Современная электронная библиотека ModernLib.Net

Сущность технологии СОМ. Библиотека программиста

ModernLib.Net / Программирование / Бокс Дональд / Сущность технологии СОМ. Библиотека программиста - Чтение (стр. 8)
Автор: Бокс Дональд
Жанр: Программирование

 

 


VariantInit(&var);

// initialize VARIANT

// инициализируем VARIANT

V_VT(&var) = VT_I4;

// set discriminator

// устанавливаем дискриминатор

V_I4(&var) = 100;

// set union

// устанавливаем объединение

HRESULT hr = pItf->UseIt(var);

// use VARIANT

// используем VARIANT

VariantClear(&var);

// free any resources in VARIANT

// освобождаем все ресурсы VARIANT


Отметим, что этот фрагмент кода использует макросы стандартного аксессора (accessor) для доступа к элементам данных VARIANT. Две следующие строки


V_VT(&var) = VT_I4;

V_I4(&var) = 100;


эквивалентны коду, который обращается к самим элементам данных:


var.vt = VT_I4;

var.lVal = 100;


Первый вариант предпочтительнее, так как он может компилироваться на С-трансляторах, которые не поддерживают неименованных объединений.

Ниже приведен пример того, как с помощью приведенной выше технологии реализация метода использует параметр VARIANT в качестве строки:


STDMETHODIMP MyClass::UseIt( /*[in] */ VARIANT var)

{

// declare and init a second VARIANT

// объявляем и инициализируем второй VARIANT

VARIANT var2;

VariantInit(&var2);

// convert var to a BSTR and store it in var2

// преобразуем переменную в BSTR и заносим ее в var2

HRESULT hr = VariantChangeType(&var2, &var, 0, VT_BSTR);

// use the string

// используем строку

if (SUCCEEDED(hr))

{

ustrcpy(m_szSomeDataMember, SAFEBSTR(V_BSTR(&var2)));

// free any resources held by var2

// освобождаем все ресурсы, поддерживаемые var2

VariantClear(&var2);

}

return hr;

}


Отметим, что API-процедура VariantChangeType способна осуществлять сложное преобразование любого переданного клиентом типа из VARIANT в нужный тип (в данном случае BSTR).

Один из последних типов данных, который вызывает дискуссию, – это интерфейс СОМ. Интерфейсы СОМ могут быть переданы в качестве параметров метода одним из двух способов. Если тип интерфейсного указателя известен на этапе проектирования, то тип интерфейса может быть объявлен статически:


HRESULT GetObject([out] IDog **ppDog);


Если же тип на этапе проектирования неизвестен, то разработчик интерфейса может дать пользователю возможность задать тип на этапе выполнения. Для поддержки динамически типизируемых интерфейсов в IDL имеется атрибут [iid_is]:


HRESULT GetObject([in] REFIID riid, [out, iid_is(riid)] IUnknown **ppUnk);


Хотя эта форма будет работать вполне хорошо, следующий вариант предпочтительнее из-за его подобия с QueryInterface:


HRESULT GetObject([in] REFIID riid, [out, iid_is(riid)] void **ppv);


Атрибут [iid_is] можно использовать как с параметрами [in], так и [out] для типов IUnknown * или void *. Для того чтобы использовать параметр интерфейса с динамически типизируемым типом, необходимо просто установить IID указателя требуемого типа:


IDog *pDog = 0; HRESULT hr = pItf->GetObject(IID_IDog, (void**)&pDog);


Соответствующая реализация для инициализации этого параметра просто использовала бы метод QueryInterface для нужного объекта:


STDMETHODIMP Class::GetObject(REFIID riid, void **ppv)

{

extern IUnknown * g_pUnkTheDog;

return g_pUnkTheDog->QueryInterface(riid, ppv);

}


Для уменьшения количества дополнительных вызовов методов между клиентом и объектом указатели интерфейса с динамически типизируемым типом должны всегда использоваться вместо указателей интерфейса со статически типизируемым типом IUnknown.


Атрибуты и свойства

Иногда бывает полезно показать, что объект имеет некие открытые свойства, которые могут быть доступны и/или которые можно модифицировать через СОМ-интерфейс. СОМ IDL позволяет аннотировать методы интерфейса с тем, чтобы данный метод либо модифицировал, либо читал именованный атрибут объекта. Рассмотрим такое определение интерфейса:


[ object, uuid(0BB3DAE1-11F4-11d1-8C84-0080C73925BA) ]

interface ICollie : IDog

{

// Age is a read-only property

// Age (возраст) – это свойство только для чтения

[propget] HRESULT Age([out, retval] long *pVal);

// HairCount is a read/write property

// HairCount (счетчик волос) – свойство для чтения/записи

[propget] HRESULT HairCount([out, retval] long *pVal);

[propput] HRESULT HairCount([in] long val);

// CurrentThought is a write-only property

// CurrentThought (текущая мысль) – свойство только для записи

[propput] HRESULT CurrentThought([in] BSTR val);

}


Использование атрибутов [propget] и [propput] информирует компилятор IDL, что методы, которые ему соответствуют, должны быть отображены в преобразователи свойств (property mutators) или в аксессоры на языках, явно поддерживающих свойства. Применительно к Visual Basic это означает, что элементами Age, HairCount и CurrentThought можно манипулировать, используя тот же синтаксис, как при обращении к элементам структуры:


Sub UseCollie(fido as ICollie)

fido.HairCount = fido.HairCount – (fido.Age * 1000)

fido.CurrentThought = «I wish I had a bone»

End Sub


С++-отображение этого интерфейса просто прибавляет к именам методов конструкции put или get, чтобы подсказать программисту, что обращение относится к свойству:


void UseCollie(ICollie *pFido)

{

long n1, n2;

HRESULT hr = pFido->getHairCount(&n1);

assert(SUCCEEDED(hr));

hr = pFido->getAge(&n2);

assert(SUCCEEDED(hr));

hr = pFido->putHairCount(n1 – (n2 * 1000)): assert(SUCCEEDED(hr));

BSTR bstr = SysAllocString(OLESTR(«I wish I had a bone»));

hr = pFido->putCurrentThought(bstr);

assert(SUCCEEDED(hr));

SysFreeString(bstr);


Хотя свойства напрямую не обеспечивают развития, они полезны для выполнения точных преобразований на те языки, которые их поддерживают[1].


Исключения

СОМ имеет специфическую поддержку выбрасывания (throwing) исключительных ситуаций из реализации методов. Поскольку в языке C++ не существует двоичного стандарта для исключений, СОМ предлагает явные API-функции для выбрасывания и перехвата объектов СОМ-исключений:


// throw an exception

// возбуждаем исключения

HRESULT SetErrorInfo([in] ULONG reserved, //

m.b.z. [in] IErrorlnfo *pei);

// catch an exception

// перехватываем исключение

HRESULT GetErrorInfo([in] ULONG reserved, // m.b.z.

[out] IErrorInfo **ppei);


Процедура SetErrorInfo вызывается из реализации метода, чтобы связать объект исключения с текущим логическим потоком (logical thread)[1]. GetErrorInfo выбирает объект исключения из текущего логического потока и сбрасывает исключение, так что следующие вызовы GetErrorInfo возвратят SFALSE, показывая тем самым, что необработанных исключений нет. Как следует из приведенных ниже подпрограмм, объекты исключений должны поддерживать по крайней мере интерфейс IErrorInfo:


[ object, uuid(1CF2B120-547D-101B-8E65-08002B2BD119) ]

interface IErrorInfo: IUnknown

{

// get IID of interface that threw exception

// получаем IID того интерфейса, который возбудил исключение

HRESULT GetGUID([out] GUID * pGUID);

// get class name of object that threw exception

// получаем имя класса того объекта, который возбудил исключение

HRESULT GetSource([out] BSTR * pBstrSource);

// get human-readable description of exception

// получаем читабельное описание исключения

HRESULT GetDescription([out] BSTR * pBstrDescription);

// get WinHelp filename of documentation of error

// получаем имя файла WinHelp, содержащего документацию об ошибке

HRESULT GetHelpFile([out] BSTR * pBstrHelpFile);

// get WinHelp context ID for documentation of error

// получаем контекстный идентификатор WinHelp для документации ошибки

HRESULT GetHelpContext([out] DWORD * pdwHelpContext);

}


Специальные объекты исключений могут выбрать другие специфические для исключений интерфейсы в дополнение к IErrorInfo.

СОМ предусматривает по умолчанию реализацию IErrorInfo, которую можно создать с использованием API-функции СОМ CreateErrorInfo:


HRESULT CreateErrorInfo([out] ICreateErrorInfo **ppcei);


В дополнение к IErrorInfo объекты исключений по умолчанию открывают интерфейс ICreateErrorInfo, чтобы позволить пользователю инициализировать состояние нового исключения:


[ object, uuid(22F03340-547D-101B-8E65-08002B2BD119) ]

interface ICreateErrorInfo: IUnknown

{

// set IID of interface that threw exception

// устанавливаем IID интерфейс, который возбудил исключение

HRESULT SetGUID([in] REFGUID rGUID);

// set class name of object that threw exception

// устанавливаем классовое имя объекта, который возбудил исключение

HRESULT SetSource([in, string] OLECHAR* pwszSource);

// set human-readable description of exception

// устанавливаем читабельное описание исключения

HRESULT SetDescription([in, string] OLECHAR* pwszDesc);

// set WinHelp filename of documentation of error

// устанавливаем имя файла WinHelp, содержащего документацию об ошибке

HRESULT SetHelpFile([in, string] OLECHAR* pwszHelpFile);

// set WinHelp context ID for documentation of error

// устанавливаем идентификатор контекста WinHelp для документации ошибки

HRESULT SetHelpContext([in] DWORD dwHelpContext);

}


Заметим, что этот интерфейс просто позволяет пользователю заполнить объект исключения пятью основными атрибутами, доступными из интерфейса IErrorInfo.

Следующая реализация метода выбрасывает СОМ-исключение своему вызывающему объекту, используя объект исключений по умолчанию:


STDMETHODIMP PugCat::Snore(void)

{

if (this->IsAsleep())

// ok to perform operation?

// можно ли выполнять операцию?

return this->DoSnore();

//do operation and return

// выполняем операцию и возвращаемся

//otherwise create an exception object

// в противном случае создаем объект исключений

ICreateErrorInfo *рсеi = 0; HRESULT hr = CreateErrorInfo(&pcei);

assert(SUCCEEDED(hr));

// initialize the exception object

// инициализируем объект исключений

hr = pcei->SetGUID(IIDIPug);

assert(SUCCEEDED(hr));

hr = pcei->SetSource(OLESTR(«PugCat»));

assert(SUCCEEDED(hr));

hr = pcei->SetDescription(OLESTR("I am not asleep!"));

assert(SUCCEEDED(hr));

hr = pcei->SetHelpFile(OLESTR(«C:\\PugCat.hlp»));

assert(SUCCEEDED(hr));

hr = pcei->SetHelpContext(5221);

assert(SUCCEEDED(hr));

// «throw» exception

// «выбрасываем» исключение

IErrorInfo *pei = 0;

hr = pcei->QueryInterface(IIDIErrorInfo, (void**)&pei);

assert(SUCCEEDED(hr));

hr = SetErrorInfo(0, pei);

// release resources and return a SEVERITYERROR result

// высвобождаем ресурсы и возвращаем результат

// SEVERITYERROR (серьезность ошибки)

pei->Release();

pcei->Release();

return PUGEPUGNOTASLEEP;

}


Отметим, что поскольку объект исключений передается в процедуру SetErrorInfo, СОМ сохраняет ссылку на исключение до тех пор, пока оно не будет «перехвачено» вызывающим объектом, использующим GetErrorInfo.

Объекты, которые сбрасывают исключения СОМ, должны использовать интерфейс ISupportErrorInfo , чтобы показывать, какие интерфейсы поддерживают исключения. Этот интерфейс используется клиентами, чтобы установить, верный ли результат дает GetErrorInfo[2]. Этот интерфейс предельно прост:


[ object, uuid(DFOB3060-548F-101B-8E65-08002B2BD119) ]

interface ISupportErrorInfo: IUnknown

{

HRESULT InterfaceSupportsErrorInfo([in] REFIID riid);

}


Предположим, что класс PugCat, рассмотренный в этой главе, сбрасывает исключения из каждого поддерживаемого им интерфейса. Тогда его реализация будет выглядеть так:


STDMETHODIMP PugCat::InterfaceSupportsErrorInfo(REFIID riid)

{

if (riid == IIDIAnimal || riid == IIDICat || riid == IIDIDog || riid == IIDIPug) return SOK;

else return SFALSE;

}


Ниже приведен пример клиента, который надежно обрабатывает исключения, используя ISupportErrorInfo и GetErrorInfo:


void TellPugToSnore(/*[in]*/ IPug *pPug)

{

// call a method

// вызываем метод

HRESULT hr = pPug->Snore();

if (FAILED(hr))

{

// check to see if object supports СОМ exceptions

// проверяем, поддерживает ли объект исключения СОМ

ISupportErrorInfo *psei = 0;

HRESULT hr2 =pPug->QueryInterface( IIDISupportErrorInfo, (void**)&psei);

if (SUCCEEDED(hr2))

{

// check if object supports СОМ exceptions via IPug methods

// проверяем, поддерживает ли объект исключения СОМ через методы

IPug hr2 = psei->InterfaceSupportsErrorInfo(IIDIPug);

if (hr2 == SOK)

{

// read exception object for this logical thread

// читаем объект исключений для этого логического потока

IErrorInfo *реi = 0;

hr2 = GetErrorInfo(0, &pei);

if (hr2 == SOK)

{

// scrape out source and description strings

// извлекаем строки кода и описания

BSTR bstrSource = 0, bstrDesc = 0;

hr2 = pei->GetDescription(&bstrDesc);

assert(SUCCEEDED(hr2));

hr2 = pei->GetSource(&bstrSource);

assert(SUCCEEDED(hr2));

// display error information to end-user

// показываем информацию об ошибке конечному пользователю

MessageBoxW(0, bstrDesc ? bstrDesc : L"«, bstrSource ? bstrSource : L»", MBOK);

// free resources

// высвобождаем ресурсы

SysFreeString(bstrSource);

SysFreeString(bstrDesc);

pei->Release();

}

}

psei->Release();

}

}

if (hr2!= SOK)

// something went wrong with exception

// что-то неладно с исключением

MessageBox(0, «Snore Failed», «IPug», MBOK);

}


Довольно просто отобразить исключения СОМ в исключения C++, причем в любом месте. Определим следующий класс, который упаковывает объект исключений СОМ и HRESULT в один класс C++:


struct COMException

{

HRESULT mhresult;

// hresult to return

// hresult для возврата IErrorInfo *mpei;

// exception to throw

// исключение для выбрасывания

COMException(HRESULT hresult, REFIID riid, const OLECHAR *pszSource, const OLECHAR *pszDesc, const OLECHAR *pszHelpFile = 0, DWORD dwHelpContext = 0)

{

// create and init an error info object

// создаем и инициализируем объект информации об ошибке

ICreateErrorInfo *рсеi = 0;

HRESULT hr = CreateErrorInfo(&pcei);

assert(SUCCEEDED(hr));

hr = pcei->SetGUID(riid);

assert(SUCCEEDED(hr));

if (pszSource) hr=pcei->SetSource(constcast(pszSource));

assert(SUCCEEDED(hr));

if (pszDesc) hr=pcei->SetDescription(constcast(pszDesc));

assert(SUCCEEDED(hr));

if (pszHelpFile) hr=pcei->SetHelpFile(constcast(pszHelpFile));

assert(SUCCEEDED(hr));

hr = pcei->SetHelpContext(dwHelpContext);

assert(SUCCEEDED(hr));

// hold the HRESULT and IErrorInfo ptr as data members

// сохраняем HRESULT и указатель IErrorInfo как элементы данных

mhresult = hresult;

hr=pcei->QueryInterface(IIDIErrorInfo, (void**)&mpei);

assert(SUCCEEDED(hr));

pcei->Release();

}

};


С использованием только что приведенного С++-класса COMException показанный выше метод Snore может быть модифицирован так, чтобы он преобразовывал любые исключения C++ в исключения СОМ:


STDMETHODIMP PugCat::Snore(void)

{

HRESULT hrex = SOK;

try

{

if (this->IsAsleep()) return this->DoSnore();

else throw COMException(PUGEPUGNOTASLEEP, IIDIPug, OLESTR(«PugCat»), OLESTR(«I am not asleep!»));

}

catch (COMException& ce)

{

// a C++ COMException was thrown

// было сброшено исключение COMException C++

HRESULT hr = SetErrorInfo(0, ce.mpei);

assert(SUCCEEDED(hr));

ce.mpei->Release();

hrex = ce.mhresult;

}

catch (…)

{

// some unidentified C++ exception was thrown

// было выброшено какое-то неидентифицированное исключение C++

COMException ex(EFAIL, IIDIPug, OLESTR(«PugCat»), OLESTR(«A C++ exception was thrown»));

HRESULT hr = SetErrorInfo(0, ex.mpei);

assert(SUCCEEDED(hr));

ex.mpei->Release();

hrex = ex.mhresult;

}

return hrex;

}


Заметим, что реализация метода заботится о том, чтобы не позволить чисто С++-исключениям переходить через границы метода. Таково безусловное требование СОМ.


Где мы находимся?

В этой главе была представлена концепция интерфейса СОМ. Интерфейсы СОМ обладают простыми двоичными сигнатурами, которые позволяют любому клиенту обращаться к объекту независимо от языка программирования, использованного клиентом или конструктором объекта. Чтобы облегчить поддержку различных языков, интерфейсы СОМ определяются на языке IDL (Interface Definition Language). Эти IDL-определения интерфейса могут быть также использованы для генерирования кода передачи данных (communications code), который позволяет получать доступ к объекту через сеть.

Большая часть этой главы была посвящена IUnknown – базовому интерфейсу, на котором построен весь СОМ. Все интерфейсы СОМ должны наследовать от IUnknown. Следовательно, все объекты СОМ должны реализовывать IUnknown. В IUnknown предусмотрено три сигнатуры метода, посредством которых клиент может безошибочно управлять иерархией типов объекта для доступа к дополнительным возможностям, предоставляемым этим объектом. С учетом этого QueryInterface можно рассматривать как оператор приведения типа в СОМ. По этой же причине IUnknown можно рассматривать как «void *» (указатель на пустой тип) среди указателей интерфейса, так как от него не слишком много пользы до тех пор, пока он не «приведен» (is «cast») к чему-нибудь более содержательному с помощью QueryInterface.

Следует заметить, что при обращении или реализации IUnknown не было сделано никаких существенных системных вызовов. В этом смысле IUnknown просто является протоколом или набором обещаний (promises), которого должны придерживаться все программы. Это позволяет объектам СОМ быть очень простыми и эффективными. Реализация IUnknown в C++ требует всего нескольких строк стандартного кода. Чтобы автоматизировать реализацию IUnknown в C++, была представлена серия макросов для препроцессора, которые реализуют QueryInterface под табличным управлением. Хотя эти макросы не были совершенно необходимыми, они удаляли большую часть общего стандартного кода из каждого определения класса, не внося при этом заметных усложнений в реализацию.


Глава 3. Классы

int cGorillas = Gorilla::GetCount();

IApe *pApe = new Gorilla();

pApe->GetYourStinkingPawsOffMeYouDamnDirtyApe();

Charleton Heston, 1968

В предыдущей главе обсуждались принципы интерфейсов СОМ вообще и интерфейс IUnknown в частности. Были показаны способы управления указателями интерфейса из C++, и детально обсуждалась фактическая техника реализации IUnknown. Однако не обсуждалось, как обычно клиенты получают начальный указатель интерфейса на объект, или как средства реализации объекта допускают, чтобы их объекты могли быть обнаружены внешними клиентами. В данной главе демонстрируется, как реализации объектов СОМ интегрируют в среду выполнения СОМ, чтобы дать клиентам возможность найти или создать объекты требуемого конкретного типа.


Снова об интерфейсе и реализации

В предыдущей главе интерфейс СОМ был определен как абстрактный набор операций, выражающий некоторую функциональность, которую может экспортировать объект. Интерфейсы СОМ описаны на языке IDL (Interface Definition Language – язык определений интерфейса) и имеют логические имена, которые указывают на моделируемые ими функциональные возможности. Ниже приведено IDL-определение СОМ-интерфейса IApe:


[object, uuid(753A8A7C-A7FF-11d0-8C30-0080C73925BA)]

interface IApe : Unknown

{

import «unknwn.idl»;

HRESULT EatBanana(void);

HRESULT SwingFromTree(void);

[propget] HRESULT Weight([out, retval] long *plbs);

}


Сопровождающая IApe документация должна специфицировать примерную семантику трех операций: EatBanana, SwingFromTree и Weight. Все объекты, раскрывающие IАре посредством QueryInterface , должны гарантировать, что их реализации этих методов придерживаются семантического контракта IАре. В то же время определения интерфейса почти всегда специально оставляют место для интерпретации разработчиком объекта. Это означает, что клиенты никогда не могут быть полностью уверены в точном поведении любого заданного метода, а только в том, что его поведение будет следовать схематическим правилам, описанным в документации к интерфейсу. Эта контролируемая степень неопределенности является фундаментальной характеристикой полиморфизма и одной из основ развития объектно-ориентированного программного обеспечения.

Рассмотрим только что приведенный интерфейс IАре. Вероятно (и даже возможно), что будет более одной реализации интерфейса IАре. Поскольку определение IАре является общим для всех реализаций, то предположения, которые могут сделать клиенты о поведении метода EatBanana, должны быть достаточно неопределенными, чтобы позволить каждой обезьяне – гориллам, шимпанзе и орангутангам (все они могут реализовывать интерфейс IАре ), получить свои допустимые (но слегка различные) интерпретации данной операции. Без этой гибкости полиморфизм невозможен.

СОМ определенно трактует интерфейсы, реализации и классы как три различных понятия. Интерфейсы являются абстрактными протоколами для связи с объектом. Реализации – это конкретные типы данных, поддерживающие один или несколько интерфейсов с помощью точных семантических интерпретаций каждой из абстрактных операций интерфейса. Классы – это именованные реализации, представляющие собой конкретные типы, которым можно приписывать значения, и формально называются СОМ-классами, или коклассами (coclasses).

В смысле инкапсуляции о СОМ-классе известно только его имя и потенциальный список интерфейсов, которые он выставляет. Подобно СОМ-интерфейсам, СОМ-классы именуются с использованием GUID (globally unique identifier – глобально уникальный идентификатор), хотя если GUID используются для именования СОМ-классов, то они называются идентификаторами класса – CLSID. Аналогично именам интерфейсов, эти имена классов должны быть хорошо известны клиенту до того, как он их использует. Поскольку для обеспечения полиморфизма СОМ-интерфейсы являются семантически неопределенными, то СОМ не позволяет клиентам просто запрашивать любую доступную реализацию данного интерфейса. Вместо этого клиенты должны точно специфицировать требуемую реализацию. Это лишний раз подчеркивает тот факт, что СОМ-интерфейсы – это всего лишь абстрактные коммуникационные протоколы, единственное назначение которых – обеспечить клиентам связь с объектами, принадлежащими конкретным, имеющим ясную цель классам реализации [1].

Кроме того, что реализации могут быть именованы с помощью CLSID, СОМ поддерживает текстовые псевдонимы, так называемые программные идентификаторы (programmatic identifiers), иначе ProgID. Эти ProgID поступают в формате libraryname.classname.version и, в отличие от CLSID, являются уникальными только по соглашению. Клиенты могут преобразовывать ProgID в CLSID и обратно с помощью API-функций СОМ CLSIDFromProgID и ProgIDFromCLSID:


HRESULT CLSIDFromProgID([in, string] const OLECHAR *pwszProgID, [out] CLSID *pclsid);

HRESULT ProgIDFromCLSID([in] REFCLSID rclsid, [out, string] OLECHAR **ppwszProgID);


Для преобразования ProgID в CLSID нужно просто вызвать CLSIDFromProgID:


HRESULT GetGorillaCLSID(CLSID& rclsid)

{

const OLECHAR wszProgID[] = OLESTR(«Apes.Gorilla.1»);

return CLSIDFromProgID(wszProgID, &rclsid);

}


На этапе выполнения будет просматриваться база данных конфигураций СОМ для преобразования ProgID Apes.Gorilla.1 в CLSID, соответствующий классу реализации СОМ.


Объекты классов

Основное требование всех СОМ-классов состоит в том, что они должны иметь объект класса. Объект класса – это единственный экземпляр (синглетон), связанный с каждым классом, который реализует функциональность класса, общую для всех его экземпляров. Объект класса ведет себя как метакласс по отношению к заданной реализации, а реализуемые им методы выполняют роль статических функций-членов из C++. По логике вещей, может быть только один объект класса в каждом классе; однако в силу распределенной природы СOМ каждый класс может иметь по одному объекту класса на каждую хост-машину (host machine), на учетную запись пользователя или на процесс, – в зависимости от того, как используется этот класс. Первой точкой входа в реализацию класса является ее объект класса.

Объекты класса являются очень полезными программистскими абстракциями. Объекты класса могут вести себя как известные объекты (когда их идентификатор CLSID выступает в качестве имени объекта), которые позволяют нескольким клиентам связываться с одним и тем же объектом, определенным с помощью данного CLSID. В то время как системы в целом могли быть созданы с использованием исключительно объектов класса, объекты класса часто используются как посредники (brokers) при создании новых экземпляров класса или для того, чтобы найти имеющиеся экземпляры, определенные с помощью какого-нибудь известного имени объекта. При использовании в этой роли объект класса обычно объявляет только один или два промежуточных интерфейса, которые позволят клиентам создать или найти те экземпляры, которые в конечном счете будут выполнять нужную работу. Например, рассмотрим описанный ранее интерфейс IАре . Объявление интерфейса IАре не нарушит законы СОМ для объекта класса:


class GorillaClass : public IApe

{

public:

// class objects are singletons, so don't delete

// объекты класса существуют в единственном экземпляре,

// так что не удаляйте их

IMPLEMENTUNKNOWNNODELETE (GorillaClass)

BEGININTERFACETABLE(GorillaClass)

IMPLEMENTSINTERFACE(IApe)

ENDINTERFACETABLE()

// IApe methods

// методы IApe

STDMETHODIMP EatBanana(void);

STDMETHODIMP SwingFromTree(void);

STDMETHODIMP getWeight(long *plbs);

};


Если для данного класса C++ может существовать лишь один экземпляр (так ведут себя все объекты классов в СОМ), то в любом заданном экземпляре может быть только одна горилла (gorilla). Для некоторых областей одноэлементных множеств достаточно. В случае с гориллами, однако, весьма вероятно, что клиенты могут захотеть создавать приложения, которые будут использовать несколько различных горилл одновременно. Чтобы обеспечить такое использование, объект класса не должен экспортировать интерфейс IApe , а вместо этого должен экспортировать новый интерфейс, который позволит клиентам создавать новых горилл и/или находить известных горилл по их имени. Это потребует от разработчика определить два класса C++: один для реализации объекта класса и другой для реализации действительных экземпляров класса. Для реализации гориллы класс C++, который определяет экземпляры гориллы, будет реализовывать интерфейс IApe:


class Gorilla : public IApe


  • Страницы:
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33