишечный канал в 9 — 11 раз длиннее тела. Все Б. водятся в Южной Америке. Их умственные способности малоразвиты. Они питаются червями, насекомыми и плодами. Туземцы едят их мясо. При преследовании Б. очень быстро зарываются в землю. Известны также и некоторые ископаемые виды, которые теперь уже более не существуют; ископаемые виды достигали исполинской величины, как, напр., глиптодонт (Glyptodon). В настоящее время известны из этого семейства два рода: броненосец или армадил (Dasypus) и плащеносец (Chlamydophorus).

Э. Б.

Бронза

Бронза (химич.). — Так называются сплавы меди с оловом в различных пропорциях (медь в избытке), затем сплавы меди с оловом и цинком, а также некоторыми другими металлами или металлоидами (свинцом, марганцем, фосфором, кремнием и др., в небольших количествах). Присутствие посторонних металлов в настоящей бронзе (сплавах меди с оловом) носит иногда случайный характер и обусловливается неполной чистотой исходного материала (некоторые образчики античной бронзы), но обыкновенно прибавка известного количества тех или других веществ производится заведомо, с определенными целями, и тогда такая бронза получает особые названия (марганцовая бронза, фосфорная бронза и т.д.). От прибавки олова медь становится более легкоплавкой, твердой, упругой, а следовательно звучной, способной к полировке, но менее тягучей, а потому бронза, главным образом, идет на отливку различных предметов. Качества бронзы зависят от состава, способов приготовления и последующей обработки. Если сплавы меди с оловом, содержащие от 7% до 15% этого последнего и наиболее употребительные в практике, подвергнуть медленному охлаждению, то происходит разделение сплава и часть более богатая медью застывает ранее; такое явление, называемое ликвацией бронзы, служит большой помехой при отливке больших бронзовых предметов; его до известной степени можно устранить прибавкой некоторых веществ (напр., фосфористой меди, цинка) или быстро охлаждая отлитые предметы (обратно, примесь свинца обусловливает более легкое разделение сплава, так что следует избегать прибавки этого последнего свыше 3%). При закалке бронзы происходит явление совершенно обратное тому, которое наблюдается для стали: бронза становится мягкой и до известной степени ковкой.

Цвет бронзы, с увеличением процентного содержания олова, переходит из красного (90% — 99% меди) в желтый (85% меди), белый (50%) и стально-серый (до 35% меди). Что касается тягучести, то при 1% — 2% олова сплавы ковки на холоду, но менее нежели чистая медь; при 5% олова бронзу можно ковать только при температуре красного каления, а при содержании свыше 15% олова ковкость совершенно пропадает; сплавы с очень большим процентом олова опять становятся несколько мягкими и вязкими. Сопротивление разрыву зависит частью от состава, частью от агрегатного состояния, обусловливаемого способом охлаждения; при полной однородности и одинаковом составе, бронза с мелко кристаллическим строением обладает большею способностью сопротивления.


  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57